Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human norovirus transmission and evolution in a changing world

Key Points

  • Norovirus infections pose a substantial risk to human health worldwide. Modes of viral transmission, the severity of illness and evolutionary pressures all contribute to this risk and can vary between viral genotypes.

  • Many details about the transmission of noroviruses remain unknown, especially regarding the origin of newly emerging strains.

  • The recent emergence of genotype GII.P17-GII.17 noroviruses in Asia should serve as a warning that future risks from norovirus outbreaks might arise from genotypes other than those currently targeted by vaccine development.

  • Bacteria in the host microbiota might influence human norovirus infections by providing HBGA-like sugars for norovirus attachment and by modulating host immunity.

  • B cells support norovirus replication in the presence of bacteria that express histo-blood group antigen (HBGA)-like sugars. A recently described cell culture system for the study of noroviruses in B cells will hopefully advance our understanding of many aspects of human noroviruses, ranging from the molecular characterization of their life cycle to the development of improved vaccines.

Abstract

Norovirus infections are a major cause of gastroenteritis, and outbreaks occur frequently. Several factors are currently increasing the challenge posed by norovirus infections to global health, notably the increasing number of infections in immunocompromised individuals, who are more susceptible to disease, and the globalization of the food industry, which enables large norovirus outbreaks to occur on an international scale. Furthermore, the rapid rate of the genetic and antigenic evolution of circulating noroviruses complicates the development of vaccines and therapies that are required to counter these challenges. In this Review, we describe recent advances in the study of the transmission, pathogenesis and evolution of human noroviruses, and consider the ongoing risk of norovirus outbreaks, together with the future prospects for therapeutics, in a rapidly changing world.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The composition and life cycle of human noroviruses.
Figure 2: Norovirus epidemiology in the community.
Figure 3: Synthesis of histo-blood group antigens.
Figure 4: ORF1 and ORF2 phylogenies.
Figure 5: Mechanisms of norovirus evolution.

Similar content being viewed by others

References

  1. Atmar, R. L. & Estes, M. K. The epidemiologic and clinical importance of norovirus infection. Gastroenterol. Clin. North Am. 35, 275–290 (2006).

    Article  PubMed  Google Scholar 

  2. Atmar, R. L. et al. Norwalk virus shedding after experimental human infection. Emerg. Infect. Dis. 14, 1553–1557 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Teunis, P. F. et al. Norwalk virus: how infectious is it? J. Med. Virol. 80, 1468–1476 (2008).

    Article  PubMed  Google Scholar 

  4. Marks, P. J. et al. Evidence for airborne transmission of Norwalk-like virus (NLV) in a hotel restaurant. Epidemiol. Infect. 124, 481–487 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Verhoef, L. et al. Norovirus genotype profiles associated with foodborne transmission, 1999–2012. Emerg. Infect. Dis. 21, 592–599 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wikswo, M. E. & Hall, A. J. Outbreaks of acute gastroenteritis transmitted by person-to-person contact—United States, 2009–2010. MMWR Surveill. Summ. 61, 1–12 (2012).

    PubMed  Google Scholar 

  7. Lysen, M. et al. Genetic diversity among food-borne and waterborne norovirus strains causing outbreaks in Sweden. J. Clin. Microbiol. 47, 2411–2418 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Siebenga, J. J. et al. Norovirus illness is a global problem: emergence and spread of norovirus GII.4 variants, 2001–2007. J. Infect. Dis. 200, 802–812 (2009).

    Article  PubMed  Google Scholar 

  9. Kroneman, A. et al. Data quality of 5 years of central norovirus outbreak reporting in the European Network for food-borne viruses. J. Public Health (Oxf) 30, 82–90 (2008).

    Article  CAS  Google Scholar 

  10. Harris, J. P., Edmunds, W. J., Pebody, R., Brown, D. W. & Lopman, B. A. Deaths from norovirus among the elderly, England and Wales. Emerg. Infect. Dis. 14, 1546–1552 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Trivedi, T. K. et al. Clinical characteristics of norovirus-associated deaths: a systematic literature review. Am. J. Infect. Control 41, 654–657 (2013).

    Article  PubMed  Google Scholar 

  12. Siebenga, J. J. et al. High prevalence of prolonged norovirus shedding and illness among hospitalized patients: a model for in vivo molecular evolution. J. Infect. Dis. 198, 994–1001 (2008). A study showing that noroviruses more commonly cause prolonged periods of gastrointestinal illness and virus shedding than previously recognized.

    Article  CAS  PubMed  Google Scholar 

  13. Murata, T. et al. Prolonged norovirus shedding in infants ≤6 months of age with gastroenteritis. Pediatr. Infect. Dis. J. 26, 46–49 (2007).

    Article  PubMed  Google Scholar 

  14. Jones, M. K. et al. Enteric bacteria promote human and mouse norovirus infection of B cells. Science 346, 755–759 (2014). An important paper that describes a cell culture system for the study of human norovirus infection in B cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vinje, J. Advances in laboratory methods for detection and typing of norovirus. J. Clin. Microbiol. 53, 373–381 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kroneman, A. et al. Analysis of integrated virological and epidemiological reports of norovirus outbreaks collected within the Foodborne Viruses in Europe network from 1 July 2001 to 30 June 2006. J. Clin. Microbiol. 46, 2959–2965 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Graaf, M. et al. Emergence of a novel GII.17 norovirus — end of the GII.4 era? Euro Surveill. 20, 21178 (2015).

    Article  PubMed  Google Scholar 

  18. Thorne, L. G. & Goodfellow, I. G. Norovirus gene expression and replication. J. Gen. Virol. 95, 278–291 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Donaldson, E. F., Lindesmith, L. C., Lobue, A. D. & Baric, R. S. Viral shape-shifting: norovirus evasion of the human immune system. Nat. Rev. Microbiol. 8, 231–241 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vongpunsawad, S., Venkataram Prasad, B. V. & Estes, M. K. Norwalk virus minor capsid protein VP2 associates within the VP1 shell domain. J. Virol. 87, 4818–4825 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Debbink, K., Lindesmith, L. C. & Baric, R. S. The state of norovirus vaccines. Clin. Infect. Dis. 58, 1746–1752 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wobus, C. E. et al. Replication of norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biol. 2, e432 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Hoa Tran, T. N., Trainor, E., Nakagomi, T., Cunliffe, N. A. & Nakagomi, O. Molecular epidemiology of noroviruses associated with acute sporadic gastroenteritis in children: global distribution of genogroups, genotypes and GII.4 variants. J. Clin. Virol. 56, 185–193 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Rodriguez-Lazaro, D. et al. Virus hazards from food, water and other contaminated environments. FEMS Microbiol. Rev. 36, 786–814 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Le Guyader, F. S., Atmar, R. L. & Le Pendu, J. Transmission of viruses through shellfish: when specific ligands come into play. Curr. Opin. Virol. 2, 103–110 (2012).

    Article  PubMed  Google Scholar 

  26. Verhoef, L. et al. An integrated approach to identifying international foodborne norovirus outbreaks. Emerg. Infect. Dis. 17, 412–418 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Foodborne Disease Burden Epidemiology Reference Group 2007–2015. WHO estimates of the global burden of foodborne diseases (WHO, 2011).

  28. Ahmed, S. M. et al. Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet Infect. Dis. 14, 725–730 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rockx, B. et al. Natural history of human calicivirus infection: a prospective cohort study. Clin. Infect. Dis. 35, 246–253 (2002).

    Article  PubMed  Google Scholar 

  30. Sukhrie, F. H. et al. Nosocomial transmission of norovirus is mainly caused by symptomatic cases. Clin. Infect. Dis. 54, 931–937 (2012).

    Article  PubMed  Google Scholar 

  31. Sukhrie, F. H., Siebenga, J. J., Beersma, M. F. & Koopmans, M. Chronic shedders as reservoir for nosocomial transmission of norovirus. J. Clin. Microbiol. 48, 4303–4305 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Milbrath, M. O., Spicknall, I. H., Zelner, J. L., Moe, C. L. & Eisenberg, J. N. Heterogeneity in norovirus shedding duration affects community risk. Epidemiol. Infect. 141, 1572–1584 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Debbink, K. et al. Within-host evolution results in antigenically distinct GII.4 noroviruses. J. Virol. 88, 7244–7255 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Mattison, K. et al. Human noroviruses in swine and cattle. Emerg. Infect. Dis. 13, 1184–1188 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Summa, M., von Bonsdorff, C. H. & Maunula, L. Pet dogs — a transmission route for human noroviruses? J. Clin. Virol. 53, 244–247 (2012).

    Article  PubMed  Google Scholar 

  36. Souza, M., Azevedo, M. S., Jung, K., Cheetham, S. & Saif, L. J. Pathogenesis and immune responses in gnotobiotic calves after infection with the genogroup II.4-HS66 strain of human norovirus. J. Virol. 82, 1777–1786 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Cheetham, S. et al. Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs. J. Virol. 80, 10372–10381 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Caddy, S. L. et al. Evidence for human norovirus infection of dogs in the United Kingdom. J. Clin. Microbiol. 53, 1873–1883 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Widdowson, M. A. et al. Detection of serum antibodies to bovine norovirus in veterinarians and the general population in the Netherlands. J. Med. Virol. 76, 119–128 (2005).

    Article  PubMed  Google Scholar 

  40. Mesquita, J. R. et al. Presence of antibodies against genogroup VI norovirus in humans. Virol. J. 10, 176 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Friesema, I. H. et al. Differences in clinical presentation between norovirus genotypes in nursing homes. J. Clin. Virol. 46, 341–344 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Thorven, M. et al. A homozygous nonsense mutation (428G→A) in the human secretor (FUT2) gene provides resistance to symptomatic norovirus (GGII) infections. J. Virol. 79, 15351–15355 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lindesmith, L. et al. Human susceptibility and resistance to Norwalk virus infection. Nat. Med. 9, 548–553 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Stanley, P. & Cummings, R. D. in Essentials of Glycobiology 2nd edn Ch. 13 (eds Varki, A. et al.) (Cold Spring Harbor Laboratory Press, 2009).

    Google Scholar 

  45. Le Pendu, J., Ruvoen-Clouet, N., Kindberg, E. & Svensson, L. Mendelian resistance to human norovirus infections. Semin. Immunol. 18, 375–386 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Currier, R. L. et al. Innate susceptibility to norovirus infections influenced by FUT2 genotype in a United States pediatric population. Clin. Infect. Dis. 60, 1631–1638 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Atmar, R. L. Noroviruses — state of the art. Food Environ. Virol. 2, 117–126 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shirato, H. et al. Noroviruses distinguish between type 1 and type 2 histo-blood group antigens for binding. J. Virol. 82, 10756–10767 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hutson, A. M., Atmar, R. L., Graham, D. Y. & Estes, M. K. Norwalk virus infection and disease is associated with ABO histo-blood group type. J. Infect. Dis. 185, 1335–1337 (2002).

    Article  PubMed  Google Scholar 

  50. Frenck, R. et al. Predicting susceptibility to norovirus GII.4 by use of a challenge model involving humans. J. Infect. Dis. 206, 1386–1393 (2012).

    Article  PubMed  Google Scholar 

  51. Donaldson, E. F., Lindesmith, L. C., Lobue, A. D. & Baric, R. S. Norovirus pathogenesis: mechanisms of persistence and immune evasion in human populations. Immunol. Rev. 225, 190–211 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Tan, M. & Jiang, X. Norovirus gastroenteritis, carbohydrate receptors, and animal models. PLoS Pathog. 6, e1000983 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Taube, S. et al. Murine noroviruses bind glycolipid and glycoprotein attachment receptors in a strain-dependent manner. J. Virol. 86, 5584–5593 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zakhour, M. et al. The αGal epitope of the histo-blood group antigen family is a ligand for bovine norovirus Newbury2 expected to prevent cross-species transmission. PLoS Pathog. 5, e1000504 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Caddy, S., Breiman, A., le Pendu, J. & Goodfellow, I. Genogroup IV and VI canine noroviruses interact with histo-blood group antigens. J. Virol. 88, 10377–10391 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Murakami, K. et al. Norovirus binding to intestinal epithelial cells is independent of histo-blood group antigens. PLoS ONE 8, e66534 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yazawa, S. et al. Blood group substances as potential therapeutic agents for the prevention and treatment of infection with noroviruses proving novel binding patterns in human tissues. PLoS ONE 9, e89071 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Chan, M. C., Ho, W. S. & Sung, J. J. In vitro whole-virus binding of a norovirus genogroup II genotype 4 strain to cells of the lamina propria and Brunner's glands in the human duodenum. J. Virol. 85, 8427–8430 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Duizer, E. et al. Laboratory efforts to cultivate noroviruses. J. Gen. Virol. 85, 79–87 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Taube, S. et al. A mouse model for human norovirus. mBio 4, e00450-13 (2013). A paper that describes the first mouse model for human norovirus infection.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Bok, K. et al. Chimpanzees as an animal model for human norovirus infection and vaccine development. Proc. Natl Acad. Sci. USA 108, 325–330 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Chachu, K. A., LoBue, A. D., Strong, D. W., Baric, R. S. & Virgin, H. W. Immune mechanisms responsible for vaccination against and clearance of mucosal and lymphatic norovirus infection. PLoS Pathog. 4, e1000236 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Karst, S. M., Wobus, C. E., Lay, M., Davidson, J. & Virgin, H. W. STAT1-dependent innate immunity to a Norwalk-like virus. Science 299, 1575–1578 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Bui, T. et al. Median infectious dose of human norovirus GII.4 in gnotobiotic pigs is decreased by simvastatin treatment and increased by age. J. Gen. Virol. 94, 2005–2016 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jung, K. et al. The effects of simvastatin or interferon-α on infectivity of human norovirus using a gnotobiotic pig model for the study of antivirals. PLoS ONE 7, e41619 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Parrino, T. A., Schreiber, D. S., Trier, J. S., Kapikian, A. Z. & Blacklow, N. R. Clinical immunity in acute gastroenteritis caused by Norwalk agent. N. Engl. J. Med. 297, 86–89 (1977).

    Article  CAS  PubMed  Google Scholar 

  67. Ayukekbong, J. A. et al. Pattern of circulation of norovirus GII strains during natural infection. J. Clin. Microbiol. 52, 4253–4259 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Simmons, K., Gambhir, M., Leon, J. & Lopman, B. Duration of immunity to norovirus gastroenteritis. Emerg. Infect. Dis. 19, 1260–1267 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lindesmith, L. C. et al. Broad blockade antibody responses in human volunteers after immunization with a multivalent norovirus VLP candidate vaccine: immunological analyses from a phase I clinical trial. PLoS Med. 12, e1001807 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Reeck, A. et al. Serological correlate of protection against norovirus-induced gastroenteritis. J. Infect. Dis. 202, 1212–1218 (2010).

    Article  PubMed  Google Scholar 

  71. Ramani, S. et al. Mucosal and cellular immune responses to Norwalk virus. J. Infect. Dis. 212, 397–405 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yi, W. et al. Escherichia coli O86 O-antigen biosynthetic gene cluster and stepwise enzymatic synthesis of human blood group B antigen tetrasaccharide. J. Am. Chem. Soc. 127, 2040–2041 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Rasko, D. A., Wang, G., Monteiro, M. A., Palcic, M. M. & Taylor, D. E. Synthesis of mono- and di-fucosylated type I Lewis blood group antigens by Helicobacter pylori. Eur. J. Biochem. 267, 6059–6066 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Ruvoen-Clouet, N. et al. Increase in genogroup II.4 norovirus host spectrum by CagA-positive Helicobacter pylori infection. J. Infect. Dis. 210, 183–191 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Baldridge, M. T. et al. Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection. Science 347, 266–269 (2015). The first demonstration of the role of the bacterial microbiota in the persistence of enteric norovirus infections.

    Article  CAS  PubMed  Google Scholar 

  76. Li, L. et al. The fecal viral flora of California sea lions. J. Virol. 85, 9909–9917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu, Z. et al. Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. ISME J. 10, 609–620 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Katayama, K. et al. Phylogenetic analysis of the complete genome of 18 Norwalk-like viruses. Virology 299, 225–239 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Siebenga, J. J. et al. Phylodynamic reconstruction reveals norovirus GII.4 epidemic expansions and their molecular determinants. PLoS Pathog. 6, e1000884 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Bull, R. A., Eden, J. S., Rawlinson, W. D. & White, P. A. Rapid evolution of pandemic noroviruses of the GII.4 lineage. PLoS Pathog. 6, e1000831 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Eden, J. S. et al. The emergence and evolution of the novel epidemic norovirus GII.4 variant Sydney 2012. Virology 450–451, 106–113 (2014).

    Article  PubMed  CAS  Google Scholar 

  82. Lopman, B. et al. Increase in viral gastroenteritis outbreaks in Europe and epidemic spread of new norovirus variant. Lancet 363, 682–688 (2004).

    Article  PubMed  Google Scholar 

  83. Debbink, K. et al. Emergence of new pandemic GII.4 Sydney norovirus strain correlates with escape from herd immunity. J. Infect. Dis. 208, 1877–1887 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lindesmith, L. C. et al. Mechanisms of GII.4 norovirus persistence in human populations. PLoS Med. 5, e31 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Boon, D. et al. Comparative evolution of GII.3 and GII.4 norovirus over a 31-year period. J. Virol. 85, 8656–8666 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kobayashi, M. et al. Molecular evolution of the capsid gene in norovirus genogroup I. Sci. Rep. 5, 13806 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Iritani, N. et al. Genetic analysis of the capsid gene of genotype GII.2 noroviruses. J. Virol. 82, 7336–7345 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Swanstrom, J., Lindesmith, L. C., Donaldson, E. F., Yount, B. & Baric, R. S. Characterization of blockade antibody responses in GII.2.1976 Snow Mountain virus-infected subjects. J. Virol. 88, 829–837 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Bull, R. A. et al. Norovirus recombination in ORF1/ORF2 overlap. Emerg. Infect. Dis. 11, 1079–1085 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Eden, J. S., Tanaka, M. M., Boni, M. F., Rawlinson, W. D. & White, P. A. Recombination within the pandemic norovirus GII.4 lineage. J. Virol. 87, 6270–6282 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mahar, J. E., Bok, K., Green, K. Y. & Kirkwood, C. D. The importance of intergenic recombination in norovirus GII.3 evolution. J. Virol. 87, 3687–3698 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chang, K. O., Sosnovtsev, S. V., Belliot, G., King, A. D. & Green, K. Y. Stable expression of a Norwalk virus RNA replicon in a human hepatoma cell line. Virology 353, 463–473 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Belliot, G. et al. Norovirus proteinase–polymerase and polymerase are both active forms of RNA-dependent RNA polymerase. J. Virol. 79, 2393–2403 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Subba-Reddy, C. V., Goodfellow, I. & Kao, C. C. VPg-primed RNA synthesis of norovirus RNA-dependent RNA polymerases by using a novel cell-based assay. J. Virol. 85, 13027–13037 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Subba-Reddy, C. V., Yunus, M. A., Goodfellow, I. G. & Kao, C. C. Norovirus RNA synthesis is modulated by an interaction between the viral RNA-dependent RNA polymerase and the major capsid protein, VP1. J. Virol. 86, 10138–10149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gairard-Dory, A. C. et al. Clinical usefulness of oral immunoglobulins in lung transplant recipients with norovirus gastroenteritis: a case series. Transplant. Proc. 46, 3603–3605 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Florescu, D. F., Hill, L. A., McCartan, M. A. & Grant, W. Two cases of Norwalk virus enteritis following small bowel transplantation treated with oral human serum immunoglobulin. Pediatr. Transplant. 12, 372–375 (2008).

    Article  PubMed  Google Scholar 

  98. Chachu, K. A. et al. Antibody is critical for the clearance of murine norovirus infection. J. Virol. 82, 6610–6617 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Green, K. Y. Norovirus infection in immunocompromised hosts. Clin. Microbiol. Infect. 20, 717–723 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Rossignol, J. F. & El-Gohary, Y. M. Nitazoxanide in the treatment of viral gastroenteritis: a randomized double-blind placebo-controlled clinical trial. Aliment. Pharmacol. Ther. 24, 1423–1430 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Siddiq, D. M., Koo, H. L., Adachi, J. A. & Viola, G. M. Norovirus gastroenteritis successfully treated with nitazoxanide. J. Infect. 63, 394–397 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Woodward, J. M. et al. The role of chronic norovirus infection in the enteropathy associated with common variable immunodeficiency. Am. J. Gastroenterol. 110, 320–327 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Nice, T. J. et al. Interferon-λ cures persistent murine norovirus infection in the absence of adaptive immunity. Science 347, 269–273 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Chang, K. O. & George, D. W. Interferons and ribavirin effectively inhibit Norwalk virus replication in replicon-bearing cells. J. Virol. 81, 12111–12118 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Richardson, C., Bargatze, R. F., Goodwin, R. & Mendelman, P. M. Norovirus virus-like particle vaccines for the prevention of acute gastroenteritis. Expert Rev. Vaccines 12, 155–167 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Bernstein, D. I. et al. Norovirus vaccine against experimental human GII.4 virus illness: a challenge study in healthy adults. J. Infect. Dis. 211, 870–878 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Kocher, J. et al. Intranasal P particle vaccine provided partial cross-variant protection against human GII.4 norovirus diarrhea in gnotobiotic pigs. J. Virol. 88, 9728–9743 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Tamminen, K., Lappalainen, S., Huhti, L., Vesikari, T. & Blazevic, V. Trivalent combination vaccine induces broad heterologous immune responses to norovirus and rotavirus in mice. PLoS ONE 8, e70409 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. van der Vries, E. et al. Prolonged influenza virus shedding and emergence of antiviral resistance in immunocompromised patients and ferrets. PLoS Pathog. 9, e1003343 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Huynen, P. et al. Molecular epidemiology of norovirus infections in symptomatic and asymptomatic children from Bobo Dioulasso, Burkina Faso. J. Clin. Virol. 58, 515–521 (2013).

    Article  PubMed  Google Scholar 

  111. Hickman, D. et al. The effect of malnutrition on norovirus infection. mBio 5, e01032-13 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Frange, P. et al. Prevalence and clinical impact of norovirus fecal shedding in children with inherited immune deficiencies. J. Infect. Dis. 206, 1269–1274 (2012).

    Article  PubMed  Google Scholar 

  113. Meeroff, J. C., Schreiber, D. S., Trier, J. S. & Blacklow, N. R. Abnormal gastric motor function in viral gastroenteritis. Ann. Intern. Med. 92, 370–373 (1980).

    Article  CAS  PubMed  Google Scholar 

  114. Schwartz, S. et al. Norovirus gastroenteritis causes severe and lethal complications after chemotherapy and hematopoietic stem cell transplantation. Blood 117, 5850–5856 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Schreiber, D. S., Blacklow, N. R. & Trier, J. S. The small intestinal lesion induced by Hawaii agent acute infectious nonbacterial gastroenteritis. J. Infect. Dis. 129, 705–708 (1974).

    Article  CAS  PubMed  Google Scholar 

  116. Troeger, H. et al. Structural and functional changes of the duodenum in human norovirus infection. Gut 58, 1070–1077 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Desai, R. et al. Severe outcomes are associated with genogroup 2 genotype 4 norovirus outbreaks: a systematic literature review. Clin. Infect. Dis. 55, 189–193 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Huhti, L. et al. Norovirus GII-4 causes a more severe gastroenteritis than other noroviruses in young children. J. Infect. Dis. 203, 1442–1444 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Chan, M. C. et al. Fecal viral load and norovirus-associated gastroenteritis. Emerg. Infect. Dis. 12, 1278–1280 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kroneman, A. et al. Proposal for a unified norovirus nomenclature and genotyping. Arch. Virol. 158, 2059–2068 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union's Horizon 2020 grant to the COMPARE Consortium, under grant agreement number 643476, and by the Virgo Consortium, funded by the Dutch Government (project number FES0908). The authors thank J. Le Pendu for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion P. G. Koopmans.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Genogroups

Groups of related viruses within a genus.

Polyprotein

A large protein that is cleaved into separate smaller proteins with different biological functions.

Nosocomial transmission

The transmission of an infectious disease in a hospital setting.

Herd immunity

General immunity of a host population to a pathogen, mediated by immunity acquired by a high proportion of individuals within the population.

Gnotobiotic

Pertaining to an animal: germ-free, or having known associated microorganisms.

Lewis blood group

A blood group system based on the expression of glycoproteins called Lewis antigens.

Mesoamerican

From a region that extends south and east from central Mexico to include parts of Guatemala, Belize, Honduras and Nicaragua.

Villous blunting

Flattening of the intestinal villi as a result of damage or injury.

Host cell tropism

The specificity of a virus for a particular host cell type.

Virus-like particles

(VLPs). Particles that resemble natural viral particles and contain viral structural proteins, such as the envelope or capsid protein, but do not contain genetic material from the virus.

Goblet cells

Specialized epithelial cells that secrete mucus and are found in the mucous membranes of the stomach, intestines and respiratory passages.

Lamina propria

The layer of connective tissue that underlies the epithelium of a mucous membrane.

Brunner's glands

Tubular submucosal glands found in the duodenum.

DC-SIGN

(Dendritic-cell-specific ICAM3-grabbing non-integrin). A C-type lectin receptor present on the surface of macrophages and dendritic cells.

Interferon

One of several signalling proteins that are crucial components of the innate immune response to viral infection. Many viruses have proteins that block or modulate interferons.

Phylodynamic reconstruction

The reconstruction of epidemiological, immunological and evolutionary processes based on analyses of viral phylogenies.

Genetic drift

The change in the genetic composition of a population that occurs by chance or random events rather than by natural selection.

Replicon systems

Systems in which an incomplete viral genome is capable of autonomous replication.

Heterologous cross-protection

Protection conferred on a host by inoculation with one strain of a microorganism (or a component of the strain) that prevents infection when the host is later challenged with a different strain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Graaf, M., van Beek, J. & Koopmans, M. Human norovirus transmission and evolution in a changing world. Nat Rev Microbiol 14, 421–433 (2016). https://doi.org/10.1038/nrmicro.2016.48

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro.2016.48

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology