Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pore-forming toxins: ancient, but never really out of fashion

Key Points

  • Pore-forming toxins (PFTs), which are expressed as virulence factors by many pathogenic bacteria, and pore-forming proteins (PFPs) have been found in all kingdoms of life

  • PFTs and PFPs undergo a structural and functional metamorphosis from soluble, inactive monomers to active, complex multimeric transmembrane pores that insert into the membranes of target cells

  • Based on their structure and mechanism of pore formation, six families of PFTs and PFPs have been described, each of which has a distinct structure and mechanism of pore formation. These families can be grouped into two larger classes, α-PFTs and β-PFTs (or PFPs), based on the secondary structures of their transmembrane pore domains

  • Owing to substantial recent advances in the structural biology of PFTs, we are beginning to understand the pore architecture and the mechanism of pore formation for all six families

  • The specificity of PFTs and PFPs is determined by their interactions with lipids, sugars and/or protein receptors present in, or on, the target cell membrane

  • Structural modularity enables toxins with the same pore-forming mechanism to target different host cell types by binding to different receptors

  • For PFTs that contribute to infection, examining their structures, dynamics and interactions with host cells at molecular resolution provides cues for the development of therapeutics that could be highly effective in fighting disease

Abstract

Pore-forming toxins (PFTs) are virulence factors produced by many pathogenic bacteria and have long fascinated structural biologists, microbiologists and immunologists. Interestingly, pore-forming proteins with remarkably similar structures to PFTs are found in vertebrates and constitute part of their immune system. Recently, structural studies of several PFTs have provided important mechanistic insights into the metamorphosis of PFTs from soluble inactive monomers to cytolytic transmembrane assemblies. In this Review, we discuss the diverse pore architectures and membrane insertion mechanisms that have been revealed by these studies, and we consider how these features contribute to binding specificity for different membrane targets. Finally, we explore the potential of these structural insights to enable the development of novel therapeutic strategies that would prevent both the establishment of bacterial resistance and an excessive immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular mechanisms of pore formation.
Figure 2: Structural architectures and pore formation mechanisms of pore-forming toxin families.
Figure 3: Specificity of pore-forming toxins.
Figure 4: Therapeutic intervention.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Los, F. C., Randis, T. M., Aroian, R. V. & Ratner, A. J. Role of pore-forming toxins in bacterial infectious diseases. Microbiol. Mol. Biol. Rev. 77, 173–207 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bischofberger, M., Iacovache, I. & van der Goot, F. G. Pathogenic pore-forming proteins: function and host response. Cell Host Microbe 12, 266–275 (2012).

    CAS  PubMed  Google Scholar 

  3. Alves, G. G., Machado de Avila, R. A., Chavez-Olortegui, C. D. & Lobato, F. C. Clostridium perfringens ε-toxin: the third most potent bacterial toxin known. Anaerobe 30, 102–107 (2014).

    CAS  PubMed  Google Scholar 

  4. Lesieur, C., Vecsey-Semjn, B., Abrami, L., Fivaz, M. & van der Goot, F. G. Membrane insertion: the strategy of toxins. Mol. Membrane Biol. 14, 45–64 (1997).

    CAS  Google Scholar 

  5. Iacovache, I., Bischofberger, M. & van der Goot, F. G. Structure and assembly of pore-forming proteins. Curr. Opin. Struct. Biol. 20, 241–246 (2010).

    CAS  PubMed  Google Scholar 

  6. Gouaux, E. Channel-forming toxins: tales of transformation. Curr. Opin. Struct. Biol. 7, 566–573 (1997).

    CAS  PubMed  Google Scholar 

  7. Szczesny, P. et al. Extending the aerolysin family: from bacteria to vertebrates. PLoS ONE 6, e20349 (2011). This study extended the boundaries of the aerolysin family beyond bacteria to a species range that encompasses all kingdoms of life.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Galinier, R. et al. Biomphalysin, a new β pore-forming toxin involved in Biomphalaria glabrata immune defense against Schistosoma mansoni. PLoS Pathog. 9, e1003216 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Xiang, Y. et al. Host-derived, pore-forming toxin-like protein and trefoil factor complex protects the host against microbial infection. Proc. Natl Acad. Sci. USA 111, 6702–6707 (2014).

    CAS  PubMed  Google Scholar 

  10. Alonzo, F. & Torres, V. J. The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiol. Mol. Biol. Rev. 78, 199–230 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. Diabate, M. et al. Escherichia coli α-hemolysin counteracts the anti-virulence innate immune response triggered by the rho GTPase activating toxin CNF1 during bacteremia. PLoS Pathog. 11, e1004732 (2015).

    PubMed  PubMed Central  Google Scholar 

  12. Lakey, J. H., van der Goot, F. G. & Pattus, F. All in the family: the toxic activity of pore-forming toxins. Toxicology 87, 85–108 (1994).

    CAS  PubMed  Google Scholar 

  13. Cascales, E. et al. Colicin biology. Microbiol. Mol. Biol. Rev. 71, 158–229 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Parker, M. W., Pattus, F., Tucker, A. D. & Tsernoglou, D. Structure of the membrane-pore-forming fragment of colicin A. Nature 337, 93–96 (1989). This article shows the first structure of the soluble form of a PFT, which provided new insights into the mechanism of pore formation.

    CAS  PubMed  Google Scholar 

  15. Lakey, J. H. et al. Membrane insertion of the pore-forming domain of colicin A. A spectroscopic study. Eur. J. Biochem. 196, 599–607 (1991).

    CAS  PubMed  Google Scholar 

  16. Ridley, H., Johnson, C. L. & Lakey, J. H. Interfacial interactions of pore-forming colicins. Adv. Exp. Med. Biol. 677, 81–90 (2010).

    CAS  PubMed  Google Scholar 

  17. Parker, M. W., Tucker, A. D., Tsernoglou, D. & Pattus, F. Insights into membrane insertion based on studies of colicins. Trends Biochem. Sci. 15, 126–129 (1990).

    CAS  PubMed  Google Scholar 

  18. Parker, M. W., Postma, J. P., Pattus, F., Tucker, A. D. & Tsernoglou, D. Refined structure of the pore-forming domain of colicin A at 2.4 Å resolution. J. Mol. Biol. 224, 639–657 (1992).

    CAS  PubMed  Google Scholar 

  19. Kienker, P. K., Qiu, X., Slatin, S. L., Finkelstein, A. & Jakes, K. S. Transmembrane insertion of the colicin Ia hydrophobic hairpin. J. Membr. Biol. 157, 27–37 (1997).

    CAS  PubMed  Google Scholar 

  20. Kim, Y., Valentine, K., Opella, S. J., Schendel, S. L. & Cramer, W. A. Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers. Protein Sci. 7, 342–348 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tory, M. C. & Merrill, A. R. Adventures in membrane protein topology. A study of the membrane-bound state of colicin E1. J. Biol. Chem. 274, 24539–24549 (1999).

    CAS  PubMed  Google Scholar 

  22. Shin, Y. K., Levinthal, C., Levinthal, F. & Hubbell, W. L. Colicin E1 binding to membranes: time-resolved studies of spin-labeled mutants. Science 259, 960–963 (1993).

    CAS  PubMed  Google Scholar 

  23. Pulagam, L. P. & Steinhoff, H. J. Acidic pH-induced membrane insertion of colicin A into E. coli natural lipids probed by site-directed spin labeling. J. Mol. Biol. 425, 1782–1794 (2013).

    CAS  PubMed  Google Scholar 

  24. Slatin, S. L., Qiu, X. Q., Jakes, K. S. & Finkelstein, A. Identification of a translocated protein segment in a voltage-dependent channel. Nature 371, 158–161 (1994).

    CAS  PubMed  Google Scholar 

  25. Dunkel, S., Pulagam, L. P., Steinhoff, H. J. & Klare, J. P. In vivo EPR on spin labeled colicin A reveals an oligomeric assembly of the pore-forming domain in E. coli membranes. Phys. Chem. Chem. Phys. 17, 4875–4878 (2015).

    CAS  PubMed  Google Scholar 

  26. Greig, S. L., Radjainia, M. & Mitra, A. K. Oligomeric structure of colicin ia channel in lipid bilayer membranes. J. Biol. Chem. 284, 16126–16134 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Choe, S. et al. The crystal structure of diphtheria toxin. Nature 357, 216–222 (1992).

    CAS  PubMed  Google Scholar 

  28. Xu, C., Wang, B. C., Yu, Z. & Sun, M. Structural insights into Bacillus thuringiensis Cry, Cyt and parasporin toxins. Toxins (Basel) 6, 2732–2770 (2014).

    CAS  Google Scholar 

  29. Barta, M. L. et al. The structures of coiled-coil domains from type III secretion system translocators reveal homology to pore-forming toxins. J. Mol. Biol. 417, 395–405 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Westphal, D., Dewson, G., Czabotar, P. E. & Kluck, R. M. Molecular biology of Bax and Bak activation and action. Biochim. Biophys. Acta 1813, 521–531 (2011).

    CAS  PubMed  Google Scholar 

  31. Garcia-Saez, A. J., Fuertes, G., Suckale, J. & Salgado, J. Permeabilization of the outer mitochondrial membrane by Bcl-2 proteins. Adv. Exp. Med. Biol. 677, 91–105 (2010).

    CAS  PubMed  Google Scholar 

  32. Hunt, S., Green, J. & Artymiuk, P. J. Hemolysin E (HlyE, ClyA, SheA) and related toxins. Adv. Exp. Med. Biol. 677, 116–126 (2010).

    CAS  PubMed  Google Scholar 

  33. Madegowda, M., Eswaramoorthy, S., Burley, S. K. & Swaminathan, S. X-ray crystal structure of the B component of hemolysin BL from Bacillus cereus. Proteins 71, 534–540 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jessberger, N., Dietrich, R., Bock, S., Didier, A. & Martlbauer, E. Bacillus cereus enterotoxins act as major virulence factors and exhibit distinct cytotoxicity to different human cell lines. Toxicon 77, 49–57 (2014).

    CAS  PubMed  Google Scholar 

  35. Wallace, A. J. et al. E. coli hemolysin E (HlyE, ClyA, SheA): X-ray crystal structure of the toxin and observation of membrane pores by electron microscopy. Cell 100, 265–276 (2000).

    CAS  PubMed  Google Scholar 

  36. Mueller, M., Grauschopf, U., Maier, T., Glockshuber, R. & Ban, N. The structure of a cytolytic α-helical toxin pore reveals its assembly mechanism. Nature 459, 726–730 (2009). This paper reports the first atomic-resolution structure of an α-PFT pore, revealing the complex protomer rearrangement required for pore assembly.

    CAS  PubMed  Google Scholar 

  37. Ganash, M. et al. Structure of the NheA component of the Nhe toxin from Bacillus cereus: implications for function. PLoS ONE 8, e74748 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Vaidyanathan, M. S., Sathyanarayana, P., Maiti, P. K., Visweswariah, S. S. & Ayappa, K. G. Lysis dynamics and membrane oligomerization pathways for Cytolysin A (ClyA) pore-forming toxin. RSC Adv. 4, 4930–4942 (2014).

    CAS  Google Scholar 

  39. Fahie, M. et al. A non-classical assembly pathway of Escherichia coli pore-forming toxin cytolysin A. J. Biol. Chem. 288, 31042–31051 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Elluri, S. et al. Outer membrane vesicles mediate transport of biologically active Vibrio cholerae cytolysin (VCC) from V. cholerae strains. PLoS ONE 9, e106731 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. Kristan, K. C., Viero, G., Dalla Serra, M., Macek, P. & Anderluh, G. Molecular mechanism of pore formation by actinoporins. Toxicon 54, 1125–1134 (2009).

    PubMed  Google Scholar 

  42. Hinds, M. G., Zhang, W., Anderluh, G., Hansen, P. E. & Norton, R. S. Solution structure of the eukaryotic pore-forming cytolysin equinatoxin II: implications for pore formation. J. Mol. Biol. 315, 1219–1229 (2002).

    CAS  PubMed  Google Scholar 

  43. Athanasiadis, A., Anderluh, G., Macek, P. & Turk, D. Crystal structure of the soluble form of equinatoxin II, a pore-forming toxin from the sea anemone Actinia equina. Structure 9, 341–346 (2001).

    CAS  PubMed  Google Scholar 

  44. Mancheno, J. M., Martin-Benito, J., Martinez-Ripoll, M., Gavilanes, J. G. & Hermoso, J. A. Crystal and electron microscopy structures of sticholysin II actinoporin reveal insights into the mechanism of membrane pore formation. Structure 11, 1319–1328 (2003).

    CAS  PubMed  Google Scholar 

  45. Mechaly, A. E. et al. Structural insights into the oligomerization and architecture of eukaryotic membrane pore-forming toxins. Structure 19, 181–191 (2011).

    CAS  PubMed  Google Scholar 

  46. Barlic, A. et al. Lipid phase coexistence favors membrane insertion of equinatoxin-II, a pore-forming toxin from Actinia equina. J. Biol. Chem. 279, 34209–34216 (2004).

    CAS  PubMed  Google Scholar 

  47. Ros, U. et al. The sticholysin family of pore-forming toxins induces the mixing of lipids in membrane domains. Biochim. Biophys. Acta 1828, 2757–2762 (2013).

    CAS  PubMed  Google Scholar 

  48. Rojko, N. et al. Membrane damage by an α-helical pore-forming protein, equinatoxin II, proceeds through a succession of ordered steps. J. Biol. Chem. 288, 23704–23715 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Baker, M. A., Rojko, N., Cronin, B., Anderluh, G. & Wallace, M. I. Photobleaching reveals heterogeneous stoichiometry for equinatoxin II oligomers. Chembiochem 15, 2139–2145 (2014).

    CAS  PubMed  Google Scholar 

  50. Tanaka, K., Caaveiro, J. M., Morante, K., Gonzalez-Manas, J. M. & Tsumoto, K. Structural basis for self-assembly of a cytolytic pore lined by protein and lipid. Nat. Commun. 6, 6337 (2015). This study shows the importance of sphingomyelin lipids for the integral assembly of the final PFT pore structure.

    PubMed  PubMed Central  Google Scholar 

  51. Schreiber, M. P., Chan, C. M. & Shorr, A. F. Bacteremia in Staphylococcus aureus pneumonia: outcomes and epidemiology. J. Crit. Care 26, 395–401 (2011).

    PubMed  Google Scholar 

  52. DuMont, A. L. & Torres, V. J. Cell targeting by the Staphylococcus aureus pore-forming toxins: it's not just about lipids. Trends Microbiol. 22, 21–27 (2014).

    CAS  PubMed  Google Scholar 

  53. Savva, C. G. et al. Molecular architecture and functional analysis of NetB, a pore-forming toxin from Clostridium perfringens. J. Biol. Chem. 288, 3512–3522 (2013).

    CAS  PubMed  Google Scholar 

  54. Keyburn, A. L., Bannam, T. L., Moore, R. J. & Rood, J. I. NetB, a pore-forming toxin from necrotic enteritis strains of Clostridium perfringens. Toxins 2, 1913–1927 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. De, S. & Olson, R. Crystal structure of the Vibrio cholerae cytolysin heptamer reveals common features among disparate pore-forming toxins. Proc. Natl Acad. Sci. USA 108, 7385–7390 (2011).

    CAS  PubMed  Google Scholar 

  56. Jayasinghe, L. & Bayley, H. The leukocidin pore: evidence for an octamer with four LukF subunits and four LukS subunits alternating around a central axis. Protein Sci. 14, 2550–2561 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Yamashita, K. et al. Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components. Proc. Natl Acad. Sci. USA 108, 17314–17319 (2011).

    CAS  PubMed  Google Scholar 

  58. Song, L. et al. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1866 (1996). This paper reported the first atomic-resolution structure of a complete PFT pore inserted in a membrane (a β-PFT pore in this case), highlighting the mechanism required for switching from a soluble inactive toxin to an active haemolytic pore.

    CAS  PubMed  Google Scholar 

  59. Yamashita, D. et al. Molecular basis of transmembrane β-barrel formation of staphylococcal pore-forming toxins. Nat. Commun. 5, 4897 (2014).

    CAS  PubMed  Google Scholar 

  60. Olson, R., Nariya, H., Yokota, K., Kamio, Y. & Gouaux, E. Crystal structure of staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel. Nat. Struct. Biol. 6, 134–140 (1999).

    CAS  PubMed  Google Scholar 

  61. Olson, R. & Gouaux, E. Crystal structure of the Vibrio cholerae cytolysin (VCC) pro-toxin and its assembly into a heptameric transmembrane pore. J. Mol. Biol. 350, 997–1016 (2005).

    CAS  PubMed  Google Scholar 

  62. Huyet, J. et al. Structural insights into δ-toxin pore formation. PLoS ONE 8, e66673 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Paul, K. & Chattopadhyay, K. Pre-pore oligomer formation by Vibrio cholerae cytolysin: insights from a truncated variant lacking the pore-forming pre-stem loop. Biochem. Biophys. Res. Commun. 443, 189–193 (2014).

    CAS  PubMed  Google Scholar 

  64. Iacovache, I., Dal Peraro, M. & van der Goot, F. G. The Comprehensive Sourcebook of Bacterial Protein Toxins (Elsevier Ltd, 2015).

    Google Scholar 

  65. Ballard, J., Sokolov, Y., Yuan, W.-L., Kagan, B. L. & Tweten, R. K. Activation and mechanism of Clostridium septicum α-toxin. Mol. Microbiol. 10, 627–634 (1993).

    CAS  PubMed  Google Scholar 

  66. Opota, O. et al. Monalysin, a novel ss-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLoS Pathog. 7, e1002259 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhao, F. et al. Comprehensive transcriptome profiling and functional analysis of the frog (Bombina maxima) immune system. DNA Res. 21, 1–13 (2013).

    PubMed  PubMed Central  Google Scholar 

  68. Gao, Q. et al. βγ-CAT, a non-lens βγ-crystallin and trefoil factor complex, induces calcium-dependent platelet apoptosis. Thromb. Haemost. 105, 846–854 (2011).

    CAS  PubMed  Google Scholar 

  69. Parker, M. W. et al. Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states. Nature 367, 292–295 (1994). This paper reported the first structure of a β-PFT in its soluble form and an initial model of pore architecture based on low-resolution EM data.

    CAS  PubMed  Google Scholar 

  70. Abrami, L., Fivaz, M. & van Der Goot, F. G. Adventures of a pore-forming toxin at the target cell surface. Trends Microbiol. 8, 168–172 (2000).

    CAS  PubMed  Google Scholar 

  71. Iacovache, I. et al. A rivet model for channel formation by aerolysin-like pore-forming toxins. EMBO J. 25, 457–466 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Melton, J. A., Parker, M. W., Rossjohn, J., Buckley, J. T. & Tweten, R. K. The identification and structure of the membrane-spanning domain of the Clostridium septicum α-toxin. J. Biol. Chem. 279, 14315–14322 (2004).

    CAS  PubMed  Google Scholar 

  73. Howard, S. P. & Buckley, J. T. Activation of the hole forming toxin aerolysin by extracellular processing. J. Bacteriol. 163, 336–340 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Iacovache, I. et al. Dual chaperone role of the C-terminal propeptide in folding and oligomerization of the pore-forming toxin aerolysin. PLoS Pathog. 7, e1002135 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Degiacomi, M. T. et al. Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism. Nat. Chem. Biol. 9, 623–629 (2013). This study used an integrative modelling approach to reveal the architecture of the aerolysin pore at a near-atomic resolution.

    CAS  PubMed  Google Scholar 

  76. Unno, H., Goda, S. & Hatakeyama, T. Hemolytic lectin CEL-III heptamerizes via a large structural transition from α-helices to a β-barrel during the transmembrane pore formation process. J. Biol. Chem. 289, 12805–12812 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Popoff, M. R. ε-toxin: a fascinating pore-forming toxin. FEBS J. 278, 4602–4615 (2011).

    CAS  PubMed  Google Scholar 

  78. Popoff, M. R. Clostridial pore-forming toxins: powerful virulence factors. Anaerobe 30, 220–238 (2014).

    CAS  PubMed  Google Scholar 

  79. Briggs, D. C. et al. Structure of the food-poisoning Clostridium perfringens enterotoxin reveals similarity to the aerolysin-like pore-forming toxins. J. Mol. Biol. 413, 138–149 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kitadokoro, K. et al. Crystal structure of Clostridium perfringens enterotoxin displays features of β-pore-forming toxins. J. Biol. Chem. 286, 19549–19555 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yelland, T. S. et al. Structure of a C. perfringens enterotoxin mutant in complex with a modified Claudin-2 extracellular loop 2. J. Mol. Biol. 426, 3134–3147 (2014).

    CAS  PubMed  Google Scholar 

  82. Mancheno, J. M., Tateno, H., Goldstein, I. J., Martinez-Ripoll, M. & Hermoso, J. A. Structural analysis of the Laetiporus sulphureus hemolytic pore-forming lectin in complex with sugars. J. Biol. Chem. 280, 17251–17259 (2005).

    CAS  PubMed  Google Scholar 

  83. Sher, D. J. et al. Hydralysins: a new category of β-pore-forming toxins in cnidaria. Characterization and preliminary structure-function analysis. J. Biol. Chem. 280, 22847–22855 (2005).

    CAS  PubMed  Google Scholar 

  84. De Colibus, L. et al. Structures of lysenin reveal a shared evolutionary origin for pore-forming proteins and its mode of sphingomyelin recognition. Structure 20, 1498–1507 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hotze, E. M. & Tweten, R. K. Membrane assembly of the cholesterol-dependent cytolysin pore complex. Biochim. Biophys. Acta 1818, 1028–1038 (2012).

    CAS  PubMed  Google Scholar 

  86. Hotze, E. M. et al. Identification and characterization of the first cholesterol-dependent cytolysins from Gram-negative bacteria. Infect. Immun. 81, 216–225 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hadders, M. A., Beringer, D. X. & Gros, P. Structure of C8α-MACPF reveals mechanism of membrane attack in complement immune defense. Science 317, 1552–1554 (2007).

    CAS  PubMed  Google Scholar 

  88. Rosado, C. J. et al. A common fold mediates vertebrate defense and bacterial attack. Science 317, 1548–1551 (2007).

    CAS  PubMed  Google Scholar 

  89. Law, R. H. et al. The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature 468, 447–451 (2010).

    CAS  PubMed  Google Scholar 

  90. Lukoyanova, N. et al. Conformational changes during pore formation by the perforin-related protein pleurotolysin. PLoS Biol. 13, e1002049 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. Roiko, M. S. & Carruthers, V. B. New roles for perforins and proteases in apicomplexan egress. Cell. Microbiol. 11, 1444–1452 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Deligianni, E. et al. A perforin-like protein mediates disruption of the erythrocyte membrane during egress of Plasmodium berghei male gametocytes. Cell. Microbiol. 15, 1438–1455 (2013).

    CAS  PubMed  Google Scholar 

  93. Xu, Q. et al. Structure of a membrane-attack complex/perforin (MACPF) family protein from the human gut symbiont Bacteroides thetaiotaomicron. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 66, 1297–1305 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Chatzidaki-Livanis, M., Coyne, M. J. & Comstock, L. E. An antimicrobial protein of the gut symbiont Bacteroides fragilis with a MACPF domain of host immune proteins. Mol. Microbiol. 94, 1361–1374 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Rossjohn, J., Feil, S. C., McKinstry, W. J., Tweten, R. K. & Parker, M. W. Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89, 685–692 (1997). This paper presented the first structure of a CDC (PFO) and a model of the pore, which revealed the mechanism of pore insertion and the role of cholesterol lipids as CDC receptors.

    CAS  PubMed  Google Scholar 

  96. Xu, L. et al. Crystal structure of cytotoxin protein suilysin from Streptococcus suis. Protein Cell 1, 96–105 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Johnson, S., Brooks, N. J., Smith, R. A., Lea, S. M. & Bubeck, D. Structural basis for recognition of the pore-forming toxin intermedilysin by human complement receptor CD59. Cell Rep. 3, 1369–1377 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Koster, S. et al. Crystal structure of listeriolysin O reveals molecular details of oligomerization and pore formation. Nat. Commun. 5, 3690 (2014).

    PubMed  Google Scholar 

  99. Feil, S. C. et al. Structure of the lectin regulatory domain of the cholesterol-dependent cytolysin lectinolysin reveals the basis for its lewis antigen specificity. Structure 20, 248–258 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bourdeau, R. W. et al. Cellular functions and X-ray structure of anthrolysin O, a cholesterol-dependent cytolysin secreted by Bacillus anthracis. J. Biol. Chem. 284, 14645–14656 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Feil, S. C., Ascher, D. B., Kuiper, M. J., Tweten, R. K. & Parker, M. W. Structural studies of Streptococcus pyogenes streptolysin O provide insights into the early steps of membrane penetration. J. Mol. Biol. 426, 785–792 (2014).

    CAS  PubMed  Google Scholar 

  102. Tilley, S. J., Orlova, E. V., Gilbert, R. J., Andrew, P. W. & Saibil, H. R. Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121, 247–256 (2005).

    CAS  PubMed  Google Scholar 

  103. Czajkowsky, D. M., Hotze, E. M., Shao, Z. & Tweten, R. K. Vertical collapse of a cytolysin prepore moves its transmembrane β-hairpins to the membrane. EMBO J. 23, 3206–3215 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Shepard, L. A. et al. Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an α-helical to β-sheet transition identified by fluorescence spectroscopy. Biochemistry 37, 14563–14574 (1998). This study revealed a structure for the membrane-spanning domain of PFO, and showed the structural switch that accompanies pore formation.

    CAS  PubMed  Google Scholar 

  105. Shatursky, O. et al. The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell 99, 293–299 (1999).

    CAS  PubMed  Google Scholar 

  106. Sato, T. K., Tweten, R. K. & Johnson, A. E. Disulfide-bond scanning reveals assembly state and β-strand tilt angle of the PFO β-barrel. Nat. Chem. Biol. 9, 383–389 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ramachandran, R., Tweten, R. K. & Johnson, A. E. Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit β-strand alignment. Nat. Struct. Mol. Biol. 11, 697–705 (2004).

    CAS  PubMed  Google Scholar 

  108. Sonnen, A. F., Plitzko, J. M. & Gilbert, R. J. Incomplete pneumolysin oligomers form membrane pores. Open Biol. 4, 140044 (2014).

    PubMed  PubMed Central  Google Scholar 

  109. Leung, C. et al. Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin. eLIFE 3, e04247 (2014).

    PubMed  PubMed Central  Google Scholar 

  110. Wade, K. R. et al. An intermolecular electrostatic interaction controls the prepore-to-pore transition in a cholesterol-dependent cytolysin. Proc. Natl Acad. Sci. USA 112, 2204–2209 (2015).

    CAS  PubMed  Google Scholar 

  111. Reboul, C. F., Whisstock, J. C. & Dunstone, M. A. A new model for pore formation by cholesterol-dependent cytolysins. PLoS Comput. Biol. 10, e1003791 (2014).

    PubMed  PubMed Central  Google Scholar 

  112. Jiang, J., Pentelute, B. L., Collier, R. J. & Zhou, Z. H. Atomic structure of anthrax protective antigen pore elucidates toxin translocation. Nature 521, 545–549 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Kintzer, A. F., Sterling, H. J., Tang, I. I., Williams, E. R. & Krantz, B. A. Anthrax toxin receptor drives protective antigen oligomerization and stabilizes the heptameric and octameric oligomer by a similar mechanism. PLoS ONE 5, e13888 (2010).

    PubMed  PubMed Central  Google Scholar 

  114. Krantz, B. A. et al. A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore. Science 309, 777–781 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Meusch, D. et al. Mechanism of Tc toxin action revealed in molecular detail. Nature 508, 61–65 (2014).

    CAS  PubMed  Google Scholar 

  116. Gatsogiannis, C. et al. A syringe-like injection mechanism in Photorhabdus luminescens toxins. Nature 495, 520–523 (2013).

    CAS  PubMed  Google Scholar 

  117. Levan, S., De, S. & Olson, R. Vibrio cholerae cytolysin recognizes the heptasaccharide core of complex N-glycans with nanomolar affinity. J. Mol. Biol. 425, 944–957 (2013).

    CAS  PubMed  Google Scholar 

  118. Rai, A. K., Paul, K. & Chattopadhyay, K. Functional mapping of the lectin activity site on the β-prism domain of Vibrio cholerae cytolysin: implications for the membrane pore-formation mechanism of the toxin. J. Biol. Chem. 288, 1665–1673 (2013).

    CAS  PubMed  Google Scholar 

  119. Kaus, K., Lary, J. W., Cole, J. L. & Olson, R. Glycan specificity of the Vibrio vulnificus hemolysin lectin outlines evolutionary history of membrane targeting by a toxin family. J. Mol. Biol. 426, 2800–2812 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Hong, Y. et al. Requirement of N-glycan on GPI-anchored proteins for efficient binding of aerolysin but not Clostridium septicum α-toxin. EMBO J. 21, 5047–5056 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Diep, D. B., Nelson, K. L., Raja, S. M., cMaster, R. W. & Buckley, J. T. Glycosylphosphatidylinositol anchors of membrane glycoproteins are binding determinants for the channel-forming toxin aerolysin. J. Biol. Chem. 273, 2355–2360 (1998).

    CAS  PubMed  Google Scholar 

  122. Cole, A. R. et al. Clostridium perfringens ε-toxin shows structural similarity to the pore-forming toxin aerolysin. Nat. Struct. Mol. Biol. 11, 797–798 (2004).

    CAS  PubMed  Google Scholar 

  123. Akiba, T. et al. Crystallization of parasporin-2, a Bacillus thuringiensis crystal protein with selective cytocidal activity against human cells. Acta Crystallogr. D Biol. Crystallogr. 60, 2355–2357 (2004).

    PubMed  Google Scholar 

  124. Ivie, S. E. & McClain, M. S. Identification of amino acids important for binding of Clostridium perfringens ε-toxin to host cells and to HAVCR1. Biochemistry 51, 7588–7595 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Bokori-Brown, M. et al. Clostridium perfringens ε-toxin H149A mutant as a platform for receptor binding studies. Protein Sci. 22, 650–659 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Shewell, L. K. et al. The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity. Proc. Natl Acad. Sci. USA 111, E5312–5320 (2014).

    CAS  PubMed  Google Scholar 

  127. Johnson, C. L. et al. The antibacterial toxin colicin N binds to the inner core of lipopolysaccharide and close to its translocator protein. Mol. Microbiol. 92, 440–452 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Mukherjee, S. et al. Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature 505, 103–107 (2014).

    PubMed  Google Scholar 

  129. Fivaz, M., Abrami, L. & van der Goot, F. G. Landing on lipid rafts. Trends Cell Biol. 9, 212–213 (1999).

    CAS  PubMed  Google Scholar 

  130. Abrami, L. & van der Goot, F. G. Plasma membrane microdomains act as concentration platforms to facilitate intoxication by aerolysin. J. Cell Biol. 147, 175–184 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Kobayashi, T., Makino, A., Ishii, K., Yamaji, A. & Kiyokawa, E. Lysenin:sphingomyelin specific probe. Mol Biol Cell Abstr. 11, 314a (2000).

    Google Scholar 

  132. Skocaj, M. et al. The sensing of membrane microdomains based on pore-forming toxins. Curr. Med. Chem. 20, 491–501 (2013).

    CAS  PubMed  Google Scholar 

  133. Lin, Q. & London, E. Altering hydrophobic sequence lengths shows that hydrophobic mismatch controls affinity for ordered lipid domains (rafts) in the multitransmembrane strand protein perfringolysin O. J. Biol. Chem. 288, 1340–1352 (2013).

    CAS  PubMed  Google Scholar 

  134. Tweten, R. K. Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect. Immun. 73, 6199–6209 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Dowd, K. J., Farrand, A. J. & Tweten, R. K. The cholesterol-dependent cytolysin signature motif: a critical element in the allosteric pathway that couples membrane binding to pore assembly. PLoS Pathog. 8, e1002787 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Farrand, A. J., LaChapelle, S., Hotze, E. M., Johnson, A. E. & Tweten, R. K. Only two amino acids are essential for cytolytic toxin recognition of cholesterol at the membrane surface. Proc. Natl Acad. Sci. USA 107, 4341–4346 (2010).

    CAS  PubMed  Google Scholar 

  137. Alonzo, F. et al. CCR5 is a receptor for Staphylococcus aureus leukotoxin ED. Nature 493, 51–55 (2013). This study revealed how the selectivity of leukocidins towards different immune cells is mediated by specific chemokine receptors.

    PubMed  Google Scholar 

  138. Reyes-Robles, T. et al. Staphylococcus aureus leukotoxin ED targets the chemokine receptors CXCR1 and CXCR2 to kill leukocytes and promote infection. Cell Host Microbe 14, 453–459 (2013). S. aureus LukED is shown in this study to target both innate and adaptive immune responses by binding to CXCR1 and CXCR2 on neutrophils in addition to its established role of binding to CCR5 on T lymphocytes, macrophages and dendritic cells.

    CAS  PubMed  Google Scholar 

  139. Spaan, A. N. et al. The staphylococcal toxin Panton-Valentine leukocidin targets human C5a receptors. Cell Host Microbe 13, 584–594 (2013).

    CAS  PubMed  Google Scholar 

  140. Spaan, A. N. et al. The staphylococcal toxins γ-haemolysin AB and CB differentially target phagocytes by employing specific chemokine receptors. Nat. Commun. 5, 5438 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Wilke, G. A. & Bubeck Wardenburg, J. Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus α-hemolysin-mediated cellular injury. Proc. Natl Acad. Sci. USA 107, 13473–13478 (2010).

    CAS  PubMed  Google Scholar 

  142. Berube, B. J. & Bubeck Wardenburg, J. Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins (Basel) 5, 1140–1166 (2013).

    Google Scholar 

  143. Giddings, K. S., Zhao, J., Sims, P. J. & Tweten, R. K. Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin. Nat. Struct. Mol. Biol. 11, 1173–1178 (2004). This study extended the known cellular specificity of CDCs by showing that they bind to protein receptors such as CD59 in addition to cholesterol.

    CAS  PubMed  Google Scholar 

  144. Tabata, A. et al. The diversity of receptor recognition in cholesterol-dependent cytolysins. Microbiol. Immunol. 58, 155–171 (2014).

    CAS  PubMed  Google Scholar 

  145. Yang, W. S. et al. Suicide cancer gene therapy using pore-forming toxin, streptolysin O. Mol. Cancer Ther. 5, 1610–1619 (2006).

    CAS  PubMed  Google Scholar 

  146. Ayub, M., Stoddart, D. & Bayley, H. Nucleobase recognition by truncated α-hemolysin pores. ACS Nano 9, 7895–7903 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Stoddart, D. et al. Functional truncated membrane pores. Proc. Natl Acad. Sci. USA 111, 2425–2430 (2014).

    CAS  PubMed  Google Scholar 

  148. Dong, J. et al. Oroxylin A inhibits hemolysis via hindering the self-assembly of α-hemolysin heptameric transmembrane pore. PLoS Comput. Biol. 9, e1002869 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Qiu, J. et al. Molecular modeling reveals the novel inhibition mechanism and binding mode of three natural compounds to staphylococcal α-hemolysin. PLoS ONE 8, e80197 (2013).

    PubMed  PubMed Central  Google Scholar 

  150. Vivekananda, J., Salgado, C. & Millenbaugh, N. J. DNA aptamers as a novel approach to neutralize Staphylococcus aureus α-toxin. Biochem. Biophys. Res. Commun. 444, 433–438 (2014).

    CAS  PubMed  Google Scholar 

  151. Rai, A. K. & Chattopadhyay, K. Trapping of Vibrio cholerae cytolysin in the membrane-bound monomeric state blocks membrane insertion and functional pore formation by the toxin. J. Biol. Chem. 289, 16978–16987 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Wu, Q. & Guo, Z. Glycosylphosphatidylinositols are potential targets for the development of novel inhibitors for aerolysin-type of pore-forming bacterial toxins. Med. Res. Rev. 30, 258–269 (2010).

    PubMed  Google Scholar 

  153. Foletti, D. et al. Mechanism of action and in vivo efficacy of a human-derived antibody against Staphylococcus aureus α-hemolysin. J. Mol. Biol. 425, 1641–1654 (2013).

    CAS  PubMed  Google Scholar 

  154. Inoshima, I. et al. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat. Med. 17, 1310–1314 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Fernandes da Costa, S. P. et al. Identification of a key residue for oligomerisation and pore-formation of Clostridium perfringens NetB. Toxins (Basel) 6, 1049–1061 (2014).

    Google Scholar 

  156. Bokori-Brown, M. et al. Clostridium perfringens ε toxin mutant Y30A-Y196A as a recombinant vaccine candidate against enterotoxemia. Vaccine 32, 2682–2687 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Cockeran, R. et al. Characterization of the interactions of the pneumolysoid, Δ6 PLY, with human neutrophils in vitro. Vaccine 29, 8780–8782 (2011).

    CAS  PubMed  Google Scholar 

  158. Douce, G., Ross, K., Cowan, G., Ma, J. T. & Mitchell, T. J. Novel mucosal vaccines generated by genetic conjugation of heterologous proteins to pneumolysin (PLY) from Streptococcus pneumoniae. Vaccine 28, 3231–3237 (2010).

    CAS  PubMed  Google Scholar 

  159. Mann, B. et al. Broadly protective protein-based pneumococcal vaccine composed of pneumolysin toxoid-CbpA peptide recombinant fusion protein. J. Infect. Dis. 209, 1116–1125 (2014).

    CAS  PubMed  Google Scholar 

  160. Hu, C. M. & Zhang, L. Nanotoxoid vaccines. Nano Today 9, 401–404 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Hu, C. M., Fang, R. H., Luk, B. T. & Zhang, L. Nanoparticle-detained toxins for safe and effective vaccination. Nat. Nanotechnol. 8, 933–938 (2013). This study used Hla pores embedded in membrane-coated nanoparticles to promote an enhanced toxin-specific immune response.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Walther, W. et al. Novel Clostridium perfringens enterotoxin suicide gene therapy for selective treatment of claudin-3- and -4-overexpressing tumors. Gene Ther. 19, 494–503 (2012).

    CAS  PubMed  Google Scholar 

  163. Lal-Nag, M., Battis, M., Santin, A. D. & Morin, P. J. Claudin-6: a novel receptor for CPE-mediated cytotoxicity in ovarian cancer. Oncogenesis 1, e33 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Veshnyakova, A. et al. Mechanism of Clostridium perfringens enterotoxin interaction with Claudin-3/-4 protein suggests structural modifications of the toxin to target specific claudins. J. Biol. Chem. 287, 1698–1708 (2012).

    CAS  PubMed  Google Scholar 

  165. Linhartova, I. et al. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 34, 1076–1112 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Kudryashova, E., Heisler, D., Zywiec, A. & Kudryashov, D. S. Thermodynamic properties of the effector domains of MARTX toxins suggest their unfolding for translocation across the host membrane. Mol. Microbiol. 92, 1056–1071 (2014).

    CAS  PubMed  Google Scholar 

  167. Hyland, C., Vuillard, L., Hughes, C. & Koronakis, V. Membrane interaction of Escherichia coli hemolysin: flotation and insertion-dependent labeling by phospholipid vesicles. J. Bacteriol. 183, 5364–5370 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Gonzalez, M. R. et al. Pore-forming toxins induce multiple cellular responses promoting survival. Cell. Microbiol. 13, 1026–1043 (2011).

    CAS  PubMed  Google Scholar 

  169. Gurcel, L., Abrami, L., Girardin, S., Tschopp, J. & van der Goot, F. G. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126, 1135–1145 (2006).

    CAS  PubMed  Google Scholar 

  170. Higa, N. et al. Vibrio parahaemolyticus effector proteins suppress inflammasome activation by interfering with host autophagy signaling. PLoS Pathog. 9, e1003142 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Nagahama, M. et al. The p38 MAPK and JNK pathways protect host cells against Clostridium perfringens β-toxin. Infect. Immun. 81, 3703–3708 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Craven, R. R. et al. Staphylococcus aureus α-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PLoS ONE 4, e7446 (2009).

    PubMed  PubMed Central  Google Scholar 

  173. Soong, G., Chun, J., Parker, D. & Prince, A. S. aureus activation of caspase-1/calpain signaling mediates invasion through human keratinocytes. J. Infect. Dis. 205, 1571–1579 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Holzinger, D. et al. Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J. Leukoc. Biol. 92, 1069–1081 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Di Venanzio, G., Stepanenko, T. M. & Garcia Vescovi, E. Serratia marcescens ShlA pore-forming toxin is responsible for early induction of autophagy in host cells and is transcriptionally regulated by RcsB. Infect. Immun. 82, 3542–3554 (2014).

    PubMed  PubMed Central  Google Scholar 

  176. Mestre, M. B. & Colombo, M. I. Autophagy and toxins: a matter of life or death. Curr. Mol. Med. 13, 241–251 (2013).

    CAS  PubMed  Google Scholar 

  177. Mestre, M. B. & Colombo, M. I. Staphylococcus aureus promotes autophagy by decreasing intracellular cAMP levels. Autophagy 8, 1865–1867 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Hamon, M. A. et al. Histone modifications induced by a family of bacterial toxins. Proc. Natl Acad. Sci. USA 104, 13467–13472 (2007).

    CAS  PubMed  Google Scholar 

  179. Walev, I. et al. Delivery of proteins into living cells by reversible membrane permeabilization with streptolysin-O. Proc. Natl Acad. Sci. USA 98, 3185–3190 (2001).

    CAS  PubMed  Google Scholar 

  180. Keefe, D. et al. Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis. Immunity 23, 249–262 (2005).

    CAS  PubMed  Google Scholar 

  181. McNeil, P. L. & Kirchhausen, T. An emergency response team for membrane repair. Nat. Rev. Mol. Cell Biol. 6, 499–505 (2005).

    CAS  PubMed  Google Scholar 

  182. Lesieur, C. et al. Increased stability upon heptamerization of the pore-forming toxin aerolysin. J. Biol. Chem. 274, 36722–36728 (1999).

    CAS  PubMed  Google Scholar 

  183. Idone, V., Tam, C. & Andrews, N. W. Two-way traffic on the road to plasma membrane repair. Trends Cell Biol. 18, 552–559 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Husmann, M. et al. Elimination of a bacterial pore-forming toxin by sequential endocytosis and exocytosis. FEBS Lett. 583, 337–344 (2009).

    CAS  PubMed  Google Scholar 

  185. Corrotte, M. et al. Caveolae internalization repairs wounded cells and muscle fibers. eLIFE 2, e00926 (2013).

    PubMed  PubMed Central  Google Scholar 

  186. Keyel, P. A. et al. Streptolysin O clearance through sequestration into blebs that bud passively from the plasma membrane. J. Cell Sci. 124, 2414–2423 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Jimenez, A. J. et al. ESCRT machinery is required for plasma membrane repair. Science 343, 1247136 (2014).

    PubMed  Google Scholar 

  188. Henne, W. M., Buchkovich, N. J. & Emr, S. D. The ESCRT pathway. Dev. Cell 21, 77–91 (2011).

    CAS  PubMed  Google Scholar 

  189. Strack, B., Calistri, A., Craig, S., Popova, E. & Gottlinger, H. G. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114, 689–699 (2003).

    CAS  PubMed  Google Scholar 

  190. Prescher, J. et al. Super-resolution imaging of ESCRT-proteins at HIV-1 assembly sites. PLoS Pathog. 11, e1004677 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Degiacomi, M. T. & Dal Peraro, M. Macromolecular symmetric assembly prediction using swarm intelligence dynamic modeling. Structure 21, 1097–1106 (2013).

    CAS  PubMed  Google Scholar 

  192. Tamo, G. E., Abriata, L. A. & Dal Peraro, M. The importance of dynamics in integrative modeling of supramolecular assemblies. Curr. Opin. Struct. Biol. 31, 28–34 (2015).

    CAS  PubMed  Google Scholar 

  193. Spiga, E., Degiacomi, M. T. & Dal Peraro, M. New strategies for integrative dynamic modeling of macromolecular assembly. Adv. Protein Chem. Struct. Biol. 96, 77–111 (2014).

    CAS  PubMed  Google Scholar 

  194. Russel, D. et al. Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol. 10, e1001244 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Thalassinos, K., Pandurangan, A. P., Xu, M., Alber, F. & Topf, M. Conformational states of macromolecular assemblies explored by integrative structure calculation. Structure 21, 1500–1508 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Kudryashev, M. et al. In situ structural analysis of the Yersinia enterocolitica injectisome. eLIFE 2, e00792 (2013).

    PubMed  PubMed Central  Google Scholar 

  197. Sali, A. et al. Outcome of the first wwPDB hybrid/integrative methods task force workshop. Structure 23, 1156–1167 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Leone, P. et al. X-ray and cryo-electron microscopy structures of monalysin pore-forming toxin reveal multimerization of the pro-form. J. Biol. Chem. 290, 13191–13201 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratories is supported by the Swiss National Science Foundation (SNSF). The authors apologize to colleagues whose work could not be duly discussed owing to space limitations. The authors thank M. Dunstone for providing the coordinates of perfringolysin O oligomers used in the figures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matteo Dal Peraro or F. Gisou van der Goot.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Lipid droplets

Cellular organelles that store metabolic energy in the form of neutral lipids, such as triglycerides. These neutral lipids form the core of the droplet, which is surrounded by a phospholipid monolayer.

Exosomes

Vesicles that are released into the extracellular space from the lumen of multivesicular bodies.

Caveolae

Surface invaginations that may pinch off to allow cellular uptake of extracellular material.

Multivesicular bodies

Late endocytic organelles that contain intraluminal vesicles that are formed by inward invagination of the limiting membrane.

Programmed necrosis

A form of necrosis that is mediated by regulated pathways.

Pyroptosis

A caspase 1-dependent form of programmed cell death that occurs as an antimicrobial response.

Electron paramagnetic resonance

(EPR). A spectroscopy technique used to study paramagnetic molecules (that is, molecules with unpaired electrons). In biology, paramagnetic spin labels are covalently added to protein complexes to extract low-resolution information about their structure and dynamics.

Outer membrane vesicles

(OMVs). Vesicles that are derived from the outer membrane of Gram-negative bacteria.

Sphingomyelin

A sphingolipid found in animal cells that generally has a phosphocholine headgroup.

Phase-separated lipid membranes

Membranes within which lipids are separated into different domains.

Differential scanning calorimetry

A technique used to characterize the energetics associated with conformational changes of biomolecules, such as protein folding or phase transitions in lipid and lipid–protein mixtures upon temperature variation.

Atomic force microscopy

(AFM). A technique that uses the deflection of a sharp-tipped probe to measure the local conformation and mechanical properties of a sample (for example, proteins embedded in a membrane) with up to nanometre resolution.

Lectin

One of a family of proteins that bind to sugar moieties in glycoproteins.

Parasitophorous vacuole

The endosome-like organelle in which parasites reside upon engulfment by the target cell.

Disulfide scanning

An approach in which each amino acid in a sequence of interest is sequentially mutated to cysteine using a single point mutation. The reactivity of the introduced cysteine is analysed, for example, using a functional assay, to assess the dynamic location of the amino acid in the protein structure.

Translocon

A protein channel that enables the translocation of client proteins across a membrane.

GPI anchor

A glycosylphosphatidylinositol (GPI) lipid that is covalently linked to the carboxy terminus of a peripheral protein. The anchor attaches the protein to the outer leaflet of the plasma membrane.

Lipid rafts

Microscale or nanoscale domains of biological membranes that are rich in cholesterol and sphingolipids.

DNA aptamers

Short oligonucleotides engineered and selected to specifically bind to target molecules with high affinity. As with antibodies (their protein counterparts), DNA aptamers have broad applications both in biotechnology and therapeutics.

Toxoids

Bacterial toxins engineered to decrease virulence. Toxoids are used as vaccines for microbial infections as they contribute to the development of an immune response against the native toxin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peraro, M., van der Goot, F. Pore-forming toxins: ancient, but never really out of fashion. Nat Rev Microbiol 14, 77–92 (2016). https://doi.org/10.1038/nrmicro.2015.3

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro.2015.3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing