Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Formation and transfer of disulphide bonds in living cells

Key Points

  • The formation of structural disulphide bonds in cellular proteins is a catalysed process that involves many proteins and small molecules. The primary pathways of disulphide-bond formation are localized in the endoplasmic reticulum (ER) of eukaryotic cells and the periplasmic space of prokaryotic cells.

  • The core pathways that promote disulphide-bond formation in prokaryotes and eukaryotes share many similarities. Both pathways include soluble thiol-disulphide oxidoreductases that donate disulphide bonds directly to substrate proteins, as well as membrane-associated enzymes that maintain the soluble enzymes in a redox-active form.

  • Protein oxidation in the ER relies on the membrane-associated proteins Ero1 (ER oxidoreductin) and Erv2, and the soluble thiol-disulphide oxidoreductase protein disulphide isomerase (PDI). The prokaryotic protein oxidation system uses the integral membrane protein DsbB and the soluble enzyme DsbA.

  • In addition to the DsbA–DsbB pathway for disulphide-bond formation, prokaryotes also contain a pathway for the isomerization of non-native disulphide bonds. This pathway includes the membrane protein DsbD and the soluble enzyme DsbC. At present, a reduction pathway similar to the DsbC–DsbD pathway has not been characterized in eukaryotes.

  • The protein oxidation and isomerization pathways in prokaryotes and eukaryotes use a conserved thiol-disulphide exchange mechanism to transfer disulphide bonds between components. In addition to these inter-protein transfer events, several of the enzymes also seem to catalyse the intra-protein transfer of disulphide bonds between their own cysteine pairs.

  • The bacterial DsbA–DsbB protein oxidation system is driven by oxidizing equivalents derived from the cellular respiratory electron-transport chain. The source of oxidizing equivalents for ER protein oxidation is not as well characterized. Flavin moieties seem to provide a source of oxidizing equivalents, but the sources for flavin oxidation are not well understood.

  • The identification of enzymatic pathways of disulphide-bond formation has raised many questions about the role of the principal cellular small-molecule redox compound glutathione. Glutathione was originally believed to drive protein oxidation; however, more recent experiments show that glutathione is not required for oxidative protein folding. Instead, it has been suggested that glutathione functions as a net reductant in the ER, perhaps protecting the ER under hyperoxidizing conditions.

Abstract

Protein disulphide bonds are formed in the endoplasmic reticulum of eukaryotic cells and the periplasmic space of prokaryotic cells. The main pathways that catalyse the formation of protein disulphide bonds in prokaryotes and eukaryotes are remarkably similar, and they share several mechanistic features. The recent identification of new redox-active proteins in humans and yeast that mechanistically parallel the more established redox-active enzymes indicates that there might be further uncharacterized redox pathways throughout the cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways for protein oxidation in the endoplasmic reticulum of Saccharomyces cerevisiae.
Figure 2: Periplasmic pathways for protein oxidation and isomerization in Escherichia coli.

Similar content being viewed by others

References

  1. Jordan, A. & Reichard, P. Ribonucleotide reductases. Annu. Rev. Biochem. 67, 71–98 (1998).

    CAS  PubMed  Google Scholar 

  2. Dai, S., Schwendtmayer, C., Schurmann, P., Ramaswamy, S. & Eklund, H. Redox signaling in chloroplasts: cleavage of disulfides by an iron–sulfur cluster. Science 287, 655–658 (2000).

    CAS  PubMed  Google Scholar 

  3. Buchanan, B. B. Regulation of CO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system. Perspective on its discovery, present status, and future development. Arch. Biochem. Biophys. 288, 1–9 (1991).

    CAS  PubMed  Google Scholar 

  4. Zheng, M., Åslund, F. & Storz, G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279, 1718–1721 (1998).

    CAS  PubMed  Google Scholar 

  5. Jakob, U., Muse, W., Eser, M. & Bardwell, J. C. Chaperone activity with a redox switch. Cell 96, 341–352 (1999).

    CAS  PubMed  Google Scholar 

  6. Golberger, R. F., Epstein, C. J. & Anfinsen, C. B. Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver. J. Biol. Chem. 238, 628–635 (1963).

    Google Scholar 

  7. Noiva, R. Protein disulfide isomerase: the multifunctional redox chaperone of the endoplasmic reticulum. Semin. Cell Dev. Biol. 10, 481–493 (1999).

    CAS  PubMed  Google Scholar 

  8. Ferrari, D. M. & Soling, H. D. The protein disulphide-isomerase family: unravelling a string of folds. Biochem. J. 339, 1–10 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Freedman, R. B., Klappa, P. & Ruddock, L. W. Protein disulfide isomerases exploit synergy between catalytic and specific binding domains. EMBO Rep. 3, 136–140 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gilbert, H. F. in Mechanisms of Protein Folding (ed. Pain, R. H.) 104–135 (Oxford Univ. Press, Oxford, UK, 1994).

    Google Scholar 

  11. Hawkins, H. C., de Nardi, M. & Freedman, R. B. Redox properties and cross-linking of the dithiol/disulphide active sites of mammalian protein disulphide-isomerase. Biochem. J. 275, 341–348 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lundstrom, J. & Holmgren, A. Determination of the reduction–oxidation potential of the thioredoxin-like domains of protein disulfide-isomerase from the equilibrium with glutathione and thioredoxin. Biochemistry 32, 6649–6655 (1993).

    CAS  PubMed  Google Scholar 

  13. Frand, A. R. & Kaiser, C. A. The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol. Cell 1, 161–170 (1998).

    CAS  PubMed  Google Scholar 

  14. Pollard, M. G., Travers, K. J. & Weissman, J. S. Ero1p: a novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol. Cell 1, 171–182 (1998).

    CAS  PubMed  Google Scholar 

  15. Frand, A. R. & Kaiser, C. A. Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum. Mol. Cell 4, 469–477 (1999).This paper presents the first evidence for the direct flow of oxidizing equivalents from Ero1 to substrate proteins by PDI.

    CAS  PubMed  Google Scholar 

  16. Tu, B. P., Ho-Schleyer, S. C., Travers, K. J. & Weissman, J. S. Biochemical basis of oxidative protein folding in the endoplasmic reticulum. Science 290, 1571–1574 (2000).This paper shows that oxidative protein folding in yeast is dependent on FAD levels and provides evidence that Ero1 binds FAD. The reconstitution of the eukaryotic ER pathway for protein disulphide-bond formation in vitro using FAD, Ero1 and PDI is also described.

    CAS  PubMed  Google Scholar 

  17. Frand, A. R. & Kaiser, C. A. Two pairs of conserved cysteines are required for the oxidative activity of Ero1p in protein disulfide bond formation in the endoplasmic reticulum. Mol. Biol. Cell 11, 2833–2843 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cabibbo, A. et al. ERO1-L, a human protein that favors disulfide bond formation in the endoplasmic reticulum. J. Biol. Chem. 275, 4827–4833 (2000).

    CAS  PubMed  Google Scholar 

  19. Pagani, M. et al. Endoplasmic reticulum oxidoreductin 1-Lβ (ERO1-Lβ), a human gene induced in the course of the unfolded protein response. J. Biol. Chem. 275, 23685–23692 (2000).

    CAS  PubMed  Google Scholar 

  20. Pagani, M., Pilati, S., Bertoli, G., Valsasina, B. & Sitia, R. The C-terminal domain of yeast Ero1p mediates membrane localization and is essential for function. FEBS Lett. 508, 117–120 (2001).

    CAS  PubMed  Google Scholar 

  21. Mezghrani, A. et al. Manipulation of oxidative protein folding and PDI redox state in mammalian cells. EMBO J. 20, 6288–6296 (2001).This article reports that mammalian Ero1 selectively oxidizes PDI, which, in turn, catalyses the formation of disulphide bonds in immunoglobulin subunits. The interesting observation that exogenous expression of active-site mutants of Ero1-Lα limits substrate protein oxidation is also presented.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Benham, A. M. et al. The CXXCXXC motif determines the folding, structure and stability of human Ero1-Lα. EMBO J. 19, 4493–4502 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sevier, C. S., Cuozzo, J. W., Vala, A., Åslund, F. & Kaiser, C. A. A flavoprotein oxidase defines a new endoplasmic reticulum pathway for biosynthetic disulphide bond formation. Nature Cell Biol. 3, 874–882 (2001).This paper presents evidence for a second, Ero1-independent oxidation pathway in yeast ER that uses the small ER oxidase Erv2 and PDI. This and reference 24 show that Erv2 is a flavoenzyme that uses the oxidizing potential of molecular oxygen to drive the formation of disulphide bonds.

    CAS  PubMed  Google Scholar 

  24. Gerber, J., Muhlenhoff, U., Hofhaus, G., Lill, R. & Lisowsky, T. Yeast ERV2p is the first microsomal FAD-linked sulfhydryl oxidase of the Erv1p/Alrp protein family. J. Biol. Chem. 276, 23486–23491 (2001).

    CAS  PubMed  Google Scholar 

  25. Gross, E., Sevier, C. S., Vala, A., Kaiser, C. A. & Fass, D. A new FAD-binding fold and intersubunit disulfide shuttle in the thiol oxidase Erv2p. Nature Struct. Biol. 9, 61–67 (2002).This paper presents the structural analysis of yeast Erv2. Structural and biochemical analysis indicates that Erv2 might use an internal thiol-transfer relay between two pairs of cysteines to facilitate the transfer of disulphide bonds to substrate proteins.

    CAS  PubMed  Google Scholar 

  26. Hoober, K. L., Joneja, B., White, H. B. & Thorpe, C. A sulfhydryl oxidase from chicken egg white. J. Biol. Chem. 271, 30510–30516 (1996).

    CAS  PubMed  Google Scholar 

  27. Hoober, K. L., Glynn, N. M., Burnside, J., Coppock, D. L. & Thorpe, C. Homology between egg white sulfhydryl oxidase and quiescin Q6 defines a new class of flavin-linked sulfhydryl oxidases. J. Biol. Chem. 274, 31759–31762 (1999).This article shows that the flavin-dependent sulfhydryl oxidase from chicken egg white is homologous to the human protein quiescin Q6, thereby identifying a new family of cellular oxidases. See references 26, 28 and 29 for the biochemical characterization of the avian sulfhydryl oxidase.

    CAS  PubMed  Google Scholar 

  28. Hoober, K. L., Sheasley, S. L., Gilbert, H. F. & Thorpe, C. Sulfhydryl oxidase from egg white. A facile catalyst for disulfide bond formation in proteins and peptides. J. Biol. Chem. 274, 22147–22150 (1999).

    CAS  PubMed  Google Scholar 

  29. Hoober, K. L. & Thorpe, C. Egg white sulfhydryl oxidase: kinetic mechanism of the catalysis of disulfide bond formation. Biochemistry 38, 3211–3217 (1999).

    CAS  PubMed  Google Scholar 

  30. Collet, J. F. & Bardwell, J. C. Oxidative protein folding in bacteria. Mol. Microbiol. 44, 1–8 (2002).This paper and reference 31 provide the most recent reviews focused on the bacterial disulphide-bond formation and isomerization pathways. See the references in these reviews for a more detailed discussion of the history of the identification of the bacterial enzymes for disulphide-bond formation.

    CAS  PubMed  Google Scholar 

  31. Ritz, D. & Beckwith, J. Roles of thiol-redox pathways in bacteria. Annu. Rev. Microbiol. 55, 21–48 (2001).

    CAS  PubMed  Google Scholar 

  32. Fabianek, R. A., Hennecke, H. & Thöny-Meyer, L. Periplasmic protein thiol:disulfide oxidoreductases of Escherichia coli. FEMS Microbiol. Rev. 24, 303–316 (2000).

    CAS  PubMed  Google Scholar 

  33. Debarbieux, L. & Beckwith, J. Electron avenue: pathways of disulfide bond formation and isomerization. Cell 99, 117–119 (1999).

    CAS  PubMed  Google Scholar 

  34. Guilhot, C., Jander, G., Martin, N. L. & Beckwith, J. Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA. Proc. Natl Acad. Sci. USA 92, 9895–9899 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kishigami, S., Akiyama, Y. & Ito, K. Redox states of DsbA in the periplasm of Escherichia coli. FEBS Lett. 364, 55–58 (1995).

    CAS  PubMed  Google Scholar 

  36. Missiakas, D., Schwager, F. & Raina, S. Identification and characterization of a new disulfide isomerase-like protein (DsbD) in Escherichia coli. EMBO J. 14, 3415–3424 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rietsch, A., Bessette, P., Georgiou, G. & Beckwith, J. Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin. J. Bacteriol. 179, 6602–6608 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Katzen, F. & Beckwith, J. Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade. Cell 103, 769–779 (2000).This article probes the mechanism of the thiol-disulphide oxidoreductase DsbD and provides an elegant example of the intra-protein transfer of disulphide bonds that seems be important in the function of several proteins involved in cellular protein oxidation and reduction.

    CAS  PubMed  Google Scholar 

  39. Krupp, R., Chan, C. & Missiakas, D. DsbD-catalyzed transport of electrons across the membrane of Escherichia coli. J. Biol. Chem. 276, 3696–3701 (2001).

    CAS  PubMed  Google Scholar 

  40. Collet, J. F., Riemer, J., Bader, M. W. & Bardwell, J. C. Reconstitution of a disulfide isomerization system. J. Biol. Chem. 277, 26886–26892 (2002).

    CAS  PubMed  Google Scholar 

  41. Bardwell, J. C., McGovern, K. & Beckwith, J. Identification of a protein required for disulfide bond formation in vivo. Cell 67, 581–589 (1991).This paper reports the initial identification of DsbA, providing the first evidence that the formation of protein disulphide bonds in bacteria is a catalysed process.

    CAS  PubMed  Google Scholar 

  42. Humphreys, D. P., Weir, N., Mountain, A. & Lund, P. A. Human protein disulfide isomerase functionally complements a dsbA mutation and enhances the yield of pectate lyase C in Escherichia coli. J. Biol. Chem. 270, 28210–28215 (1995).

    CAS  PubMed  Google Scholar 

  43. Bardwell, J. C. et al. A pathway for disulfide bond formation in vivo. Proc. Natl Acad. Sci. USA 90, 1038–1042 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jander, G., Martin, N. L. & Beckwith, J. Two cysteines in each periplasmic domain of the membrane protein DsbB are required for its function in protein disulfide bond formation. EMBO J. 13, 5121–5127 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kishigami, S. & Ito, K. Roles of cysteine residues of DsbB in its activity to reoxidize DsbA, the protein disulphide bond catalyst of Escherichia coli. Genes Cells 1, 201–208 (1996).

    CAS  PubMed  Google Scholar 

  46. Kadokura, H., Bader, M., Tian, H., Bardwell, J. C. & Beckwith, J. Roles of a conserved arginine residue of DsbB in linking protein disulfide-bond-formation pathway to the respiratory chain of Escherichia coli. Proc. Natl Acad. Sci. USA 97, 10884–10889 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Stewart, E. J., Katzen, F. & Beckwith, J. Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. EMBO J. 18, 5963–5971 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chung, J., Chen, T. & Missiakas, D. Transfer of electrons across the cytoplasmic membrane by DsbD, a membrane protein involved in thiol-disulphide exchange and protein folding in the bacterial periplasm. Mol. Microbiol. 35, 1099–1109 (2000).

    CAS  PubMed  Google Scholar 

  49. Gordon, E. H., Page, M. D., Willis, A. C. & Ferguson, S. J. Escherichia coli DipZ: anatomy of a transmembrane protein disulphide reductase in which three pairs of cysteine residues, one in each of three domains, contribute differentially to function. Mol. Microbiol. 35, 1360–1374 (2000).

    CAS  PubMed  Google Scholar 

  50. Goldstone, D. et al. DsbC activation by the N-terminal domain of DsbD. Proc. Natl Acad. Sci. USA 98, 9551–9556 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kadokura, H. & Beckwith, J. Four cysteines of the membrane protein DsbB act in concert to oxidize its substrate DsbA. EMBO J. 21, 2354–2363 (2002).This study shows the direct flow of electrons between the two pairs of cysteines in DsbB, and between the cysteines in DsbB and DsbA. See also references 34 and 35 for the original observations of a direct interaction between DsbA and DsbB, and the recent references 84 and 85 , which report the redox potentials for the DsbB cysteine pairs.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Senkevich, T. G., Koonin, E. V., Bugert, J. J., Darai, G. & Moss, B. The genome of Molluscum contagiosum virus: analysis and comparison with other poxviruses. Virology 233, 19–42 (1997).

    CAS  PubMed  Google Scholar 

  53. Senkevich, T. G., White, C. L., Koonin, E. V. & Moss, B. Complete pathway for protein disulfide bond formation encoded by poxviruses. Proc. Natl Acad. Sci. USA 99, 6667–6672 (2002).This paper shows that three cytoplasmic thiol-disulphide oxidoreductases (E10R, A2.5L and G4L) encoded by vaccinia virus cooperate in a cytosolic pathway for the formation of disulphide bonds in virion proteins. See also references 52, 70, 71 and 110.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Martin, J. L. Thioredoxin—a fold for all reasons. Structure 3, 245–250 (1995).

    CAS  PubMed  Google Scholar 

  55. McCarthy, A. A. et al. Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli. Nature Struct. Biol. 7, 196–199 (2000).

    CAS  PubMed  Google Scholar 

  56. Goulding, C. W. et al. Thiol-disulfide exchange in an immunoglobulin-like fold: structure of the N-terminal domain of DsbD. Biochemistry 41, 6920–6927 (2002).

    CAS  PubMed  Google Scholar 

  57. Martin, J. L., Bardwell, J. C. & Kuriyan, J. Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature 365, 464–468 (1993).

    CAS  PubMed  Google Scholar 

  58. Nørgaard, P. et al. Functional differences in yeast protein disulfide isomerases. J. Cell Biol. 152, 553–562 (2001).This study addresses the functional differences between yeast PDI and the four yeast PDI homologues, and illustrates some of the difficulties in sorting out the overlapping functions of the PDI homologues.

    PubMed  PubMed Central  Google Scholar 

  59. Anelli, T. et al. ERp44, a novel endoplasmic reticulum folding assistant of the thioredoxin family. EMBO J. 21, 835–844 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Thöny-Meyer, L. Cytochrome c maturation: a complex pathway for a simple task? Biochem. Soc. Trans. 30, 633–638 (2002).

    PubMed  Google Scholar 

  61. Katzen, F., Deshmukh, M., Daldal, F. & Beckwith, J. Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD. EMBO J. 21, 3960–3969 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Joly, J. C. & Swartz, J. R. In vitro and in vivo redox states of the Escherichia coli periplasmic oxidoreductases DsbA and DsbC. Biochemistry 36, 10067–10072 (1997).

    CAS  PubMed  Google Scholar 

  63. Bader, M. W., Xie, T., Yu, C. A. & Bardwell, J. C. Disulfide bonds are generated by quinone reduction. J. Biol. Chem. 275, 26082–26088 (2000).

    CAS  PubMed  Google Scholar 

  64. Bader, M. W. et al. Turning a disulfide isomerase into an oxidase: DsbC mutants that imitate DsbA. EMBO J. 20, 1555–1562 (2001).This article proposes that the lack of cross-talk between the bacterial oxidation and isomerization pathways is a result of the dimerization of the DsbC isomerase/reductase enzyme. The dimerization of DsbC is suggested to insulate the active sites from recognition by DsbB, preventing misoxidation of DsbC by DsbB.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ziegler, D. M., Duffel, M. W. & Poulsen, L. L. Studies on the nature and regulation of the cellular thio:disulphide potential. Ciba Found. Symp. 72, 191–204 (1979).

    Google Scholar 

  66. Soute, B. A., Groenen-van Dooren, M. M., Holmgren, A., Lundstrom, J. & Vermeer, C. Stimulation of the dithiol-dependent reductases in the vitamin K cycle by the thioredoxin system. Strong synergistic effects with protein disulphide-isomerase. Biochem. J. 281, 255–259 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hwang, C., Sinskey, A. J. & Lodish, H. F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257, 1496–1502 (1992).

    CAS  PubMed  Google Scholar 

  68. Creighton, T. E. et al. On the biosynthesis of bovine pancreatic trypsin inhibitor (BPTI). Structure, processing, folding and disulphide bond formation of the precursor in vitro and in microsomes. J. Mol. Biol. 232, 1176–1196 (1993).

    CAS  PubMed  Google Scholar 

  69. Locker, J. K. & Griffiths, G. An unconventional role for cytoplasmic disulfide bonds in vaccinia virus proteins. J. Cell Biol. 144, 267–279 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Senkevich, T. G., White, C. L., Koonin, E. V. & Moss, B. A viral member of the ERV1/ALR protein family participates in a cytoplasmic pathway of disulfide bond formation. Proc. Natl Acad. Sci. USA 97, 12068–12073 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. White, C. L., Senkevich, T. G. & Moss, B. Vaccinia virus G4L glutaredoxin is an essential intermediate of a cytoplasmic disulfide bond pathway required for virion assembly. J. Virol. 76, 467–472 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Cuozzo, J. W. & Kaiser, C. A. Competition between glutathione and protein thiols for disulphide-bond formation. Nature Cell Biol. 1, 130–135 (1999).This study shows that glutathione is not the predominant source of oxidizing equivalents for the formation of disulphide bonds in proteins in the ER. Instead, it indicates that cellular glutathione might function as a net reductant of the ER, and might protect the ER against transient hyperoxidizing conditions.

    CAS  PubMed  Google Scholar 

  73. Gliszczynska, A. & Koziolowa, A. Chromatographic determination of flavin derivatives in baker's yeast. J. Chromatogr. A 822, 59–66 (1998).

    CAS  PubMed  Google Scholar 

  74. Kobayashi, T. et al. Respiratory chain is required to maintain oxidized states of the DsbA–DsbB disulfide bond formation system in aerobically growing Escherichia coli cells. Proc. Natl Acad. Sci. USA 94, 11857–11862 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bader, M., Muse, W., Ballou, D. P., Gassner, C. & Bardwell, J. C. Oxidative protein folding is driven by the electron transport system. Cell 98, 217–227 (1999).This paper, along with references 63 and 74 , shows that the bacterial periplasmic disulphide-bond formation pathway derives oxidizing equivalents from the cellular electron-transport system.

    CAS  PubMed  Google Scholar 

  76. Bader, M., Muse, W., Zander, T. & Bardwell, J. Reconstitution of a protein disulfide catalytic system. J. Biol. Chem. 273, 10302–10307 (1998).

    CAS  PubMed  Google Scholar 

  77. Rost, J. & Rapoport, S. Reduction potential of glutathione. Nature 201, 185–187 (1964).

    CAS  PubMed  Google Scholar 

  78. Szajewski, R. P. & Whitesides, G. M. Rate constants and equilibrium constants for thiol-disulfide interchange reactions involving oxidized glutathione. J. Am. Chem. Soc. 102, 2011–2025 (1980).

    CAS  Google Scholar 

  79. Krause, G., Lundstrom, J., Barea, J. L., Pueyo de la Cuesta, C. & Holmgren, A. Mimicking the active site of protein disulfide-isomerase by substitution of proline 34 in Escherichia coli thioredoxin. J. Biol. Chem. 266, 9494–9500 (1991).

    CAS  PubMed  Google Scholar 

  80. Zapun, A., Missiakas, D., Raina, S. & Creighton, T. E. Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli. Biochemistry 34, 5075–5089 (1995).

    CAS  PubMed  Google Scholar 

  81. Wunderlich, M. & Glockshuber, R. Redox properties of protein disulfide isomerase (DsbA) from Escherichia coli. Protein Sci. 2, 717–726 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zapun, A., Bardwell, J. C. & Creighton, T. E. The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. Biochemistry 32, 5083–5092 (1993).

    CAS  PubMed  Google Scholar 

  83. Segel, I. H. Biochemical Calculations 2nd edn 414–415 (Wiley, New York, 1976).

    Google Scholar 

  84. Inaba, K. & Ito, K. Paradoxical redox properties of DsbB and DsbA in the protein disulfide-introducing reaction cascade. EMBO J. 21, 2646–2654 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Regeimbal, J. M. & Bardwell, J. C. DsbB catalyzes disulfide bond formation de novo. J. Biol. Chem. 277, 32706–32713 (2002).

    CAS  PubMed  Google Scholar 

  86. Rietsch, A., Belin, D., Martin, N. & Beckwith, J. An in vivo pathway for disulfide bond isomerization in Escherichia coli. Proc. Natl Acad. Sci. USA 93, 13048–13053 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Stewart, E. J., Åslund, F. & Beckwith, J. Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J. 17, 5543–5550 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Coppock, D., Kopman, C., Gudas, J. & Cina-Poppe, D. A. Regulation of the quiescence-induced genes: quiescin Q6, decorin, and ribosomal protein S29. Biochem. Biophys. Res. Commun. 269, 604–610 (2000).

    CAS  PubMed  Google Scholar 

  89. Lange, H. et al. An essential function of the mitochondrial sulfhydryl oxidase Erv1p/ALR in the maturation of cytosolic Fe/S proteins. EMBO Rep. 2, 715–720 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Günther, R. et al. Functional replacement of the Saccharomyces cerevisiae Trg1/Pdi1 protein by members of the mammalian protein disulfide isomerase family. J. Biol. Chem. 268, 7728–7732 (1993).

    PubMed  Google Scholar 

  91. Koivunen, P. et al. ERp60 does not substitute for protein disulphide isomerase as the β-subunit of prolyl 4-hydroxylase. Biochem. J. 316, 599–605 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Oliver, J. D., van der Wal, F. J., Bulleid, N. J. & High, S. Interaction of the thiol-dependent reductase ERp57 with nascent glycoproteins. Science 275, 86–88 (1997).

    CAS  PubMed  Google Scholar 

  93. Molinari, M. & Helenius, A. Glycoproteins form mixed disulphides with oxidoreductases during folding in living cells. Nature 402, 90–93 (1999).

    CAS  PubMed  Google Scholar 

  94. Desilva, M. G., Notkins, A. L. & Lan, M. S. Molecular characterization of a pancreas-specific protein disulfide isomerase, PDIp. DNA Cell Biol. 16, 269–274 (1997).

    CAS  PubMed  Google Scholar 

  95. Darby, N. J. & Creighton, T. E. Characterization of the active site cysteine residues of the thioredoxin-like domains of protein disulfide isomerase. Biochemistry 34, 16770–16780 (1995).

    CAS  PubMed  Google Scholar 

  96. Darby, N. J., Penka, E. & Vincentelli, R. The multi-domain structure of protein disulfide isomerase is essential for high catalytic efficiency. J. Mol. Biol. 276, 239–247 (1998).

    CAS  PubMed  Google Scholar 

  97. Laboissiere, M. C., Sturley, S. L. & Raines, R. T. The essential function of protein-disulfide isomerase is to unscramble non-native disulfide bonds. J. Biol. Chem. 270, 28006–28009 (1995).

    CAS  PubMed  Google Scholar 

  98. Walker, K. W., Lyles, M. M. & Gilbert, H. F. Catalysis of oxidative protein folding by mutants of protein disulfide isomerase with a single active-site cysteine. Biochemistry 35, 1972–1980 (1996).

    CAS  PubMed  Google Scholar 

  99. Nørgaard, P. & Winther, J. R. Mutation of yeast Eug1p CXXS active sites to CXXC results in a dramatic increase in protein disulphide isomerase activity. Biochem. J. 358, 269–274 (2001).

    PubMed  PubMed Central  Google Scholar 

  100. Coppock, D. L., Cina-Poppe, D. & Gilleran, S. The quiescin Q6 gene (QSCN6) is a fusion of two ancient gene families: thioredoxin and ERV1. Genomics 54, 460–468 (1998).

    CAS  PubMed  Google Scholar 

  101. Coppock, D. L., Kopman, C., Scandalis, S. & Gilleran, S. Preferential gene expression in quiescent human lung fibroblasts. Cell Growth Differ. 4, 483–493 (1993).

    CAS  PubMed  Google Scholar 

  102. Francavilla, A. et al. Augmenter of liver regeneration: its place in the universe of hepatic growth factors. Hepatology 20, 747–757 (1994).

    CAS  PubMed  Google Scholar 

  103. Hagiya, M. et al. Cloning and sequence analysis of the rat augmenter of liver regeneration (ALR) gene: expression of biologically active recombinant ALR and demonstration of tissue distribution. Proc. Natl Acad. Sci. USA 91, 8142–8146 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lisowsky, T., Lee, J. E., Polimeno, L., Francavilla, A. & Hofhaus, G. Mammalian augmenter of liver regeneration protein is a sulfhydryl oxidase. Dig. Liver Dis. 33, 173–180 (2001).

    CAS  PubMed  Google Scholar 

  105. Benayoun, B., Esnard-Feve, A., Castella, S., Courty, Y. & Esnard, F. Rat seminal vesicle FAD-dependent sulfhydryl oxidase. Biochemical characterization and molecular cloning of a member of the new sulfhydryl oxidase/quiescin Q6 gene family. J. Biol. Chem. 276, 13830–13837 (2001).

    CAS  PubMed  Google Scholar 

  106. Musard, J. F. et al. Identification and expression of a new sulfhydryl oxidase SOx-3 during the cell cycle and the estrus cycle in uterine cells. Biochem. Biophys. Res. Commun. 287, 83–91 (2001).

    CAS  PubMed  Google Scholar 

  107. Lee, J., Hofhaus, G. & Lisowsky, T. Erv1p from Saccharomyces cerevisiae is a FAD-linked sulfhydryl oxidase. FEBS Lett. 477, 62–66 (2000).

    CAS  PubMed  Google Scholar 

  108. Lisowsky, T. Dual function of a new nuclear gene for oxidative phosphorylation and vegetative growth in yeast. Mol. Gen. Genet. 232, 58–64 (1992).

    CAS  PubMed  Google Scholar 

  109. Hofhaus, G., Stein, G., Polimeno, L., Francavilla, A. & Lisowsky, T. Highly divergent amino termini of the homologous human ALR and yeast scERV1 gene products define species specific differences in cellular localization. Eur. J. Cell Biol. 78, 349–356 (1999).

    CAS  PubMed  Google Scholar 

  110. Senkevich, T. G., Weisberg, A. S. & Moss, B. Vaccinia virus E10R protein is associated with the membranes of intracellular mature virions and has a role in morphogenesis. Virology 278, 244–252 (2000).

    CAS  PubMed  Google Scholar 

  111. Edman, J. C., Ellis, L., Blacher, R. W., Roth, R. A. & Rutter, W. J. Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Nature 317, 267–270 (1985).

    CAS  PubMed  Google Scholar 

  112. Klappa, P., Ruddock, L. W., Darby, N. J. & Freedman, R. B. The b′ domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins. EMBO J. 17, 927–935 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Hirano, N. et al. Molecular cloning of the human glucose-regulated protein ERp57/GRP58, a thiol-dependent reductase. Identification of its secretory form and inducible expression by the oncogenic transformation. Eur. J. Biochem. 234, 336–342 (1995).

    CAS  PubMed  Google Scholar 

  114. Frickel, E. M. et al. TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc. Natl Acad. Sci. USA 99, 1954–1959 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Elliott, J. G., Oliver, J. D. & High, S. The thiol-dependent reductase ERp57 interacts specifically with N-glycosylated integral membrane proteins. J. Biol. Chem. 272, 13849–13855 (1997).

    CAS  PubMed  Google Scholar 

  116. Mazzarella, R. A., Srinivasan, M., Haugejorden, S. M. & Green, M. ERp72, an abundant luminal endoplasmic reticulum protein, contains three copies of the active site sequences of protein disulfide isomerase. J. Biol. Chem. 265, 1094–1101 (1990).

    CAS  PubMed  Google Scholar 

  117. Nigam, S. K. et al. A set of endoplasmic reticulum proteins possessing properties of molecular chaperones includes Ca2+-binding proteins and members of the thioredoxin superfamily. J. Biol. Chem. 269, 1744–1749 (1994).

    CAS  PubMed  Google Scholar 

  118. Lundstrom-Ljung, J., Birnbach, U., Rupp, K., Soling, H. D. & Holmgren, A. Two resident ER-proteins, CaBP1 and CaBP2, with thioredoxin domains, are substrates for thioredoxin reductase: comparison with protein disulfide isomerase. FEBS Lett. 357, 305–308 (1995).

    CAS  PubMed  Google Scholar 

  119. Fullekrug, J. et al. CaBP1, a calcium binding protein of the thioredoxin family, is a resident KDEL protein of the ER and not of the intermediate compartment. J. Cell Sci. 107, 2719–2727 (1994).

    PubMed  Google Scholar 

  120. Desilva, M. G. et al. Characterization and chromosomal localization of a new protein disulfide isomerase, PDIp, highly expressed in human pancreas. DNA Cell Biol. 15, 9–16 (1996).

    CAS  PubMed  Google Scholar 

  121. Hayano, T. & Kikuchi, M. Molecular cloning of the cDNA encoding a novel protein disulfide isomerase-related protein (PDIR). FEBS Lett. 372, 210–214 (1995).

    CAS  PubMed  Google Scholar 

  122. Scherens, B., Dubois, E. & Messenguy, F. Determination of the sequence of the yeast YCL313 gene localized on chromosome III. Homology with the protein disulfide isomerase (PDI gene product) of other organisms. Yeast 7, 185–193 (1991).

    CAS  PubMed  Google Scholar 

  123. Gunther, R. et al. The Saccharomyces cerevisiae TRG1 gene is essential for growth and encodes a lumenal endoplasmic reticulum glycoprotein involved in the maturation of vacuolar carboxypeptidase. J. Biol. Chem. 266, 24557–24563 (1991).

    CAS  PubMed  Google Scholar 

  124. LaMantia, M. L. & Lennarz, W. J. The essential function of yeast protein disulfide isomerase does not reside in its isomerase activity. Cell 74, 899–908 (1993).

    CAS  PubMed  Google Scholar 

  125. Wang, Q. & Chang, A. Eps1, a novel PDI-related protein involved in ER quality control in yeast. EMBO J. 18, 5972–5982 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Tachibana, C. & Stevens, T. H. The yeast EUG1 gene encodes an endoplasmic reticulum protein that is functionally related to protein disulfide isomerase. Mol. Cell. Biol. 12, 4601–4611 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Tachikawa, H. et al. Isolation and characterization of a yeast gene, MPD1, the overexpression of which suppresses inviability caused by protein disulfide isomerase depletion. FEBS Lett. 369, 212–216 (1995).

    CAS  PubMed  Google Scholar 

  128. Tachikawa, H. et al. Overproduction of Mpd2p suppresses the lethality of protein disulfide isomerase depletion in a CXXC sequence dependent manner. Biochem. Biophys. Res. Commun. 239, 710–714 (1997).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris A. Kaiser.

Related links

Related links

DATABASES

Pfam

thioredoxin

<i>Saccharomyces</i> Genome Database

GSH1

Swiss-Prot

DsbA

DsbB

DsbC

DsbD

Ero1

Erv1

Erv2

Eug1

Mpd1

Mpd2

PDI

Glossary

THIOL-REDOX REACTION

A reaction that involves the transfer of electrons from a donor molecule to an acceptor molecule if one of the molecules is a thiol-containing compound.

THIOL-DISULPHIDE EXCHANGE REACTION

A thiol-redox reaction that involves the exchange of electrons between a compound with free thiols and a disulphide-bonded molecule, which results in the transfer of a disulphide bond from one molecule to another.

GLUTATHIONE

A tripeptide — composed of glutamic acid, cysteine and glycine — that is the principal small thiol-containing molecule in the cell.

THIOL-DISULPHIDE OXIDOREDUCTASE

An enzyme that catalyses the transfer of electrons or hydrogen between molecules.

THIOREDOXIN

A ubiquitous small soluble protein with redox-active cysteines that catalyses thiol-disulphide exchange reactions.

PROTEIN DISULPHIDE ISOMERASE

A soluble protein with two thioredoxin-like domains that each contain a redox-active cysteine pair that donates disulphide bonds to newly synthesized proteins in the eukaryotic ER.

REDOX (REDUCTION-OXIDATION) POTENTIAL

The propensity of a given protein (or molecule) to gain or donate electrons, which is usually expressed as an electrochemical potential in volts. A protein's redox potential can be measured by quantifying the steady-state ratios of the reduced and oxidized forms of this protein that are present in a buffer of defined redox composition. The term 'reduction potential' is often used instead.

OXIDIZING EQUIVALENTS

The loss of electrons by a molecule (this equals the gain of oxidizing equivalents).

MIXED-DISULPHIDE BOND

A disulphide bond that is formed between two proteins or redox molecules. These bonds are often transient and reflect an intermediate in the transfer of oxidizing equivalents between redox-active proteins and molecules.

QUINONES

A group of lipid-soluble compounds that function as electron carriers in the electron-transport chain reactions of cellular respiration.

ERV-LIKE PROTEIN FAMILY

A family of flavoprotein thiol-oxidases — named after their homology to the yeast protein Erv1 — that couples the oxidation of free thiols with the reduction of molecular oxygen to hydrogen peroxide.

(K/H)DEL SIGNAL

An ER-localization motif for soluble lumenal proteins that includes the short carboxy-terminal sequence Lys/His-Asp-Glu-Leu.

CHAPERONE

A protein that catalyses the correct folding of newly synthesized or denatured proteins into their native conformations.

RESPIRATORY ELECTRON-TRANSPORT CHAIN

A series of redox-active membrane proteins and small molecules in either the bacterial plasma membrane or the mitochondrial inner membrane that carry out the step-by-step transfer of electrons from NADH and FADH2 to O2 with the concomitant generation of a membrane proton potential.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sevier, C., Kaiser, C. Formation and transfer of disulphide bonds in living cells. Nat Rev Mol Cell Biol 3, 836–847 (2002). https://doi.org/10.1038/nrm954

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrm954

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing