Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

Semes for analysis of evolution: de Duve's peroxisomes and Meyer's hydrogenases in the sulphurous Proterozoic eon

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Did this cell originate from an archaebacterium?
Figure 2

References

  1. de Duve, C. The origin of eukaryotes: a reappraisal. Nature Rev. Genet. 8, 395–403 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Margulis, L., Chapman, M., Guerrero, R. & Hall, J. The last eukaryotic common ancestor (LECA): acquisition of cytoskeletal motility from aerotolerant spirochetes in the Proterozoic eon. Proc. Natl Acad. Sci. USA 103, 13080–13085 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gupta, R. S. in Microbial Phylogeny and Evolution: Concepts and Controversies (ed. Sapp, J.) 261–280 (Oxford Univ. Press, New York, 2005)

    Google Scholar 

  4. Helenius, A. & Aebi, M. Intracellular functions of N-linked glycans. Science 291, 2364–2369 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Searcy, D. G. Metabolic integration during the evolutionary origin of mitochondria. Cell Res. 13, 229–238 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Searcy, D. G. & Lee. S. H. Sulfur reduction by human erythrocytes. J. Exp. Zool. 282, 310–322 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Dubinina, G. A., Grabovich, M. Y. & Leshcheva, N. V. Occurrence, structure, and metabolic activity of Thiodendron sulfur mats in various saltwater environments. Microbiol. 62, 450–456 (1993).

    Google Scholar 

  8. Dubinina, G. A., Leshcheva, N. V. & Grabovich, M. Y. The colorless sulfur bacterium Thiodendron is actually a symbiotic association of spirochetes and sulfidogens. Microbiol. 62, 432–444 (1993).

    Google Scholar 

  9. Fuerst, J. A. & Webb, R. I. Membrane-bounded nucleoid in the eubacterium Gemmata obscuriglobus. Proc. Natl Acad. Sci. USA 88, 8184–8188 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. König, H. et al. The flagellates of the Australian termite Mastotermes darwiniensis: identification of their symbiotic bacteria and cellulases. Symbiosis 44, 51–66 (2007)

    Google Scholar 

  11. Alliegro, M. C. & Alliegro, M. A. Analysis of centrosome-associated RNA reveals a unique family of genes. Proc. Natl Acad. Sci. USA (in the press).

  12. Alliegro, M. C., Alliegro, M.A. & Palazzo, R. E. Centrosome-associated RNA in surf clam oocytes. Proc. Natl Acad. Sci. USA 103, 9034–9038 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chapman, M. J. & Alliegro, M. A. A symbiotic origin for the centrosome? Symbiosis 44, 23–32 (2007).

    CAS  Google Scholar 

  14. Wier, A. M., MacAllister, J. & Margulis, L. Hibernacular behavior of spirochetes inside membrane-bounded vesicles of the termite protist Staurojoenina assimilis. Symbiosis 44, 75–84 (2007).

    Google Scholar 

  15. Oklamoto, N. & Inouye, I. A secondary symbiosis in progress (Hatena). Science 310, 287 (2005).

    Article  Google Scholar 

  16. Margulis, L. Symbiosis in Cell Evolution: Microbial Communities in the Archean and Proterozoic Eons 2nd edn (W. H. Freeman, New York, 1993)

    Google Scholar 

  17. Knoll, A. H. in Life on a Young Planet Chs 6,9 (Princeton Univ. Press, Princeton, 2003).

    Google Scholar 

  18. Meyer, J. [FeFe] hydrogenases and their evolution: a genomic perspective. Cell Mol. Life Sci. 64, 1063–1084 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Hackstein, J. H. P. & Yarlett, N. in Molecular Basis of Symbiosis (ed. Overmann, J.) 117–142 (Springer, Berlin–Heidelberg, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn Margulis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margulis, L., Chapman, M. & Dolan, M. Semes for analysis of evolution: de Duve's peroxisomes and Meyer's hydrogenases in the sulphurous Proterozoic eon. Nat Rev Genet 8, 902 (2007). https://doi.org/10.1038/nrg2071-c1

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrg2071-c1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing