Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance

Key Points

  • Human cytomegalovirus is a medically relevant pathogen that affects newborns and immunocompromised individuals, such as AIDS patients and recipients of organ allografts or of bone-marrow transplants.

  • A vaccine aimed at preventing congenital infection could prevent neurological sequelae, such as mental retardation, hearing loss and blindness, in tens of thousands of children annually and, in addition, save the costs of health care.

  • Human and murine cytomegaloviruses both encode a set of glycoproteins, known as immunoevasins, the only known function of which is to prevent the presentation of antigenic peptides by the MHC class I pathway of antigen processing and presentation. Although the goal of the two viruses is the same, the molecular mechanisms by which the immunoevasins operate differ in their specific details.

  • The existence of immunoevasins might lead to the conclusion that vaccination aimed at inducing CD8+ T-cell-based immunity will fail. However, data from the mouse model, as well as clinical trials of adoptive cytoimmunotherapy of cytomegalovirus disease, indicate that there is immune surveillance of cytomegaloviruses, primarily by CD8+ T cells.

  • With one exception, immunoevasins are expressed in the second temporal phase of cytomegalovirus gene expression, known as the early (E) phase. Antiviral protection by CD8+ T cells might be explained by the recognition of antigenic peptides derived from the immediate-early 1 (IE1) protein, which is an immunodominant antigen of human and murine cytomegaloviruses that is expressed before the immunoevasins.

  • Recent data from the mouse model unexpectedly showed the existence of antigenic peptides derived from several E-phase proteins also. In my opinion, antigenic peptides that are presented constitutively in the face of viral immunoevasin functions are promising vaccine candidates.

Abstract

CD8+ T cells are the main effector cells for the immune control of cytomegaloviruses. To subvert this control, human and mouse cytomegaloviruses each encode a set of immune-evasion proteins, referred to here as immunoevasins, which interfere specifically with the MHC class I pathway of antigen processing and presentation. Although the concerted action of immunoevasins prevents the presentation of certain viral peptides, other viral peptides escape this blockade conditionally or constitutively and thereby provide the molecular basis of immune surveillance by CD8+ T cells. The definition of viral antigenic peptides that are presented despite the presence of immunoevasins adds a further dimension to the prediction of protective epitopes for use in vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular biology of the murine cytomegalovirus IE1 peptide.
Figure 2: Testing for antiviral activity of CD8+ T cells in vivo.
Figure 3: Models proposed for the action of immunoevasins.
Figure 4: Proposed mechanisms by which antigens evade immunoevasins.

Similar content being viewed by others

References

  1. van Regenmortel, M. H. V. et al. (eds) in Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses 203–225 (Academic Press, San Diego, 2000).

    Google Scholar 

  2. Reddehase, M. J. The immunogenicity of human and murine cytomegaloviruses. Curr. Opin. Immunol. 12, 390–396 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Ploegh, H. Viral strategies of immune evasion. Science 280, 248–253 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Alcami, A. & Koszinowski, U. H. Viral mechanisms of immune evasion. Immunol. Today 9, 447–455 (2000).

    Article  Google Scholar 

  5. Tortorella, D., Gewurz, B. E., Furman, M. H., Schust, D. J. & Ploegh, H. L. Viral subversion of the immune system. Annu. Rev. Immunol. 18, 861–926 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Andrews, D. M., Andoniou, C. D., Granucci, F., Ricciardi-Castagnoli, P. & Degli-Esposti, M. A. Infection of dendritic cells by murine cytomegalovirus induces functional paralysis. Nature Immunol. 2, 1077–1084 (2001).

    Article  CAS  Google Scholar 

  7. Raftery, M. J. et al. Targeting the function of mature dendritic cells by human cytomegalovirus: a multilayered viral defense strategy. Immunity 15, 997–1009 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Moutaftsi, M., Mehl, A. M., Borysiewicz, L. K. & Tabi, Z. Human cytomegalovirus inhibits maturation and impairs function of monocyte-derived dendritic cells. Blood 99, 2913–2921 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Wiertz, E., Hill, A., Tortorella, D. & Ploegh, H. Cytomegaloviruses use multiple mechanisms to elude the host immune response. Immunol. Lett. 57, 213–216 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Hengel, H., Brune, W. & Koszinowski, U. H. Immune evasion by cytomegalovirus — survival strategies of a highly adapted opportunist. Trends Microbiol. 6, 190–197 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Hengel, H. & Koszinowski, U. H. in Herpesviruses and Immunity (eds Bendinelli, M., Friedman, H. & Medveczky, P.) 247–264 (Plenum, New York, 1998).

    Google Scholar 

  12. Hengel, H. et al. Cytomegaloviral control of MHC class I function in the mouse. Immunol. Rev. 168, 167–176 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Johnson, D. C. & Hegde, N. R. Inhibition of the MHC class II antigen presentation pathway by human cytomegalovirus. Curr. Top. Microbiol. Immunol. 269, 101–115 (2002).

    CAS  PubMed  Google Scholar 

  14. Farrell, H. E., Davis-Poynter, N. J., Andrews, D. M. & Degli-Esposti, M. A. Function of CMV-encoded MHC class I homologues. Curr. Top. Microbiol. Immunol. 269, 131–151 (2002).

    CAS  PubMed  Google Scholar 

  15. Braud, V. M., Tomasec, P. & Wilkinson, G. W. G. Viral evasion of natural killer cells during human cytomegalovirus infection. Curr. Top. Microbiol. Immunol. 269, 117–130 (2002).

    CAS  PubMed  Google Scholar 

  16. Mocarski, E. S. Jr. Immunomodulation by cytomegaloviruses: manipulative strategies beyond evasion. Trends Microbiol. 10, 332–339 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Pass, R. F. in Fields Virology 4th edn (eds Knipe, D. M. & Howley, P. M.) 2675–2705 (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  18. Jonjic, S., Mutter, W., Weiland, F., Reddehase, M. J. & Koszinowski, U. H. Site-restricted persistent cytomegalovirus infection after selective long-term depletion of CD4+ T lymphocytes. J. Exp. Med. 169, 1199–1212 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Reddehase, M. J. et al. Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J. Virol. 55, 264–273 (1985).Pioneering work on CD8+ T-cell-based immunotherapy of CMV disease in the mouse model.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Podlech, J., Holtappels, R., Wirtz, N., Steffens, H.-P. & Reddehase, M. J. Reconstitution of CD8 T cells is essential for the prevention of multiple-organ cytomegalovirus histopathology after bone-marrow transplantation. J. Gen. Virol. 79, 2099–2104 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Podlech, J., Holtappels, R., Pahl-Seibert, M.-F., Steffens, H.-P. & Reddehase, M. J. Murine model of interstitial cytomegalovirus pneumonia in syngeneic bone-marrow transplantation: persistence of protective pulmonary CD8-T-cell infiltrates after clearance of acute infection. J. Virol. 74, 7496–7507 (2000).This study shows that CMV-specific CD8+ T cells are not anergic in situ and resolve productive infection of the lungs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barry, S. M., Johnson, M. A. & Janossy, G. Cytopathology or immunopathology? The puzzle of cytomegalovirus pneumonitis revisited. Bone Marrow Transplant. 26, 591–597 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bukowski, J. F., Woda, B. A. & Welsh, R. M. Pathogenesis of murine cytomegalovirus infection in natural-killer-cell-depleted mice. J. Virol. 52, 119–128 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Scalco, A. A. et al. The effect of the Cmv-1 resistance gene, which is linked to the natural killer cell gene complex, is mediated by natural killer cells. J. Immunol. 149, 581–589 (1992).

    Google Scholar 

  25. Salazar-Mather, T. P., Orange, J. S. & Biron, C. A. Early murine cytomegalovirus (MCMV) infection induces liver natural killer (NK) cell inflammation and protection through macrophage inflammatory protein 1α (MIP-1α)-dependent pathways. J. Exp. Med. 187, 1–14 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Daniels, K. A. et al. Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to Ly49H. J. Exp. Med. 194, 29–44 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arase, H., Mocarski, E. S., Campbell, A. E., Hill, A. B. & Lanier, L. L. Direct recognition of cytomegalovirus by activating and inhibitory NK-cell receptors. Science 296, 1323–1326 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Welsh, R. M., Brubaker, J. O., Vargas-Cortes, M. & O'Donnell, C. L. Natural killer (NK)-cell response to virus infections in mice with severe combined immunodeficiency. The stimulation of NK cells and the NK-cell-dependent control of virus infections occur independently of T- and B-cell function. J. Exp. Med. 173, 1053–1063 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Lathbury, L. J., Allan, J. E., Shellam, G. R. & Scalzo, A. A. Effect of host genotype in determining the relative roles of natural killer cells and T cells in mediating protection against murine cytomegalovirus infection. J. Gen. Virol. 77, 2605–2613 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Reddehase, M. J., Jonjic, S., Weiland, F., Mutter, W. & Koszinowski, U. H. Adoptive immunotherapy of murine cytomegalovirus adrenalitis in the immunocompromised host: CD4-helper-independent antiviral function of CD8-positive memory T lymphocytes derived from latently infected donors. J. Virol. 62, 1061–1065 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jonjic, S. et al. Antibodies are not essential for the resolution of primary cytomegalovirus infection but limit dissemination of recurrent virus. J. Exp. Med. 179, 1713–1717 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Jonjic, S., Pavic, I., Lucin, P., Rukavina, D. & Koszinowski, U. H. Efficacious control of cytomegalovirus infection after long-term depletion of CD8+ T lymphocytes. J. Virol. 64, 5457–5464 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Polic, B. et al. Lack of MHC class I complex expression has no effect on spread and control of cytomegalovirus infection in vivo. J. Gen. Virol. 77, 217–225 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Holtappels, R. et al. Control of murine cytomegalovirus in the lungs: relative but not absolute immunodominance of the immediate-early 1 nonapeptide during the antiviral cytolytic T-lymphocyte response in pulmonary infiltrates. J. Virol. 72, 7201–7212 (1998).This study showed, for the first time, that CD8+ T cells present in pulmonary infiltrates during interstitial pneumonia are cytolytic effector cells that lyse mCMV-infected target cells in the early (E) phase.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Alterio de Goss, M. et al. Control of cytomegalovirus in bone-marrow transplantation chimeras lacking the prevailing antigen-presenting molecule in recipient tissues rests primarily on recipient-derived CD8 T cells. J. Virol. 72, 7733–7744 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Reusser, P., Riddell, S. R., Meyers, J. D. & Greenberg, P. D. Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone-marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood 78, 1373–1380 (1991).

    CAS  PubMed  Google Scholar 

  37. Riddell, S. R. et al. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T-cell clones. Science 257, 238–241 (1992).Pioneering work on CD8+ T-cell-based immunotherapy of CMV disease in humans.

    Article  CAS  PubMed  Google Scholar 

  38. Chee, M. S. et al. Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr. Top. Microbiol. Immunol. 154, 125–169 (1990).

    CAS  PubMed  Google Scholar 

  39. Rawlinson, W. D., Farrell, H. E. & Barrell, B. G. Analysis of the complete DNA sequence of murine cytomegalovirus. J. Virol. 70, 8833–8849 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mocarski, E. S. & Courcelle, C. T. in Fields Virology 4th edn (eds Knipe, D. M. & Howley, P. M.) 2629–2673 (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  41. Honess, R. W. & Roizman, B. Regulation of herpesvirus macromolecular synthesis: sequential transition of polypeptide synthesis requires functional viral polypeptides. Proc. Natl Acad. Sci. USA 72, 1276–1280 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reddehase, M. J., Keil, G. M. & Koszinowski, U. H. The cytolytic T-lymphocyte response to the murine cytomegalovirus. II. Detection of virus replication stage-specific antigens by separate populations of in vivo active cytolytic T-lymphocyte precursors. Eur. J. Immunol. 14, 56–61 (1984).

    Article  CAS  PubMed  Google Scholar 

  43. Reddehase, M. J. & Koszinowski, U. H. Significance of herpesvirus immediate early gene expression in cellular immunity to cytomegalovirus infection. Nature 312, 369–371 (1984).The first report of the immunogenicity of CMV immediate-early (IE) antigens.

    Article  CAS  PubMed  Google Scholar 

  44. Del Val, M. et al. Molecular basis for cytolytic T-lymphocyte recognition of the murine cytomegalovirus immediate-early protein pp89. J. Virol. 62, 3965–3972 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Reddehase, M. J., Rothbard, J. B. & Koszinowski, U. H. A pentapeptide as minimal antigenic determinant for MHC class-I-restricted T lymphocytes. Nature 337, 651–653 (1989).References 44 and 45 describe the molecular identification of the mCMV IE1 peptide, the first antigenic peptide to be defined for CMVs.

    Article  CAS  PubMed  Google Scholar 

  46. Lyons, P. A., Allan, J. E., Carrello, C., Shellam, G. R. & Scalzo, A. A. Effect of natural sequence variation at the H-2Ld-restricted CD8+ T-cell epitope of the murine cytomegalovirus ie1-encoded pp89 on T-cell recognition. J. Gen. Virol. 77, 2615–2623 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Jonjic, S., del Val, M., Keil, G. M., Reddehase, M. J. & Koszinowski, U. H. A nonstructural viral protein expressed by a recombinant vaccinia virus protects against lethal cytomegalovirus infection. J. Virol. 62, 1653–1658 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Del Val, M. et al. Protection against lethal cytomegalovirus infection by a recombinant vaccine containing a single nonameric T-cell epitope. J. Virol. 65, 3641–3646 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Scalzo, A. A. et al. Induction of protective cytotoxic T cells to murine cytomegalovirus by using a nonapeptide and a human-compatible adjuvant (Montanide ISA 720). J. Virol. 69, 1306–1309 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gonzales-Armas, J. C., Morello, C. S., Cranmer, L. D. & Spector, D. H. DNA immunization confers protection against murine cytomegalovirus infection. J. Virol. 70, 7921–7928 (1996).

    Google Scholar 

  51. Holtappels, R. et al. The putative natural killer decoy early gene m04 (gp34) of murine cytomegalovirus encodes an antigenic peptide recognized by protective antiviral CD8 T cells. J. Virol. 74, 1871–1884 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Holtappels, R., Thomas, D., Podlech, J. & Reddehase, M. J. Two antigenic peptides from genes m123 and m164 of murine cytomegalovirus quantitatively dominate CD8 T-cell memory in the H-2d haplotype. J. Virol. 76, 151–164 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wills, M. R. et al. The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity and T-cell-receptor usage of pp65-specific CTL. J. Virol. 70, 7569–7579 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gillespie, G. M. A. et al. Functional heterogeneity and high frequencies of cytomegalovirus-specific CD8+ T lymphocytes in healthy seropositive donors. J. Virol. 74, 8140–8150 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gilbert, M. J., Riddell, S. R., Plachter, B. & Greenberg, P. D. Cytomegalovirus selectively blocks antigen processing and presentation of its immediate-early gene product. Nature 383, 720–722 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Borysiewicz, L. K. et al. Human cytomegalovirus-specific cytotoxic T cells. Relative frequency of stage-specific CTL recognizing the 72-kD immediate-early protein and glycoprotein B expressed by recombinant vaccinia viruses. J. Exp. Med. 168, 919–931 (1988).The first report of the immunogenicity of the IE1 protein of hCMV.

    Article  CAS  PubMed  Google Scholar 

  57. Kern, F. et al. Target structures of the CD8+ T-cell response to human cytomegalovirus: the 72-kilodalton major immediate-early protein revisited. J. Virol. 73, 8179–8184 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gyulai, Z. et. al. Cytotoxic T lymphocyte (CTL) responses to human cytomegalovirus pp65, IE1-exon 4, gB, pp150 and pp28 in healthy individuals: reevaluation of prevalence of IE1-specific CTLs. J. Infect. Dis. 181, 1537–1546 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Khan, N., Cobbold, M., Keenan, R. & Moss, P. A. Comparative analysis of CD8+ T-cell responses against human cytomegalovirus proteins pp65 and immediate early 1 shows similarities in precursor frequency, oligoclonality and phenotype. J. Infect. Dis. 185, 1025–1034 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Wagner, M., Gutermann, A., Podlech, J., Reddehase, M. J. & Koszinowski, U. H. MHC class I allele-specific cooperative and competitive interactions between immune evasion proteins of cytomegalovirus. J. Exp. Med. 196, 805–816 (2002).This study used a complete set of immunoevasin gene-deletion mutants of mCMV to show the effects of the three known MHC-class-I-targeting immunoevasins in all seven possible combinations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Del Val, M. et al. Cytomegalovirus prevents antigen presentation by blocking the transport of peptide-loaded major histocompatibility complex class I molecules into the medial-Golgi compartment. J. Exp. Med. 176, 729–738 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Thäle, R. et al. Identification of the mouse cytomegalovirus genomic region affecting major histocompatibility complex class I molecule transport. J. Virol. 69, 6098–6105 (1995).

    PubMed  PubMed Central  Google Scholar 

  63. Ziegler, H. et al. A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 6, 57–66 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Ziegler, H., Muranyi, W., Burgert, H.-G., Kremmer, E. & Koszinowski, U. H. The luminal part of the murine cytomegalovirus glycoprotein gp40 catalyzes the retention of MHC class I molecules. EMBO J. 19, 870–881 (2000).References 61–64 describe the discovery and the molecular mode of action of the first immunoevasin of CMVs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Barnes, P. D. & Grundy, J. E. Down-regulation of the class I HLA heterodimer and β2-microglobulin on the surface of cells infected with cytomegalovirus. J. Gen. Virol. 73, 2395–2403 (1992).Early evidence for the intracellular retention of MHC class I complexes in fibroblasts infected with hCMV.

    Article  CAS  PubMed  Google Scholar 

  66. Jones, T. R. et al. Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proc. Natl Acad. Sci. USA 93, 11327–11333 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ahn, K. et al. Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proc. Natl Acad. Sci. USA 93, 10990–10995 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Warren, A. P., Ducroq, D. H., Lehner, P. J. & Borysiewicz, L. K. Human cytomegalovirus-infected cells have unstable assembly of major histocompatibility complex class I complexes and are resistant to lysis by cytotoxic T lymphocytes. J. Virol. 68, 2822–2829 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wiertz, E. J. H. J. et al. SEC61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432–438 (1996).This study unravels the molecular details of the retrograde translocation of MHC class I molecules for proteasomal degradation, mediated by the hCMV immunoevasin gpUS2.

    Article  CAS  PubMed  Google Scholar 

  70. Wiertz, E. J. E. J. et al. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84, 769–779 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. van der Wal, F. J., Kikkert, M. & Wiertz, E. The HCMV gene products US2 and US11 target MHC class I molecules for degradation in the cytosol. Curr. Top. Microbiol. Immunol. 269, 37–56 (2002).

    CAS  PubMed  Google Scholar 

  72. Del Val, M., Münch, K., Reddehase, M. J. & Koszinowski, U. H. Presentation of CMV immediate-early antigen to cytolytic T lymphocytes is selectively prevented by viral genes expressed in the early phase. Cell 58, 305–315 (1989).

    Article  CAS  PubMed  Google Scholar 

  73. Gold, M. et al. The murine cytomegalovirus immunomodulatory gene m152 prevents recognition of infected cells by M45-specific CTL, but does not alter the immunodominance of the M45-specific CD8 T-cell response in vivo. J. Immunol. 169, 359–365 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Krmpotic, A. et al. The immunoevasive function encoded by the mouse cytomegalovirus gene m152 protects the virus against T-cell control in vivo. J. Exp. Med. 190, 1285–1295 (1999).The first evidence for in vivo attenuation of CMV pathogenicity by deletion of an MHC-class-I-targeting immunoevasin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Krmpotic, A. et al. MCMV glycoprotein gp40 confers virus resistance to CD8+ T lymphocytes and NK cells in vivo. Nature Immunol. 3, 529–535 (2002).The first example of an immunoevasin that inhibits adaptive and innate immune functions simultaneously. See also reference 109.

    Article  CAS  Google Scholar 

  76. Jones, T. R. et al. Multiple independent loci within the human cytomegalovirus unique short region down-regulate expression of major histocompatibility complex class I heavy chains. J. Virol. 69, 4830–4841 (1995).Pioneering work mapping immunoevasin genes to the unique short region of the hCMV genome.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kleijnen, M. F. et al. A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface. EMBO J. 16, 685–694 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kavanagh, D. G., Koszinowski, U. H. & Hill, A. B. The murine cytomegalovirus immune evasion protein m4/gp34 forms biochemically distinct complexes with class I MHC at the cell surface and in a pre-Golgi compartment. J. Immunol. 167, 3894–3902 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Gewurz, B. E., Wang, E. W., Tortorella, D., Schust, D. J. & Ploegh, H. L. Human cytomegalovirus US2 endoplasmic reticulum-lumenal domain dictates association with major histocompatibility complex class I in a locus-specific manner. J. Virol. 75, 5197–5204 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rehm, A. et al. Human cytomegalovirus gene products US2 and US11 differ in their ability to attack major histocompatibility class I heavy chains in dendritic cells. J. Virol. 76, 5043–5050 (2002).A demonstration of cell-type-specific differences in the hierarchy of immunoevasin functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kavanagh, D. G., Gold, M. C., Wagner, M., Koszinowski, U. H. & Hill, A. B. The multiple immune-evasion genes of murine cytomegalovirus are not redundant: m4 and m152 inhibit antigen presentation in a complementary and cooperative fashion. J. Exp. Med. 194, 967–977 (2001).The first report of functional cooperation between immunoevasins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Longmate, J. et al. Population coverage by HLA class-I-restricted cytotoxic T-lymphocyte epitopes. Immunogenetics 52, 165–173 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Morello, C. S., Cranmer, L. D. & Spector, D. H. Suppression of murine cytomegalovirus (MCMV) replication with a DNA vaccine encoding MCMV M84 (a homolog of human cytomegalovirus pp65). J. Virol. 74, 3696–3708 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Holtappels, R. et al. Experimental preemptive immunotherapy of murine cytomegalovirus disease with CD8 T-cell lines specific for ppM83 and pM84, the two homologs of human cytomegalovirus tegument protein ppUL83 (pp65). J. Virol. 75, 6584–6600 (2001).Using different approaches, references 83 and 84 document the protective antiviral potential of subdominant viral peptides.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Riddell, S. R., Rabin, M., Geballe, A. P., Britt, W. J. & Greenberg, P. D. Class I MHC-restricted cytotoxic T lymphocyte recognition of cells infected with human cytomegalovirus does not require endogenous viral gene expression. J. Immunol. 146, 2795–2804 (1991).

    CAS  PubMed  Google Scholar 

  86. Pepperl, S., Münster, J., Mach, M., Harris, J. R. & Plachter, B. Dense bodies of human cytomegalovirus induce both humoral and cellular immune responses in the absence of viral gene expression. J. Virol. 74, 6132–6146 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jahn, G. et al. Map position and nucleotide sequence of the gene for the large structural phosphoprotein of human cytomegalovirus. J. Virol. 61, 1358–1367 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sigal, L. J., Crotty, S., Andino, R. & Rock, K. L. Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature 398, 77–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Heath, W. R. & Carbone, F. R. Cross-presentation in viral immunity and self-tolerance. Nature Rev. Immunol. 1, 126–134 (2001).

    Article  CAS  Google Scholar 

  90. Fonteneau, J.-F., Larsson, M. & Bhardwaj, N. Interactions between dead cells and dendritic cells in the induction of antiviral CTL responses. Curr. Opin. Immunol. 14, 471–477 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Arrode, G. et al. Incoming human cytomegalovirus pp65 (UL83) contained in apoptotic infected fibroblasts is cross-presented to CD8+ T cells by dendritic cells. J. Virol. 74, 10018–10024 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tabi, Z., Moutaftsi, M. & Borysiewicz, L. K. Human cytomegalovirus pp65- and immediate early 1 antigen-specific HLA class-I-restricted cytotoxic T-cell responses induced by cross-presentation of viral antigens. J. Immunol. 166, 5695–5703 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Plachter, B., Sinzger, C. & Jahn, G. Cell types involved in replication and distribution of human cytomegalovirus. Adv. Virus Res. 46, 195–261 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Fisher, S., Genbacev, O., Maidji, E. & Pereira, L. Human cytomegalovirus infection of placental cytotrophoblasts in vitro and in utero: implications for transmission and pathogenesis. J. Virol. 74, 6808–6820 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Reddehase, M. J., Mutter, W. & Koszinowski, U. H. In vivo application of recombinant interleukin-2 in the immunotherapy of established cytomegalovirus infection. J. Exp. Med. 165, 650–656 (1987).

    Article  CAS  PubMed  Google Scholar 

  96. Benz, C. et al. Efficient downregulation of major histocompatibility complex class I molecules in human epithelial cells infected with cytomegalovirus. J. Gen. Virol. 82, 2061–2070 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Hengel, H. et al. Macrophages escape inhibition of major histocompatibility complex class I-dependent antigen presentation by cytomegalovirus. J. Virol. 74, 7861–7868 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stoddard, C. A. et al. Peripheral-blood mononuclear phagocytes mediate dissemination of murine cytomegalovirus. J. Virol. 68, 6243–6253 (1994).

    Google Scholar 

  99. Hanson, L. K. et al. Replication of murine cytomegalovirus in differentiated macrophages as a determinant of viral pathogenesis. J. Virol. 73, 5970–5980 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hengel, H., Lucin, P., Jonjic, S., Ruppert, T. & Koszinowski, U. H. Restoration of cytomegalovirus antigen presentation by γ-interferon combats viral escape. J. Virol. 68, 289–297 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Geginat, G., Ruppert, T., Hengel, H., Holtappels, R. & Koszinowski, U. H. IFN-γ is a prerequisite for optimal antigen processing of viral peptides in vivo. J. Immunol. 158, 3303–3310 (1997).References 100 and 101 provide evidence in vitro and in vivo of a role for IFN-γ in the restoration of antigen presentation in the presence of immunoevasins.

    CAS  PubMed  Google Scholar 

  102. Benz, C. & Hengel, H. MHC class-I-subversive gene functions of cytomegalovirus and their regulation by interferons — an intricate balance. Virus Genes 21, 39–47 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Holtappels, R. et al. Processing and presentation of murine cytomegalovirus pORFm164-derived peptide in fibroblasts in the face of all viral immunosubversive early gene functions. J. Virol. 76, 6044–6053 (2002).Identification of an E-phase peptide of mCMV that constitutively escapes all immunoevasin functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Polic, B. et al. Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J. Exp. Med. 188, 1047–1054 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Holtappels, R., Pahl-Seibert, M.-F., Thomas, D. & Reddehase, M. J. Enrichment of immediate-early 1 (m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62L-lo memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J. Virol. 74, 11495–11503 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kurz, S. K. & Reddehase, M. J. Patchwork pattern of transcriptional reactivation in the lungs indicates sequential checkpoints in the transition from murine cytomegalovirus latency to recurrence. J. Virol. 73, 8612–8622 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Reddehase, M. J. et al. The conditions of primary infection define the load of latent viral genome in organs and the risk of recurrent cytomegalovirus disease. J. Exp. Med. 179, 185–193 (1994).

    Article  CAS  PubMed  Google Scholar 

  108. Steffens, H.-P., Kurz, S., Holtappels, R. & Reddehase, M. J. Preemptive CD8-T-cell immunotherapy of acute cytomegalovirus infection prevents lethal disease, limits the burden of latent viral genome and reduces the risk of virus recurrence. J. Virol. 72, 1797–1804 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kärre, K. Clever, cleverer, cleverest. Nature Immunol. 3, 505–506 (2002).

    Article  CAS  Google Scholar 

  110. Jahn, G., Pohl, W., Plachter, B. & von Hintzenstern, J. Congenital cytomegalovirus infection with fatal outcome. Dtsch. Med. Wochenschr. 113, 424–427 (1988).

    Article  CAS  PubMed  Google Scholar 

  111. Boppana, S. B., Rivera, L. B., Fowler, K. B., Mach, M. & Britt, W. J. Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N. Engl. J. Med. 344, 1366–1371 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Ho, M. Cytomegalovirus. Biology and Infection (Plenum Medical Book Company, New York and London, 1982).

    Book  Google Scholar 

  113. Britt, W. J. Vaccines against human cytomegalovirus: time to test. Trends Microbiol. 4, 34–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Gonczol, E. & Plotkin, S. Development of a cytomegalovirus vaccine: lessons from recent clinical trials. Expert. Opin. Biol. Ther. 1, 401–412 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Stratton, K. R., Durch, J. S. & Lawrence, R. S. (eds) Vaccines for the 21st Century. A Tool for Decisionmaking. Committee to Study Priorities for Vaccine Development (Division of Health Promotion and Disease Prevention, Institute of Medicine, The National Academies, Washington, 2001).Arguments in favour of a vaccine against hCMV (see Further Information).

    Google Scholar 

  116. Dorsch-Häsler, K. et al. A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate-early mRNA in murine cytomegalovirus. Proc. Natl Acad. Sci. USA 82, 8325–8329 (1985).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Keil, G. M., Ebeling-Keil, A. & Koszinowski, U. H. Sequence and structural organization of murine cytomegalovirus immediate-early gene 1. J. Virol. 61, 1901–1908 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Messerle, M., Keil, G. M. & Koszinowski, U. H. Structure and expression of murine cytomegalovirus immediate-early gene 2. J. Virol. 65, 1638–1643 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Messerle, M., Bühler, B., Keil, G. M. & Koszinowski, U. H. Structural organization, expression and functional characterization of the murine cytomegalovirus immediate-early gene 3. J. Virol. 66, 27–36 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Gribaudo, G. et al. Murine cytomegalovirus stimulates cellular thymidylate synthase gene expression in quiescent cells and requires the enzyme for replication. J. Virol. 74, 4979–4987 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cardin, R. D., Abenes, G. B., Stoddart, A. & Mocarski, E. S. Murine cytomegalovirus IE2, an activator of gene expression, is dispensable for growth and latency in mice. Virology 209, 236–241 (1995).

    Article  CAS  PubMed  Google Scholar 

  122. Angulo, A., Ghazal, P. & Messerle, M. The major immediate-early gene ie3 of mouse cytomegalovirus is essential for viral growth. J. Virol. 74, 11129–11136 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Knuehl, C. et al. The murine cytomegalovirus pp89 immunodominant H-2Ld epitope is generated and translocated into the endoplasmic reticulum as an 11-mer precursor peptide. J. Immunol. 167, 1515–1521 (2001).This paper describes the molecular details of mCMV IE1 processing and peptide translocation into the endoplasmic reticulum.

    Article  CAS  PubMed  Google Scholar 

  124. Serwold, T., Gonzales, F., Kim, J., Jacob, R. & Shastri, N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419, 480–483 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Shastri, N., Schwab, S. & Serwold, T. Producing nature's gene-chips. The generation of peptides for display by MHC class I molecules. Annu. Rev. Immunol. 20, 463–493 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Rammensee, H.-G., Bachmann, J. & Stevanovic, S. MHC Ligands and Peptide Motifs (Molecular Biology Intelligence Unit, Landes Bioscience, Austin, Texas, 1997).

    Book  Google Scholar 

  127. Reddehase, M. J. & Koszinowski, U. H. Redistribution of critical major histocompatibility complex and T-cell receptor-binding functions of residues in an antigenic sequence after biterminal substitution. Eur. J. Immunol. 21, 1697–1701 (1991).

    Article  CAS  PubMed  Google Scholar 

  128. Reusch, U. et al. A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation. EMBO J. 18, 1081–1091 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ahn, K. et al. The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6, 613–621 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Hengel, H. et al. A viral ER-resident glycoprotein inactivates the MHC-encoded peptide transporter. Immunity 6, 623–632 (1997).

    Article  CAS  PubMed  Google Scholar 

  131. Lehner, P. J., Karttunen, J. T., Wilkinson, G. W. G. & Cresswell, P. The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proc. Natl Acad. Sci. USA 94, 6904–6909 (1997).References 129–131 describe the discovery and mode of action of hCMV immunoevasin gpUS6, the first immunoevasin to be discovered that targets TAP-dependent peptide translocation into the endoplasmic reticulum.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gewurz, B. E. et al. Antigen presentation subverted: structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proc. Natl Acad. Sci. USA 98, 6794–6799 (2001).The crystal structure of hCMV immunoevasin gpUS2 bound to HLA-A2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Holtappels, R., Grzimek, N. K. A., Thomas, D. & Reddehase, M. J. Early gene m18, a novel player in the immune response to murine cytomegalovirus. J. Gen. Virol. 83, 311–316 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Holtappels, R., Thomas, D. & Reddehase, M. J. Identification of a Kd-restricted antigenic peptide encoded by murine cytomegalovirus early gene M84. J. Gen. Virol. 81, 3037–3042 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Utz, U., Koenig, S., Coligan, J. E. & Biddison, W. E. Presentation of three different viral peptides, HTLV-1 Tax, HCMV gB and influenza virus M1, is determined by common structural features of the HLA-A2.1 molecule. J. Immunol. 149, 214–221 (1992).

    CAS  PubMed  Google Scholar 

  136. Parker, K. C. et al. Sequence motifs important for peptide binding to the human MHC class I molecule, HLA-A2. J. Immunol. 149, 3580–3587 (1992).

    CAS  PubMed  Google Scholar 

  137. Hebart, H. et al. Sensitive detection of human cytomegalovirus peptide-specific cytotoxic T-lymphocyte responses by interferon-γ-enzyme-linked immunospot assay and flow cytometry in healthy individuals and in patients after allogeneic stem-cell transplantation. Blood 99, 3830–3837 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Solache, A. et al. Identification of three HLA-A*0201-restricted cytotoxic T-cell epitopes in the cytomegalovirus protein pp65 that are conserved between eight strains of the virus. J. Immunol. 163, 5512–5518 (1999).

    CAS  PubMed  Google Scholar 

  139. Diamond, D. J., York, J., Sun, J. Y., Wright, C. L. & Forman, S. J. Development of a candidate HLA A*0201-restricted peptide-based vaccine against human cytomegalovirus infection. Blood 90, 1751–1767 (1997).

    CAS  PubMed  Google Scholar 

  140. Masuoka, M. et al. Identification of the HLA-A24 peptide epitope within cytomegalovirus protein pp65 recognized by CMV-specific cytotoxic T lymphocytes. Viral Immunol. 14, 369–377 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Kuzushima, K., Hayashi, N., Kimura, H. & Tsurumi, T. Efficient identification of HLA-A*2402-restricted cytomegalovirus-specific CD8+ T-cell epitopes by a computer algorithm and an enzyme-linked immunospot assay. Blood 98, 1872–1881 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Weekes, M. P., Wills, M. R., Mynard, K., Carmichael, A. J. & Sissons, J. G. P. The memory cytotoxic T-lymphocyte response to human cytomegalovirus infection contains individual peptide-specific CTL clones that have undergone extensive expansion in vivo. J. Virol. 73, 2099–2108 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Kern, F. et al. T-cell epitope mapping by flow cytometry. Nature Med. 4, 975–978 (1998).

    Article  CAS  PubMed  Google Scholar 

  144. Gavin, M. A., Gilbert, M. J., Riddell, S. R., Greenberg, P. D. & Bevan, M. J. Alkali hydrolysis of recombinant proteins allows for the rapid identification of class I MHC-restricted CTL epitopes. J. Immunol. 151, 3971–3980 (1993).

    CAS  PubMed  Google Scholar 

  145. Wills, M. R. et al. Identification of naive or antigen-experienced human CD8+ T cells by expression of costimulation and chemokine receptors: analysis of the human cytomegalovirus-specific CD8+ T-cell response. J. Immunol. 168, 5455–5464 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Retiere, C. et al. Generation of cytomegalovirus-specific human T-lymphocyte clones by using autologous B-lymphoblastoid cells with stable expression of pp65 or IE1 proteins: a tool to study the fine specificity of the antiviral response. J. Virol. 74, 3948–3952 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Frankenberg, N., Pepperl-Klindworth, S., Meyer, R. G. & Plachter, B. Identification of a conserved HLA-A2-restricted decapeptide from the IE1 protein (pUL123) of human cytomegalovirus. Virology 295, 208–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Grzimek, N. K. A. et al. In vivo replication of recombinant murine cytomegalovirus driven by the paralogous major immediate-early enhancer of human cytomegalovirus. J. Virol. 73, 5043–5055 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I apologize to all colleagues whose publications have not been included owing to space constraints and the focus of the review. I also apologize to colleagues who might have published peptide sequences (Table 2) that did not come to my attention. I thank U. H. Koszinowski, who brought me into CMV research and who was my scientific mentor for many years. I greatly appreciate the advice given by R. S. Lawrence regarding Box 2, and by P.-M. Kloetzel, H.-G. Rammensee and N. Shastri regarding Fig. 1. My co-workers J. Podlech and C. O. Simon did a perfect job with the design of the figures. Our recent work has been funded by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Entrez

hCMV

IE1

m152

mCMV

rat cytomegalovirus

LocusLink

IFN-γ

TAP1

TAP2

FURTHER INFORMATION

Institute of Medicine

Vaccines for the 21st Century: A Tool for Decision-Making

SYFPEITHI Database for MHC-Binding Motifs

Institute for Virology, Johannes Gutenberg-University

Glossary

LATENCY

State of an infection that is characterized by the maintenance of replication-competent viral genomes in the absence of infectious virus particles. Although the viral replication cycle is not completed during latency, the viral genome is not necessarily transcriptionally silent. Potentially, a limited set of proteins is synthesized, and antigenic peptides can be presented for immune surveillance.

ANTIVIRAL CYTOIMMUNOTHERAPY

Prevention or treatment of viral disease in a recipient by the adoptive transfer of immune cells, usually by intravenous infusion of the cells.

PRE-EMPTIVE CYTOIMMUNOTHERAPY

Immune cells are adoptively transferred after molecular diagnosis of the infection, but before clinical symptoms of disease have developed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddehase, M. Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2, 831–844 (2002). https://doi.org/10.1038/nri932

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nri932

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing