Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Rabies

Abstract

Rabies is a life-threatening neglected tropical disease: tens of thousands of cases are reported annually in endemic countries (mainly in Africa and Asia), although the actual numbers are most likely underestimated. Rabies is a zoonotic disease that is caused by infection with viruses of the Lyssavirus genus, which are transmitted via the saliva of an infected animal. Dogs are the most important reservoir for rabies viruses, and dog bites account for >99% of human cases. The virus first infects peripheral motor neurons, and symptoms occur after the virus reaches the central nervous system. Once clinical disease develops, it is almost certainly fatal. Primary prevention involves dog vaccination campaigns to reduce the virus reservoir. If exposure occurs, timely post-exposure prophylaxis can prevent the progression to clinical disease and involves appropriate wound care, the administration of rabies immunoglobulin and vaccination. A multifaceted approach for human rabies eradication that involves government support, disease awareness, vaccination of at-risk human populations and, most importantly, dog rabies control is necessary to achieve the WHO goal of reducing the number of cases of dog-mediated human rabies to zero by 2030.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the rabies virus.
Figure 2: The global distribution of dog-transmitted human rabies.
Figure 3: Spread of rabies virus within the nervous system.
Figure 4: Mechanisms of immune evasion of the rabies virus.
Figure 5: The spectrum of clinical rabies.
Figure 6: Algorithm for the evaluation of differential diagnoses.
Figure 7: Management of clinical rabies.

Similar content being viewed by others

References

  1. Neville, J. in Historical Perspective of Rabies in Europe and the Mediterranean Basin (eds King, A. A., Fooks, A. R., Aubert, M. & Wandeler, A. I. ) 1–12 (OIE, 2004).

    Google Scholar 

  2. Afonso, C. L. et al. Taxonomy of the order Mononegavirales: update 2016. Arch. Virol. 161, 2351–2360 (2016).

    Google Scholar 

  3. Fooks, A. R. et al. Current status of rabies and prospects for elimination. Lancet 384, 1389–1399 (2014).

    Google Scholar 

  4. Jackson, A. C. Rabies pathogenesis. J. Neurovirol. 8, 267–269 (2002).

    Google Scholar 

  5. Warrell, M. J. The dilemma of managing human rabies encephalitis. Trop. Med. Int. Health 21, 456–457 (2016).

    Google Scholar 

  6. Meslin, F. X. & Briggs, D. J. Eliminating canine rabies, the principal source of human infection: What will it take? Antiviral Res. 98, 291–296 (2013).

    Google Scholar 

  7. Wallace, R. M., Undurraga, E. A., Blanton, J. D., Cleaton, J. & Franka, R. Elimination of dog-mediated human rabies deaths by 2030: Needs assessment and alternatives for progress based on dog vaccination. Front. Vet. Sci. 4, 9 (2017).This article highlights the resources needed to achieve elimination of dog-mediated human rabies deaths by 2030, which will result in a concomitant reduction in human cases of rabies.

  8. [No authors listed.] Aiming for elimination of dog-mediated human rabies cases by 2030. Vet. Rec. 178, 86–87 (2016).

  9. Reece, J. F. Rabies in India: an ABC approach to combating the disease in street dogs. Vet. Rec. 161, 292–293 (2007).

    Google Scholar 

  10. Lankester, F. et al. Implementing Pasteur's vision for rabies elimination. Sci. Justice 345, 1562–1564 (2014).

    Google Scholar 

  11. Lavan, R. P., King, A., Sutton, D. J. & Tunceli, K. Rationale and support for a One Health program for canine vaccination as the most cost-effective means of controlling zoonotic rabies in endemic settings. Vaccine 35, 1668–1674 (2017).This article contains case studies from endemic, resource-poor regions illustrating how mass canine vaccination programmes that achieve a minimum 70% coverage are cost-effective in controlling zoonotic rabies and decrease the economic burden of rabies by reducing expenditures on post-exposure prophylaxis.

    Google Scholar 

  12. Abela-Ridder, B. et al. The beginning of the end of rabies? Lancet Glob. Health 4, e780–e781 (2016).

    Google Scholar 

  13. Nadin-Davis, S. A. in Rabies: Scientific Basis of the Disease and its Management (ed. Jackson, A. C. ) 123–177 (Academic Press, 2013).

    Google Scholar 

  14. Banyard, A. C. & Fooks, A. R. The impact of novel lyssavirus discovery. Microbiol. Australia 38, 18–21 (2017).

    Google Scholar 

  15. Scott, T. et al. Complete Genome and molecular epidemiological data infer the maintenance of rabies among kudu (Tragelaphus strepsiceros) in Namibia. PLoS ONE 8, e58739 (2013).

    Google Scholar 

  16. Brunker, K. et al. Elucidating the phylodynamics of endemic rabies virus in eastern Africa using whole-genome sequencing. Virus Evol. 1, 1–11 (2015).

    Google Scholar 

  17. Horton, D. et al. Complex epidemiology of a zoonotic disease in a culturally diverse region: phylogeography of rabies virus in the Middle East. PLoS Negl. Trop. Dis. 9, e0003569 (2015).

    Google Scholar 

  18. Badrane, H. & Tordo, N. Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders. J. Virol. 75, 8096–8104 (2001).This is a pivotal manuscript showing that host-switching occurred in the history of lyssaviruses and that lyssaviruses evolved in chiropters long before the emergence of carnivoran rabies, very likely following spillovers from bats.

    Google Scholar 

  19. Bourhy, H. et al. The origin and phylogeography of dog rabies virus. J. Gen. Virol. 89, 2673–2681 (2008).

    Google Scholar 

  20. Bernardi, F. et al. Antigenic and genetic characterization of rabies viruses isolated from domestic and wild animals of Brazil identifies the hoary fox as a rabies reservoir. J. Gen. Virol. 86, 3153–3162 (2005).

    Google Scholar 

  21. Banyard, A. C. et al. in Rabies: Scientific Basis of the Disease and its Management (ed. Jackson, A. C. ) 215–267 (Academic Press, 2013).

    Google Scholar 

  22. Vigilato, M. A. N. et al. Progress towards eliminating canine rabies: policies and perspectives from Latin America and the Caribbean. Philos. Trans R. Soc. Lond. B Biol Sci. 368, 20120143 (2013).

    Google Scholar 

  23. Chiou, H.-Y. et al. Molecular characteridation of cryptically circulating rabies virus from ferret badgers, Taiwan. Emerg. Infect. Dis. 20, 790–798 (2014).

    Google Scholar 

  24. Baxter, J. M. One in a million, or one in thousand: What is the morbidity of rabies in India? J. Glob. Health 2, 10303 (2012).

    Google Scholar 

  25. Fooks, A. R., Koraka, P., de Swart, R. L., Rupprecht, C. E. & Osterhaus, A. D. Development of a multivalent paediatric human vaccine for rabies virus in combination with Measles-Mumps-Rubella (MMR). Vaccine 32, 2020–2021 (2014).

    Google Scholar 

  26. Hampson, K. et al. Estimating the global burden of endemic canine rabies. PLoS Negl. Trop. Dis. 9, e0003709 (2015).

    Google Scholar 

  27. Banyard, A. C., Horton, D. L., Freuling, C., Muller, T. & Fooks, A. R. Control and prevention of canine rabies: the need for building laboratory-based surveillance capacity. Antiviral Res. 98, 357–364 (2013).

    Google Scholar 

  28. Dodet, B., Korejwo, J. & Briggs, D. J. Eliminating the scourge of dog-transmitted rabies. Vaccine 31, 1359 (2013).

    Google Scholar 

  29. Mallewa, M. et al. Rabies encephalitis in malaria-endemic area, Malawi, Africa. Emerg. Infect. Dis. 13, 136–139 (2007).This is a case study report from Malawi showing that rabies is regularly misdiagnosed if a clinical diagnosis is undertaken without laboratory confirmation of rabies.

    Google Scholar 

  30. World Health Organization. WHO Expert Consultation on Rabies, Second Report. WHO Technical Report Series, no. 982 (WHO, 2013).

  31. Lembo, T. et al. The feasibility of canine rabies elimination in Africa: dispelling doubts with data. PLoS Negl. Trop. Dis. 4, e626 (2010).

    Google Scholar 

  32. Messenger, S. L., Smith, J. S. & Rupprecht, C. E. Emerging epidemiology of bat-associated cryptic cases of rabies in humans in the United States. Clin. Infect. Dis. 35, 738–747 (2002).

    Google Scholar 

  33. Srinivasan, A. et al. Transmission of rabies virus from an organ donor to four transplant recipients. N. Engl. J. Med. 352, 1103–1111 (2005).

    Google Scholar 

  34. Chen, S. et al. Rabies virus transmission in solid organ transplantation, China, 2015–2016. Emerg. Infect. Dis. 23, 1600–1602 (2017).

    Google Scholar 

  35. Maier, T. et al. Management and outcomes after multiple corneal and solid organ transplantations from a donor infected with rabies virus. Clin. Infect. Dis. 50, 1112–1119 (2010).

    Google Scholar 

  36. Vora, N. M. et al. Clinical management and humoral immune responses to rabies post-exposure prophylaxis among three patients who received solid organs from a donor with rabies. Transplant Infect. Dis. 17, 389–395 (2015).

    Google Scholar 

  37. Johnson, N., Phillpotts, R. & Fooks, A. R. Airborne transmission of lyssaviruses. J. Med. Microbiol. 55, 785–790 (2006).

    Google Scholar 

  38. Winkler, W. G., Baker, E. F. Jr & Hopkins, C. C. An outbreak of non-bite transmitted rabies in a laboratory animal colony. Am. J. Epidemiol. 95, 267–277 (1972).

    Google Scholar 

  39. Winkler, W. G. Airborne rabies virus isolation. Wildl. Dis. 4, 37–40 (1968).

    Google Scholar 

  40. Davis, A. D., Rudd, R. J. & Bowen, R. A. Effects of aerosolized rabies virus exposure on bats and mice. J. Infect. Dis. 195, 1144–1150 (2007).

    Google Scholar 

  41. Klingen, Y., Conzelmann, K. K. & Finke, S. Double-labeled rabies virus: live tracking of enveloped virus transport. J. Virol. 82, 237–245 (2008).

    Google Scholar 

  42. Gluska, S. et al. Rabies Virus Hijacks and accelerates the p75NTR retrograde axonal transport machinery. PLoS Pathog. 10, e1004348 (2014).

    Google Scholar 

  43. Tsiang, H. Evidence for an intraaxonal transport of fixed and street rabies virus. J. Neuropathol. Exp. Neurol. 38, 286–299 (1979).

    Google Scholar 

  44. Lycke, E. & Tsiang, H. Rabies virus infection of cultured rat sensory neurons. J. Virol. 61, 2733–2741 (1987).

    Google Scholar 

  45. Gillet, J. P., Derer, P. & Tsiang, H. Axonal transport of rabies virus in the central nervous system of the rat. J. Neuropathol. Exp. Neurol. 45, 619–634 (1986).

    Google Scholar 

  46. Kucera, P., Dolivo, M., Coulon, P. & Flamand, A. Pathways of the early propagation of virulent and avirulent rabies strains from the eye to the brain. J. Virol. 55, 158–162 (1985).

    Google Scholar 

  47. Ceccaldi, P. E., Gillet, J. P. & Tsiang, H. Inhibition of the transport of rabies virus in the central nervous system. J. Neuropathol. Exp. Neurol. 48, 620–630 (1989).

    Google Scholar 

  48. Piccinotti, S. & Whelan, S. P. Rabies internalizes into primary peripheral neurons via clathrin coated pits and requires fusion at the cell body. PLoS Pathog. 12, e1005753 (2016).

    Google Scholar 

  49. Lahaye, X. et al. Functional characterization of Negri bodies (NBs) in rabies virus-infected cells: Evidence that NBs are sites of viral transcription and replication. J. Virol. 83, 7948–7958 (2009).

    Google Scholar 

  50. Charlton, K. M. & Casey, G. A. Experimental rabies in skunks: immunofluorescence light and electron microscopic studies. Lab. Invest. 41, 36–44 (1979).

    Google Scholar 

  51. Etessami, R. et al. Spread and pathogenic characteristics of a G-deficient rabies virus recombinant: an in vitro and in vivo study. J. Gen. Virol. 81, 2147–2153 (2000).

    Google Scholar 

  52. Hemachudha, T. et al. Human rabies: neuropathogenesis, diagnosis, and management. Lancet Neurol. 12, 498–513 (2013).

    Google Scholar 

  53. Thoulouze, M. I. et al. The neural cell adhesion molecule is a receptor for rabies virus. J. Virol. 72, 7181–7190 (1998).

    Google Scholar 

  54. Tuffereau, C., Benejean, J., Blondel, D., Kieffer, B. & Flamand, A. Low-affinity nerve-growth factor receptor (P75NTR) can serve as a receptor for rabies virus. EMBO J. 17, 7250–7259 (1998).

    Google Scholar 

  55. Lentz, T. L., Burrage, T. G., Smith, A. L., Crick, J. & Tignor, G. H. Is the acetylcholine receptor a rabies virus receptor? Science 215, 182–184 (1982).The data in this paper indicate that acetylcholine receptors serve as receptors for the rabies virus.

    Google Scholar 

  56. Tuffereau, C. et al. The rabies virus glycoprotein receptor p75NTR is not essential for rabies virus infection. J. Virol. 81, 13622–13630 (2007).

    Google Scholar 

  57. Lafon, M. Rabies virus receptors. J. Neurovirol. 11, 82–87 (2005).

    Google Scholar 

  58. Velandia-Romero, M. L., Castellanos, J. E. & Martínez-Gutiérrez, M. In vivo differential susceptibility of sensory neurons to rabies virus infection. J. Neurovirol. 19, 367–375 (2013).

    Google Scholar 

  59. Bauer, A. et al. Anterograde glycoprotein-dependent transport of newly generated rabies virus in dorsal root ganglion neurons. J. Virol. 88, 14172–14183 (2014).

    Google Scholar 

  60. Zampieri, N., Jessell, T. M. & Murray, A. J. Mapping sensory circuits by anterograde transsynaptic transfer of recombinant rabies virus. Neuron 81, 766–778 (2014).

    Google Scholar 

  61. Zhang, D. et al. Genome-wide transcriptional profiling reveals two distinct outcomes in central nervous system infections of rabies virus. Front. Microbiol. 7, 751 (2016).

    Google Scholar 

  62. Wang, Z. W. et al. Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system. J. Virol. 79, 12554–12565 (2005).

    Google Scholar 

  63. Hooper, D. C., Roy, A., Barkhouse, D. A., Li, J. & Kean, R. B. Rabies virus clearance from the central nervous system. Adv. Virus Res. 79, 55–71 (2011).

    Google Scholar 

  64. Hooper, D. C., Phares, T. W., Fabis, M. J. & Roy, A. The production of antibody by invading B cells is required for the clearance of rabies virus from the central nervous system. PLoS Negl. Trop. Dis. 3, e535 (2009).The data in this paper show that the production of rabies-virus-specific antibodies by infiltrating B cells across the blood–brain barrier is crucial for the elimination of rabies virus.

    Google Scholar 

  65. Gnanadurai, C. W. & Fu, Z. F. CXCL10 and blood-brain barrier modulation in rabies virus infection. Oncotarget 7, 10694–10695 (2016).

    Google Scholar 

  66. Wang, L., Cao, Y., Tang, Q. & Liang, G. Role of the blood-brain barrier in rabies virus infection and protection. Protein Cell 4, 901–903 (2013).

    Google Scholar 

  67. Roy, A., Phares, T. W., Koprowski, H. & Hooper, D. C. Failure to open the blood-brain barrier and deliver immune effectors to central nervous system tissues leads to the lethal outcome of silver-haired bat rabies virus infection. J. Virol. 81, 1110–1118 (2007).

    Google Scholar 

  68. Laothamatas, J., Hemachudha, T., Mitrabhakdi, E., Wannakrairot, P. & Tulayadaechanont, S. MR imaging in human rabies. AJNR Am. J. Neuroradiol. 24, 1102–1109 (2003).

    Google Scholar 

  69. Laothamatas, J. et al. Furious and paralytic rabies of canine origin: neuroimaging with virological and cytokine studies. J. Neurovirol. 14, 119–129 (2008).

    Google Scholar 

  70. Hooper, D. C., Roy, A., Kean, R. B., Phares, T. W. & Barkhouse, D. A. Therapeutic immune clearance of rabies virus from the CNS. Future Virol. 6, 387–397 (2011).

    Google Scholar 

  71. Johnson, N., Cunningham, A. F. & Fooks, A. R. The immune response to rabies virus infection and vaccination. Vaccine 28, 3896–3901 (2010).

    Google Scholar 

  72. Lafon, M. Evasive strategies in rabies virus infection. Adv. Virus Res. 79, 33–53 (2011).

    Google Scholar 

  73. Baloul, L., Camelo, S. & Lafon, M. Up-regulation of Fas ligand (FasL) in the central nervous system: a mechanism of immune evasion by rabies virus. J. Neurovirol. 10, 372–382 (2004).

    Google Scholar 

  74. Kojima, D. et al. Pathology of the spinal cord of C57BL/6J mice infected with rabies virus (CVS-11 strain). J. Vet. Med. Sci. 71, 319–324 (2009).

    Google Scholar 

  75. Kojima, D. et al. Lesions of the central nervous system induced by intracerebral inoculation of BALB/c mice with rabies virus (CVS-11). J. Vet. Med. Sci. 72, 1011–1016 (2010).

    Google Scholar 

  76. Lafon, M. et al. Detrimental contribution of the immuno-inhibitor B7-H1 to rabies virus encephalitis. J. Immunol. 180, 7506–7515 (2008).

    Google Scholar 

  77. Finke, S., Cox, J. H. & Conzelmann, K. K. Differential transcription attenuation of rabies virus genes by intergenic regions: generation of recombinant viruses overexpressing the polymerase gene. J. Virol. 74, 7261–7269 (2000).

    Google Scholar 

  78. Shuangshoti, S. et al. Intracellular spread of rabies virus is reduced in the paralytic form of canine rabies compared to the furious form. PLoS Negl. Trop. Dis. 10, e0004748 (2016).

    Google Scholar 

  79. Shuangshoti, S. et al. Reduced viral burden in paralytic compared to furious canine rabies is associated with prominent inflammation at the brainstem level. BMC Vet. Res. 9, 31 (2013).

    Google Scholar 

  80. Nikolic, J., Civas, A., Lama, Z., Lagaudriere-Gesbert, C. & Blondel, D. Rabies virus infection induces the formation of stress granules closely connected to the viral factories. PLoS Pathog. 12, e1005942 (2016).

    Google Scholar 

  81. Onomoto, K., Yoneyama, M., Fung, G., Kato, H. & Fujita, T. Antiviral innate immunity and stress granule responses. Trends Immunol. 35, 420–428 (2014).

    Google Scholar 

  82. Caillet-Saguy, C. et al. Strategies to interfere with PDZ-mediated interactions in neurons: What we can learn from the rabies virus. Prog. Biophys. Mol. Biol. 119, 53–59 (2015).

    Google Scholar 

  83. Prehaud, C. et al. Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein. Sci. Signal. 3, ra5 (2010).

    Google Scholar 

  84. Babault, N. et al. Peptides targeting the PDZ domain of PTPN4 are efficient inducers of glioblastoma cell death. Structure 19, 1518–1524 (2011).

    Google Scholar 

  85. Prehaud, C., Lay, S., Dietzschold, B. & Lafon, M. Glycoprotein of nonpathogenic rabies viruses is a key determinant of human cell apoptosis. J. Virol. 77, 10537–10547 (2003).

    Google Scholar 

  86. Jackson, A. C., Randle, E., Lawrance, G. & Rossiter, J. P. Neuronal apoptosis does not play an important role in human rabies encephalitis. J. Neurovirol. 14, 368–375 (2008).

    Google Scholar 

  87. Peng, J. et al. Wild-type rabies virus induces autophagy in human and mouse neuroblastoma cell lines. Autophagy 12, 1704–1720 (2016).

    Google Scholar 

  88. Li, L. et al. Autophagy is highly targeted among host comparative proteomes during infection with different virulent RABV strains. Oncotarget 8, 21336–21350 (2017).

    Google Scholar 

  89. Tirawatnpong, S. et al. Regional distribution of rabies viral antigen in central nervous system of human encephalitic and paralytic rabies. J. Neurol. Sci. 92, 91–99 (1989).

    Google Scholar 

  90. Hemachudha, T., Laothamatas, J. & Rupprecht, C. E. Human rabies: a disease of complex neuropathogenetic mechanisms and diagnostic challenges. Lancet Neurol. 1, 101–109 (2002).

    Google Scholar 

  91. Mitrabhakdi, E. et al. Difference in neuropathogenetic mechanisms in human furious and paralytic rabies. J. Neurol. Sci. 238, 3–10 (2005).

    Google Scholar 

  92. Jackson, A. C. & Park, H. Apoptotic cell death in experimental rabies in suckling mice. Acta Neuropathol. 95, 159–164 (1998).

    Google Scholar 

  93. Warrell, M. J. & Warrell, D. A. Rabies and other lyssavirus diseases. Lancet 363, 959–969 (2004).

    Google Scholar 

  94. Hemachudha, T. et al. Pathophysiology of human paralytic rabies. J. Neurovirol. 11, 93–100 (2005).

    Google Scholar 

  95. Hunter, M. et al. Immunovirological correlates in human rabies treated with therapeutic coma. J. Med. Virol. 82, 1255–1265 (2010).

    Google Scholar 

  96. Fekadu, M., Shaddock, J. H. & Baer, G. M. Excretion of rabies virus in the saliva of dogs. J. Infect. Dis. 145, 715–719 (1982).

    Google Scholar 

  97. Dacheux, L. et al. A reliable diagnosis of human rabies based on analysis of skin biopsy specimens. Clin. Infect. Dis. 47, 1410–1417 (2008).

    Google Scholar 

  98. Fooks, A. R. et al. Emerging technologies for the detection of rabies virus: challenges and hopes in the 21st century. PLoS Negl. Trop. Dis. 3, e530 (2009).

    Google Scholar 

  99. Nadin-Davis, S. A., Sheen, M. & Wandeler, A. I. Development of real-time reverse transcriptase polymerase chain reaction methods for human rabies diagnosis. J. Med. Virol. 81, 1484–1497 (2009).

    Google Scholar 

  100. Fooks, A. R. Rabies - the need for a ‘one medicine’ approach. Vet. Rec. 161, 289–290 (2007).

    Google Scholar 

  101. Wilde, H. et al. Failure of postexposure treatment of rabies in children. Clin. Infect. Dis. 22, 228–232 (1996).

    Google Scholar 

  102. Wacharapluesadee, S. & Hemachudha, T. Ante- and post-mortem diagnosis of rabies using nucleic acid-amplification tests. Expert Rev. Mol. Diagn. 10, 207–218 (2010).

    Google Scholar 

  103. Rupprecht, C. E. & Plotkin, S. in Vaccines (eds Plotkin, S., Orenstein, W. & Offit, P. ) 646–668 (Elsevier, 2013).

    Google Scholar 

  104. Mani, R. S. & Anand, A. M. & Madhusudana, S. N. Human rabies in India: an audit from a rabies diagnostic laboratory. Trop. Med. Int. Health 21, 556–563 (2016).

    Google Scholar 

  105. Jackson, A. C. Human rabies: a 2016 update. Curr. Infect. Dis. Rep. 18, 38 (2016).

    Google Scholar 

  106. Meslin, F., Kaplan, M. & Koprowski, H. Laboratory Techniques in Rabies (World Health Organization, 1996).

    Google Scholar 

  107. Office International des Epizooties. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (OIE, 2013).

  108. Lembo, T. et al. Evaluation of a direct, rapid immunohistochemical test for rabies diagnosis. Emerg. Infect. Dis. 12, 310–313 (2006).

    Google Scholar 

  109. Coetzer, A., Sabeta, C., Markotter, W., Rupprecht, C. E. & Nel, L. H. Comparison of biotinylated monoclonal and polyclonal antibodies in an evaluation of a direct rapid immunohistochemcial test for the routine diagnosis of rabies in southern Africa. PLoS Negl. Trop. Diseases 8, e3189 (2014).

    Google Scholar 

  110. Freuling, C. M. et al. in Current Laboratory Techniques in Rabies diagnosis, Research and prevention Vol. 1 Ch. 7 (eds Rupprecht, C. & Nagarajan, T. ) 63–84 (Academic Press, 2015)

    Google Scholar 

  111. Wadhwa, A. et al. A pan-Lyssavirus Taqman real-time RT-PCR assay for the detection of highly variable rabies virus and other lyssaviruses. PLoS Negl. Trop. Dis. 11, e0005258 (2017).

    Google Scholar 

  112. Fooks, A. R., Johnson, N., Brookes, S. M., Parsons, G. & McElhinney, L. M. Risk factors associated with travel to rabies endemic countries. J. Appl. Microbiol. 94 (Suppl.), 31S–36S (2003).

    Google Scholar 

  113. Rupprecht, C. E., Nagarajan, T. & Ertl, H. Current status and development of vaccines and other biologics for human rabies prevention. Expert Rev. Vaccines, 15 731–749 (2016).

    Google Scholar 

  114. World Health Organization. Oral Vaccination of Dogs Against Rabies. Guidance for Research on Oral Rabies Vaccines and Field Application of Oral Vaccination of Dogs Against Rabies (ed. Meslin, F. ) (WHO, 2007).

    Google Scholar 

  115. Khawplod, P. et al. Use of rabies vaccines after reconstitution and storage. Clin. Infect. Dis. 34, 404–406 (2002).

    Google Scholar 

  116. Lodmell, D. L. & Ewalt, L. C. Rabies cell culture vaccines reconstituted and stored at 4 degrees C for 1 year prior to use protect mice against rabies virus. Vaccine 22, 3237–3239 (2004).

    Google Scholar 

  117. Khawplod, P. et al. Potency, sterility and immunogenicity of rabies tissue culture vaccine after reconstitution and refrigerated storage for 1 week. Vaccine 20, 2240–2242 (2002).

    Google Scholar 

  118. Kamoltham, T., Khawplod, P. & Wilde, H. Rabies intradermal post-exposure vaccination of humans using reconstituted and stored vaccine. Vaccine 20, 3272–3276 (2002).

    Google Scholar 

  119. Hu, R. L., Fooks, A. R., Zhang, S. F., Liu, Y. & Zhang, F. Inferior rabies vaccine quality and low immunization coverage in dogs (Canis familiaris) in China. Epidemiol. Infect. 136, 1556–1563 ( 2008 ).

    Google Scholar 

  120. Faber, M. et al. Overexpression of the rabies virus glycoprotein results in enhancement of apoptosis and antiviral immune response. J. Virol. 76, 3374–3381 (2002).

    Google Scholar 

  121. Faber, M. et al. Effective preexposure and postexposure prophylaxis of rabies with a highly attenuated recombinant rabies virus. Proc. Natl Acad. Sci. USA 106, 11300–11305 (2009).

    Google Scholar 

  122. Gnanadurai, C. W. et al. Differential host immune responses after infection with wild-type or lab-attenuated rabies viruses in dogs. PLoS Negl. Trop. Dis. 9, e0004023 (2015).

    Google Scholar 

  123. Li, J. et al. Postexposure treatment with the live-attenuated rabies virus (RV) vaccine TriGAS triggers the clearance of wild-type RV from the Central Nervous System (CNS) through the rapid induction of genes relevant to adaptive immunity in CNS tissues. J. Virol. 86, 3200–3210 (2012).

    Google Scholar 

  124. Kessels, J. A. et al. Pre-exposure rabies prophylaxis: a systematic review. Bull. World Health Organ. 95, 210–219C (2017).

    Google Scholar 

  125. World Health Organization. Rabies vaccines: WHO position paper-recommendations. Vaccine 28, 7140–7142 (2010).

    Google Scholar 

  126. Evans, J. S., Horton, D. L., Easton, A. J., Fooks, A. R. & Banyard, A. C. Rabies virus vaccines: is there a need for a pan-lyssavirus vaccine? Vaccine 30, 7447–7454 (2012).

    Google Scholar 

  127. Hanlon, C. A., Niezgoda, M., Morrill, P. A. & Rupprecht, C. E. The incurable wound revisited: progress in human rabies prevention? Vaccine 19, 2273–2279 (2001).

    Google Scholar 

  128. McLaughlin, K. Scandal clouds China's global vaccine ambitions. Science 352, 506 (2016).

    Google Scholar 

  129. Shantavasinkul, P. et al. Failure of rabies postexposure prophylaxis in patients presenting with unusual manifestations. Clin. Infect. Dis. 50, 77–79 (2010).

    Google Scholar 

  130. Both, L. et al. Passive immunity in the prevention of rabies. Lancet Infect. Dis. 12, 397–407 (2012).

    Google Scholar 

  131. Bharti, O. K. et al. Success story of a low cost intra-dermal rabies vaccination (IDRV) clinic-lessons learnt over five years of 12,000 patient vaccinations “without failure” at DDU Hospital Shimla, Himachal Pradesh, India — “Saving a drop of rabies vaccine and immunoglobulins” 12 innovations to make Himachal Pradesh rabies free state by 2020. World J. Vaccines 5, 129–139 (2015).

    Google Scholar 

  132. Shantavasinkul, p. et al. A 4-site, single-visit intradermal postexposure prophylaxis regimen for previously vaccinated patients: experiences with >5000 patients. Clin. Infect. Dis. 51, 1070–1072 (2010).

    Google Scholar 

  133. Wilde, H., Khawplod, P. & Hemachudha, T. Post-exposure rabies prophylaxis in patients with AIDS. Vaccine 27, 5726–5727 (2009).

    Google Scholar 

  134. Tanisaro, T. et al. Neutralizing antibody response after intradermal rabies vaccination in hemodialysis patients. Vaccine 28, 2385–2387 (2010).

    Google Scholar 

  135. Shantavasinkul, P. et al. Postexposure rabies prophylaxis completed in 1 week: preliminary study. Clin. Infect. Dis. 50, 56–60 (2010).

    Google Scholar 

  136. Wilde, H., Lumlertdacha, B., Meslin, F. X., Ghai, S. & Hemachudha, T. Worldwide rabies deaths prevention-A focus on the current inadequacies in postexposure prophylaxis of animal bite victims. Vaccine 34, 187–189 (2016).

    Google Scholar 

  137. Warrell, M. J. et al. A simplified 4-site economical intradermal post-exposure rabies vaccine regimen: a randomised controlled comparison with standard methods. PLoS Negl. Trop. Dis. 2, e224 (2008).

    Google Scholar 

  138. Brown, D. et al. Intradermal pre-exposure rabies vaccine elicits long lasting immunity. Vaccine 26, 3909–3912 (2008).

    Google Scholar 

  139. Simani, S. et al. Six fatal cases of classical rabies virus without biting incidents, Iran 1990–2010. J. Clin. Virol. 54, 251–254 (2012).

    Google Scholar 

  140. Dato, V. M., Campagnolo, E. R., Long, J. & Rupprecht, C. E. A. Systematic review of human bat rabies virus variant cases: evaluating unprotected physical contact with claws and teeth in support of accurate risk assessments. PLoS ONE 11, e0159443 (2016).

    Google Scholar 

  141. Tarantola, A. et al. Caring for patients with rabies in developing countries — the neglected importance of palliative care. Trop. Med. Int. Health 21, 564–567 (2016).

    Google Scholar 

  142. Mani, R. S. Human rabies survivors in India: an emerging paradox? PLoS Negl. Trop. Dis. 10, e0004774 (2016).

    Google Scholar 

  143. Jackson, A. C. Why does the prognosis remain so poor in human rabies? Expert Rev. Anti Infect. Ther. 8, 623–625 (2010).

    Google Scholar 

  144. Jackson, A. C. Current and future approaches to the therapy of human rabies Antiviral Res. 99, 61–67 (2013).

    Google Scholar 

  145. Marsden, S. C. & Cabanban, C. R. Rabies: a significant palliative care issue. Prog. Palliative Care 14, 62–67 (2006).

    Google Scholar 

  146. de Souza, A. & Madhusudana, S. N. Survival from rabies encephalitis. J. Neurol. Sci. 339, 8–14 (2014).

    Google Scholar 

  147. Sambo, M. et al. Knowledge, attitudes and practices (KAP) about rabies prevention and control: a community survey in Tanzania. PLoS Negl. Trop. Dis. 8, e3310 (2014).

    Google Scholar 

  148. Willoughby, R. E. Jr et al. Survival after treatment of rabies with induction of coma. N. Engl. J. Med. 352, 2508–2514 ( 2005 ).

    Google Scholar 

  149. Zeiler, F. A. & Jackson, A. C. Critical appraisal of the Milwaukee protocol for rabies: this failed approach should be abandoned. Can. J. Neurol. Sci. 43, 44–51 (2016).

    Google Scholar 

  150. Duong, V. et al. Laboratory diagnostics in dog-mediated rabies: an overview of performance and a proposed strategy for various settings. Int. J. Infect. Dis. 46, 107–114 (2016).

    Google Scholar 

  151. Coetzer, A. et al. The SARE tool for rabies control: current experience in Ethiopia. Antiviral Res. 135, 74–80 (2016).

    Google Scholar 

  152. Fahrion, A. S. et al. The road to dog rabies control and elimination — what keeps us from moving faster? Front. Public Health 5, 103 (2017).

    Google Scholar 

  153. Rupprecht, C., Kuzmin, I. & Meslin, F. Lyssaviruses and rabies: current conundrums, concerns, contradictions and controversies. F1000Res 6, 184 (2017).This is a fundamental review of rabies, providing a realistic plan to achieve success in eliminating this disease.

    Google Scholar 

  154. Coleman, P. G. & Dye, C. Immunization coverage required to prevent outbreaks of dog rabies. Vaccine 14, 185–186 (1996).

    Google Scholar 

  155. Hampson, K. et al. Transmission dynamics and prospects for the elimination of canine rabies. PLoS Biol. 7, e1000053 (2009).

    Google Scholar 

  156. Leung, T. & Davis, S. A. Rabies vaccination targets for stray dog populations. Front. Vet. Sci. 4, 52 (2017).

    Google Scholar 

  157. World Health Organization. Oral Vaccination of Dogs Against Rabies (ed Meslin, F. ) (World Health Organization, 2007).

    Google Scholar 

  158. Muller, T. et al. Analysis of vaccine-virus-associated rabies cases in red foxes (Vulpes vulpes) after oral rabies vaccination campaigns in Germany and Austria. Arch. Virol. 154, 1081–1091 (2009).

    Google Scholar 

  159. Lapiz, S. M. et al. Implementation of an intersectoral program to eliminate human and canine rabies: the Bohol Rabies Prevention and Elimination Project. PLoS Negl. Trop. Dis. 6, e1891 (2012).

    Google Scholar 

  160. Cleaveland, S., Fevre, E. M., Kaare, M. & Coleman, P. G. Estimating human rabies mortality in the United Republic of Tanzania from dog bite injuries. Bull. World Health Organ. 80, 304–310 (2002).

    Google Scholar 

  161. World Health Organization. WHO Expert Consultation on Rabies, First Report. WHO Technical Report Series, no. 931 (WHO, 2005).

  162. Muller, T. et al. Development of a mouse monoclonal antibody cocktail for post-exposure rabies prophylaxis in humans. PLoS Negl. Trop. Dis. 3, e542 (2009).This paper presents results from an in vivo study in mice, proving that mouse monoclonal antibodies conferred protection against rabies that was comparable with that of human rabies immunoglobulin.

    Google Scholar 

  163. Terryn, S. et al. Protective effect of different anti-rabies virus VHH constructs against rabies disease in mice. PLoS ONE 9, e109367 (2014).

    Google Scholar 

  164. Both, L. et al. Production, characterization, and antigen specificity of recombinant 62-71-3, a candidate monoclonal antibody for rabies prophylaxis in humans. FASEB J. 27, 2055–2065 (2013).

    Google Scholar 

  165. Gabathuler, R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol. Dis. 37, 48–57 (2010).

    Google Scholar 

  166. Israsena, N., Supavonwong, P., Ratanasetyuth, N., Khawplod, P. & Hemachudha, T. Inhibition of rabies virus replication by multiple artificial microRNAs. Antiviral Res. 84, 76–83 (2009).

    Google Scholar 

  167. Yamada, K., Noguchi, K., Komeno, T., Furuta, Y. & Nishizono, A. Efficacy of favipiravir (T-705) in rabies postexposure prophylaxis. J. Infect. Dis. 213, 1253–1261 (2016).

    Google Scholar 

  168. Virojanapirom, P., Lumlertdacha, B., Wipattanakitchareon, A. & Hemachudha, T. T-705 as a potential therapeutic agent for rabies. J. Infect. Dis. 213, 1253–1261 (2016).

    Google Scholar 

  169. Kumar, P. et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 448, 39–43 (2007).

    Google Scholar 

  170. Schnee, M. et al. An mRNA vaccine encoding rabies virus glycoprotein induces protection against lethal infection in mice and correlates of protection in adult and newborn pigs. PLoS Negl. Trop. Dis. 10, e0004746 (2016).

    Google Scholar 

  171. Elmore, S. A. et al. Management and modeling approaches for controlling raccoon rabies: the road to elimination. PLoS Negl. Trop. Dis. 11, e0005579 (2017).

    Google Scholar 

  172. Abela-Ridder, B. Rabies: 100 per cent fatal, 100 per cent preventable. Vet. Rec. 177, 148–149 (2015).

    Google Scholar 

  173. Shwiff, S., Anderson, A. & Hampson, K. Potential economic benefits of eliminating canine rabies. Antiviral Res. 98, 352–356 (2013).

    Google Scholar 

  174. World Health Organization. Rabies: epidemiology and burden of disease. WHOhttp://www.who.int/rabies/epidemiology/en/ (2017).

  175. Finke, S., Mueller-Waldeck, R. & Conzelmann, K. K. Rabies virus matrix protein regulates the balance of virus transcription and replication. J. Gen. Virol. 84, 1613–1621 (2003).

    Google Scholar 

  176. Finke, S. & Conzelmann, K. K. Dissociation of rabies virus matrix protein functions in regulation of viral RNA synthesis and virus assembly. J. Virol. 77, 12074–12082 (2003).

    Google Scholar 

  177. Mebatsion, T., Weiland, F. & Conzelmann, K. K. Matrix protein of rabies virus is responsible for the assembly and budding of bullet-shaped particles and interacts with the transmembrane spike glycoprotein G. J. Virol. 73, 242–250 (1999).

    Google Scholar 

  178. Pollin, R., Granzow, H., Kollner, B., Conzelmann, K. K. & Finke, S. Membrane and inclusion body targeting of lyssavirus matrix proteins. Cell. Microbiol. 15, 200–212 (2013).

    Google Scholar 

  179. Wirblich, C. et al. PPEY motif within the rabies virus (RV) matrix protein is essential for efficient virion release and RV pathogenicity. J. Virol. 82, 9730–9738 (2008).

    Google Scholar 

  180. Roche, S. & Gaudin, Y. Evidence that rabies virus forms different kinds of fusion machines with different pH thresholds for fusion. J. Virol. 78, 8746–8752 (2004).

    Google Scholar 

  181. Anilionis, A., Wunner, W. H. & Curtis, P. J. Structure of the glycoprotein gene in rabies virus. Nature 294, 275–278 (1981).

    Google Scholar 

  182. Schnell, M. J., McGettigan, J. P., Wirblich, C. & Papaneri, A. The cell biology of rabies virus: using stealth to reach the brain. Nat. Rev. Microbiol. 8, 51–61 (2010).

    Google Scholar 

  183. Scott, T. P. & Nel, L. H. Subversion of the immune response by rabies virus. Viruses 231, 1–26 (2016).

    Google Scholar 

  184. Blondel, D., Maarifi, G., Nisole, S. & Chelbi-Alix, M. K. Resistance to Rhabdoviridae infection and subversion of antiviral responses. Viruses 7, 3675–3702 (2015).

    Google Scholar 

  185. Brzozka, K., Finke, S. & Conzelmann, K. K. Inhibition of interferon signaling by rabies virus phosphoprotein P: activation-dependent binding of STAT1 and STAT2. J. Virol. 80, 2675–2683 (2006).This report shows that the rabies virus phosphoprotein is responsible for preventing IFN-α/β-stimulated and IFN-γ-stimulated JAK-STAT signalling in rabies-virus-infected cells by the retention of activated STATs (signal transducer and activator of transcription) in the cytoplasm.

    Google Scholar 

  186. Masatani, T. et al. Rabies virus nucleoprotein functions to evade activation of the RIG-I-mediated antiviral response. J. Virol. 84, 4002–4012 (2010).

    Google Scholar 

  187. Vidy, A., Chelbi-Alix, M. & Blondel, D. Rabies virus P protein interacts with STAT1 and inhibits interferon signal transduction pathways. J. Virol. 79, 14411–14420 (2005).

    Google Scholar 

  188. Brzozka, K., Finke, S. & Conzelmann, K. K. Identification of the rabies virus alpha/beta interferon antagonist: phosphoprotein P interferes with phosphorylation of interferon regulatory factor 3. J. Virol. 79, 7673–7681 (2005).The data in this paper show that the rabies virus phosphoprotein is an interferon antagonist counteracting transcriptional activation of type I interferon.

    Google Scholar 

  189. Luco, S. et al. RelAp43, a member of the NF-κB family involved in innate immune response against Lyssavirus infection. PLoS Pathog. 8, e1003060 (2012).

    Google Scholar 

  190. Ben Khalifa, Y. et al. The matrix protein of rabies virus binds to RelAp43 to modulate NF-κB-dependent gene expression related to innate immunity. Sci. Rep. 6, 39420 (2016).

    Google Scholar 

  191. Hornung, V. et al. 5′-triphosphate RNA is the ligand for RIG-I. Science 314, 994–997 (2006).

    Google Scholar 

  192. Faul, E. J. et al. Rabies virus infection induces type I interferon production in an IPS-1 dependent manner while dendritic cell activation relies on IFNAR signaling. PLoS Pathog. 6, e1001016 (2010).

    Google Scholar 

  193. Vidy, A., El Bougrini, J., Chelbi-Alix, M. K. & Blondel, D. The nucleocytoplasmic rabies virus P protein counteracts interferon signaling by inhibiting both nuclear accumulation and DNA binding of STAT1. J. Virol. 81, 4255–4263 (2007).

    Google Scholar 

  194. Amarasinghe, G. K. et al. Taxonomy of the order Mononegavirales: update 2017. Arch. Virol. 162, 2493–2504 (2017).

    Google Scholar 

  195. Karande, S. et al. Atypical rabies encephalitis in a six-year-old boy: clinical, radiological, and laboratory findings. Int. J. Infect. Dis. 36, 1–3 (2015).

    Google Scholar 

  196. Manoj, S., Mukherjee, A., Johri, S. & Kumar, K. V. Recovery from rabies, a universally fatal disease. Mil. Med. Res. 3, 21 (2016).

    Google Scholar 

  197. Kumar, K. V., Ahmad, F. M. & Dutta, V. Pituitary cachexia after rabies encephalitis. Neurol. India 63, 255–256 (2015).

    Google Scholar 

  198. Weyer, J. et al. A case of human survival of rabies, South Africa. South Afr. J. Infect. Dis. 31, 66–68 (2016).

    Google Scholar 

  199. Wiedeman, J. et al. Recovery of a patient from clinical rabies — California, 2011. MMWR Morb. Mortal. Wkly Rep. 61, 61–65 (2012).

    Google Scholar 

  200. Netravathi, M. et al. Unique clinical and imaging findings in a first ever documented PCR positive rabies survival patient: a case report. J. Clin. Virol. 70, 83–88 (2015).

    Google Scholar 

  201. Karahocagil, M. K. et al. Complete recovery from clinical rabies: case report. Turkiye Klinikleri J. Med. Sci. 33, 547–552 (2013).

    Google Scholar 

  202. PromedMail. Rabies - Brazil (04): Pernambuco), Recovery. (PromedMail, 2008).

  203. Madhusudana, S. N., Nagaraj, D., Uday, M., Ratnavalli, E. & Kumar, M. V. Partial recovery from rabies in a six-year-old girl. Int. J. Infect. Dis. 6, 85–86 (2002).

    Google Scholar 

  204. Alvarez, L. et al. Partial recovery from rabies in a nine-year-old boy. Pediatr. Infect. Dis. J. 13, 1154–1155 (1994).

    Google Scholar 

  205. Tillotson, J. R., Axelrod, D. & Lyman, D. O. Rabies in a laboratory worker — New York. MMWR Morb. Mortal. Wkly Rep. 26, 183–184 (1977).

    Google Scholar 

  206. Tillotson, J. R., Axelrod, D. & Lyman, D. O. Follow-up on rabies — New York. MMWR Morb. Mortal. Wkly Rep. 26, 249–250 (1977).

    Google Scholar 

  207. Porras, C. et al. Recovery from rabies in man. Ann. Intern. Med. 85, 44–48 (1976).

    Google Scholar 

  208. Hattwick, M. A., Weis, T. T., Stechschulte, C. J., Baer, G. M. & Gregg, M. B. Recovery from rabies. A case report. Ann. Intern. Med. 76, 931–942 (1972).

    Google Scholar 

Download references

Acknowledgements

A.R.F. and A.C.B. were financially supported by the UK Department for Environment, Food and Rural Affairs (Defra), the Scottish Government and the Welsh Government (grant number SV3500).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (A.R.F. and A.C.B.); Epidemiology (S.N.-D.); Mechanisms/pathophysiology (A.C.B., C.F., S.F., T.M. and T.H.); Diagnosis, screening and prevention (A.C.B., F.C. and E.P.-M.); Management (A.C.B., T.H., R.S.M. and H.W.); Quality of life (R.S.M.); Outlook (A.C.B. and A.R.F.); Overview of Primer (A.R.F.).

Corresponding author

Correspondence to Anthony R. Fooks.

Ethics declarations

Competing interests

T.M., C.F. and S.F. have a research cooperation and project (2014–2019) with a German vaccine company on oral vaccination of wildlife (for example, mechanisms of oral vaccination and immunity and development of a novel oral rabies virus vaccine). All other authors declare no competing interests.

Supplementary information

Supplementary information S1 (video)

Rat dorsal root ganglion neurons were cultivated in compartmentalized chambers and infected with rabies virus expressing a green fluorescent protein (GFP)-tagged phosphoprotein (Bauer A. et al. Anterograde Glycoprotein-Dependent Transport of Newly Generated Rabies Virus in Dorsal Root Ganglion Neurons. J. Virol. 88, 14172-14183 (2014)). At two days post-infection, the axonal transport of labelled particles was analyzed by live confocal laser scanning microscopy. The time-lapse images show anterograde (from left to right) and retrograde (from right to left) transport of GFP-labelled particles. Scale bar: 3 μm. (AVI 3048 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fooks, A., Cliquet, F., Finke, S. et al. Rabies. Nat Rev Dis Primers 3, 17091 (2017). https://doi.org/10.1038/nrdp.2017.91

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2017.91

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing