Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Reply
  • Published:

Response to Sul and Eskin

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Sul, J. H. & Eskin, E. Mixed models can correct for population structure for genomic regions under selection. Nature Rev. Genet. 26 Feb 2013 (10.1038/nrg2813-c1).

  2. Price, A. L., Zaitlen, N. A., Reich, D. & Patterson, N. New approaches to population stratification in genome-wide association studies. Nature Rev. Genet. 11, 459–463 (2010).

    Article  CAS  Google Scholar 

  3. Kang, H. M. et al. Variance component model to account for sample structure in genome-wide association studies. Nature Genet. 42, 348–354 (2010).

    Article  CAS  Google Scholar 

  4. Zhang, Z. et al. Mixed linear model approach adapted for genome-wide association studies. Nature Genet. 42, 355–360 (2010).

    Article  CAS  Google Scholar 

  5. Yang, W. Y., Novembre, J., Eskin, E. & Halperin, E. A model-based approach for analysis of spatial structure in genetic data. Nature Genet. 44, 725–731 (2012).

    Article  CAS  Google Scholar 

  6. Segura, V. et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nature Genet. 44, 825–830 (2012).

    Article  CAS  Google Scholar 

  7. Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nature Genet. 44, 821–824 (2012).

    Article  CAS  Google Scholar 

  8. Vilhjalmsson, B. J. & Nordborg, M. The nature of confounding in genome-wide association studies. Nature Rev. Genet. 14, 1–2 (2013).

    Article  CAS  Google Scholar 

  9. Janss, L., de Los Campos, G., Sheehan, N. & Sorensen, D. Inferences from genomic models in stratified populations. Genetics 192, 693–704 (2012).

    Article  Google Scholar 

  10. Sawcer, S. et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).

    Article  CAS  Google Scholar 

  11. Lippert, C. et al. FaST linear mixed models for genome-wide association studies. Nature Methods 8, 833–835 (2011).

    Article  CAS  Google Scholar 

  12. Listgarten, J. et al. Improved linear mixed models for genome-wide association studies. Nature Methods 9, 525–526 (2012).

    Article  CAS  Google Scholar 

  13. Mefford, J. & Witte, J. S. The covariate's dilemma. PLoS Genet. 8, e1003096 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to E. Eskin, P. Visscher, J. Yang and M. Goddard for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alkes L. Price.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Alkes L. Price's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Price, A., Zaitlen, N., Reich, D. et al. Response to Sul and Eskin. Nat Rev Genet 14, 300 (2013). https://doi.org/10.1038/nrg2813-c2

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrg2813-c2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing