Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neisseria gonorrhoeae host adaptation and pathogenesis

Key Points

  • The urogenital tract is a complex environment composed of many different types of epithelial tissues and innate immune cells that sample the surrounding milieu. As a host-adapted organism, Neisseria gonorrhoeae can interact with only human forms of many molecules. Moreover, owing to environmental heterogeneities as well as unknown concentrations of oxygen and nutrients in this niche, substantial challenges exist for developing tissue culture and animal models. Advances in standardizing the cell culture techniques of primary tissue culture and transgenic mouse models may help to ameliorate these challenges.

  • Although the prevailing view is that infections in women are mainly asymptomatic whereas infections in men are not, many studies show that asymptomatic infections are prevalent in both sexes. The observations underlying the current dogma likely come from physiological and anatomical differences in the male and female urogenital tracts, making neutrophil influx in men much more noticeable and easier to diagnose than infections in women.

  • N. gonorrhoeae is an obligate human pathogen with the ability to evade and modulate both the innate and adaptive immune systems to benefit its replication and survival. The host-restricted pathogen has subsequently evolved a moderately small but effective set of regulatory mechanisms to quickly adapt to changing oxygen and nutrient concentrations.

  • As N. gonorrhoeae progresses through the stages of disease pathogenesis (transmission, adherence, colonization and invasion, and immune evasion), the bacterium expresses many virulence factors to promote survival and replication while remaining minimally invasive and minimally discoverable by immune cells. It has yet to be settled in the field whether the vast neutrophil influx following symptomatic infection benefits the host or the pathogen.

  • Owing to its natural competence, propensity for horizontal gene transfer, efficient transformation and dynamic and variable genome, N. gonorrhoeae is rapidly developing resistance to every major class of antibiotic. With worldwide antimicrobial resistance on the rise, it is necessary to understand the mechanisms by which resistance determinants confer resistance and to develop novel therapies to avoid an era of untreatable gonorrhoea.

  • The Neisseria genus is composed of many commensals and one other pathogen, Neisseria meningitidis, that are closely related to N. gonorrhoeae genetically but are phenotypically distinct and occupy different niches. Owing to this similarity, it is often difficult to determine which factors are specific virulence factors for N. gonorrhoeae and which facilitate colonization. More research is needed to determine which factors confer pathogenicity and differentiate between these two pathogens.

Abstract

The host-adapted human pathogen Neisseria gonorrhoeae is the causative agent of gonorrhoea. Consistent with its proposed evolution from an ancestral commensal bacterium, N. gonorrhoeae has retained features that are common in commensals, but it has also developed unique features that are crucial to its pathogenesis. The continued worldwide incidence of gonorrhoeal infection, coupled with the rising resistance to antimicrobials and the difficulties in controlling the disease in developing countries, highlights the need to better understand the molecular basis of N. gonorrhoeae infection. This knowledge will facilitate disease prevention, surveillance and control, improve diagnostics and may help to facilitate the development of effective vaccines or new therapeutics. In this Review, we discuss sex-related symptomatic gonorrhoeal disease and provide an overview of the bacterial factors that are important for the different stages of pathogenesis, including transmission, colonization and immune evasion, and we discuss the problem of antibiotic resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of Neisseria gonorrhoeae infection.
Figure 2: Overview of Neisseria gonorrhoeae pathogenesis factors.
Figure 3: Overview of transcriptional regulatory factors of Neisseria gonorrhoeae.
Figure 4: Neisseria gonorrhoeae evades and modulates the innate and adaptive immune systems.
Figure 5: Antibiotic resistance in Neisseria gonorrhoeae.

Similar content being viewed by others

References

  1. World Health Organization. WHO Guidelines for the Treatment of Neisseria gonorrhoeae (WHO, 2016).

  2. Carmona-Gutierrez, D., Kainz, K. & Madeo, F. Sexually transmitted infections: old foes on the rise. Microb. Cell 3, 361–362 (2016).

    PubMed  PubMed Central  Google Scholar 

  3. Unemo, M. et al. The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: phenotypic, genetic and reference genome characterization. J. Antimicrob. Chemother. 71, 3096–3108 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Newman, L. et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLOS ONE 10, e0143304 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. Lee, J. S., Choi, H. Y., Lee, J. E., Lee, S. H. & Oum, B. S. Gonococcal keratoconjunctivitis in adults. Eye 16, 646–649 (2002).

    CAS  PubMed  Google Scholar 

  6. Noble, R. C., Cooper, R. M. & Miller, B. R. Pharyngeal colonisation by Neisseria gonorrhoeae and Neisseria meningitidis in black and white patients attending a venereal disease clinic. Br. J. Vener. Dis. 55, 14–19 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Danby, C. S. et al. Patterns of extragenital chlamydia and gonorrhea in women and men who have sex with men reporting a history of receptive anal intercourse. Sex. Transm. Dis. 43, 105–109 (2016).

    PubMed  PubMed Central  Google Scholar 

  8. Little, J. W. Gonorrhea: update. Oral Surg., Oral Med., Oral Pathol., Oral Radiol., Endodont. 101, 137–143 (2006).

    Google Scholar 

  9. Sandstrom, I. Etiology and diagnosis of neonatal conjunctivitis. Acta Paediatr. Scand. 76, 221–227 (1987).

    CAS  PubMed  Google Scholar 

  10. Masi, A. T. & Eisenstein, B. I. Disseminated gonococcal infection (DGI) and gonococcal arthritis (GCA): II. Clinical manifestations, diagnosis, complications, treatment, and prevention. Semin. Arthritis Rheum. 10, 173–197 (1981).

    CAS  PubMed  Google Scholar 

  11. Hoffman, O. & Weber, R. J. Pathophysiology and treatment of bacterial meningitis. Ther. Adv. Neurol. Disord. 2, 1–7 (2009).

    PubMed  PubMed Central  Google Scholar 

  12. Marri, P. R. et al. Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PLOS ONE 5, e11835 (2010).

    PubMed  PubMed Central  Google Scholar 

  13. Liu, G., Tang, C. M. & Exley, R. M. Non-pathogenic Neisseria: members of an abundant, multi-habitat, diverse genus. Microbiology 161, 1297–1312 (2015).

    CAS  PubMed  Google Scholar 

  14. Maiden, M. C. & Harrison, O. B. Population and functional genomics of Neisseria revealed with gene-by-gene approaches. J. Clin. Microbiol. 54, 1949–1955 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bratcher, H. B., Corton, C., Jolley, K. A., Parkhill, J. & Maiden, M. C. A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes. BMC Genomics 15, 1138 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. Joseph, B. et al. Virulence evolution of the human pathogen Neisseria meningitidis by recombination in the core and accessory genome. PLOS ONE 6, e18441 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Maiden, M. C. Population genomics: diversity and virulence in the Neisseria. Curr. Opin. Microbiol. 11, 467–471 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Edwards, J. L. & Apicella, M. A. The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin. Microbiol. Rev. 17, 965–981 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sparling, P. F. Biology of Neisseria gonorrhoeae. 3rd edn (McGraw-Hill, 1999).

    Google Scholar 

  20. Walker, C. K. & Sweet, R. L. Gonorrhea infection in women: prevalence, effects, screening, and management. Int. J. Women' Health 3, 197–206 (2011).

    Google Scholar 

  21. Jordan, S. J., Schwebke, J. R., Aaron, K. J., Van Der Pol, B. & Hook, E. W. 3rd. Meatal swabs contain less cellular material and are associated with a decrease in Gram stain smear quality compared to urethral swabs in men. J. Clin. Microbiol. 55, 2249–2254 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Muzny, C. A. et al. Sexually transmitted infection risk among women is not fully explained by partner numbers. South Med. J. 110, 161–167 (2017).

    PubMed  Google Scholar 

  23. Grimley, D. M. et al. Sexually transmitted infections among urban shelter clients. Sex. Transm. Dis. 33, 666–669 (2006).

    PubMed  Google Scholar 

  24. Geisler, W. M., Yu, S. & Hook, E. W. 3rd. Chlamydial and gonococcal infection in men without polymorphonuclear leukocytes on gram stain: implications for diagnostic approach and management. Sex. Transm. Dis. 32, 630–634 (2005).

    PubMed  Google Scholar 

  25. Xiong, M. et al. Analysis of the sex ratio of reported gonorrhoea incidence in Shenzhen, China. BMJ Open 6, e009629 (2016). This epidemiological study of 1,106 male and 1,420 female participants in Shenzhen, China, shows that undiagnosed, unreported gonorrhoea infections were common in both men and women and that the reported incidence sex ratio was overestimated by a factor of 7.9.

    PubMed  PubMed Central  Google Scholar 

  26. Hook, E. W. 3rd. Gender differences in risk for sexually transmitted diseases. Am. J. Med. Sci. 343, 10–11 (2012).

    PubMed  Google Scholar 

  27. Hedges, S. R. et al. Limited local and systemic antibody responses to Neisseria gonorrhoeae during uncomplicated genital infections. Infect. Immun. 67, 3937–3946 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fichorova, R. N., Desai, P. J., Gibson, F. C. 3rd & Genco, C. A. Distinct proinflammatory host responses to Neisseria gonorrhoeae infection in immortalized human cervical and vaginal epithelial cells. Infect. Immun. 69, 5840–5848 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Papp, J. R., Schachter, J., Gaydos, C. A. & Van Der Pol, B. Recommendations for the laboratory-based detection of Chlamydia trachomatis and Neisseria gonorrhoeae — 2014. MMWR Morb. Mortal. Wkly Rep. 63, 1–19 (2014).

    Google Scholar 

  30. James-Holmquest, A. N., Swanson, J., Buchanan, T. M., Wende, R. D. & Williams, R. P. Differential attachment by piliated and nonpiliated Neisseria gonorrhoeae to human sperm. Infect. Immun. 9, 897–902 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Harvey, H. A. et al. Gonococcal lipooligosaccharide is a ligand for the asialoglycoprotein receptor on human sperm. Mol. Microbiol. 36, 1059–1070 (2000). This study shows that gonococcal LOS binds to asialoglycoprotein receptor 1 (ASGPR1) on human sperm, possibly contributing to male-to-female transmission.

    CAS  PubMed  Google Scholar 

  32. Cohen, M. S. et al. Human experimentation with Neisseria gonorrhoeae: rationale, methods, and implications for the biology of infection and vaccine development. J. Infect. Dis. 169, 532–537 (1994).

    CAS  PubMed  Google Scholar 

  33. Ketterer, M. R. et al. Desialylation of Neisseria gonorrhoeae Lipooligosaccharide by Cervicovaginal Microbiome Sialidases: The Potential for Enhancing Infectivity in Men. J. Infect. Dis. 214, 1621–1628 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Higashi, D. L. et al. Dynamics of Neisseria gonorrhoeae attachment: microcolony development, cortical plaque formation, and cytoprotection. Infect. Immun. 75, 4743–4753 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Craig, L., Pique, M. E. & Tainer, J. A. Type IV pilus structure and bacterial pathogenicity. Nat. Rev. Microbiol. 2, 363–378 (2004).

    CAS  PubMed  Google Scholar 

  36. Obergfell, K. P. & Seifert, H. S. The pilin N-terminal domain maintains Neisseria gonorrhoeae transformation competence during pilus phase variation. PLOS Genet. 12, e1006069 (2016).

    PubMed  PubMed Central  Google Scholar 

  37. Berry, J.-L. & Pelicic, V. Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiol. Rev. 39, 134–154 (2015).

    CAS  PubMed  Google Scholar 

  38. Cahoon, L. A. & Seifert, H. S. Transcription of a cis-acting, noncoding, small RNA is required for pilin antigenic variation in Neisseria gonorrhoeae. PLOS Pathog. 9, e1003074 (2013). This study demonstrates that transcription of a small, cis -acting, non-coding RNA initiates within the guanine quartet (G4) coding sequence enables the formation of the G4 structure required for pilin antigenic variation.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dietrich, M. et al. Activation of NF-kappaB by Neisseria gonorrhoeae is associated with microcolony formation and type IV pilus retraction. Cell. Microbiol. 13, 1168–1182 (2011).

    CAS  PubMed  Google Scholar 

  40. Swanson, J., Barrera, O., Sola, J. & Boslego, J. Expression of outer membrane protein II by gonococci in experimental gonorrhea. J. Exp. Med. 168, 2121–2129 (1988).

    CAS  PubMed  Google Scholar 

  41. Jerse, A. E. et al. Multiple gonococcal opacity proteins are expressed during experimental urethral infection in the male. J. Exp. Med. 179, 911–920 (1994). This study shows that when Opa-less variants of N. gonorrhoeae strain FA1090 were inoculated into human male volunteers, a majority of bacteria cultured from the infected subjects were Opa-positive and expressed a variety of Opa variants.

    CAS  PubMed  Google Scholar 

  42. Virji, M., Makepeace, K., Ferguson, D. J. & Watt, S. M. Carcinoembryonic antigens (CD66) on epithelial cells and neutrophils are receptors for Opa proteins of pathogenic neisseriae. Mol. Microbiol. 22, 941–950 (1996).

    CAS  PubMed  Google Scholar 

  43. Simms, A. N. & Jerse, A. E. In vivo selection for Neisseria gonorrhoeae opacity protein expression in the absence of human carcinoembryonic antigen cell adhesion molecules. Infect. Immun. 74, 2965–2974 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lambden, P. R., Heckels, J. E., James, L. T. & Watt, P. J. Variations in surface protein composition associated with virulence properties in opacity types of Neisseria gonorrhoeae. J. Gen. Microbiol. 114, 305–312 (1979).

    CAS  PubMed  Google Scholar 

  45. Stern, A., Brown, M., Nickel, P. & Meyer, T. F. Opacity genes in Neisseria gonorrhoeae: control of phase and antigenic variation. Cell 47, 61–71 (1986).

    CAS  PubMed  Google Scholar 

  46. Swanson, J. et al. Gonococcal pilin variants in experimental gonorrhea. J. Exp. Med. 165, 1344–1357 (1987).

    CAS  PubMed  Google Scholar 

  47. James, J. F. & Swanson, J. Studies on gonococcus infection. XIII. Occurrence of color/opacity colonial variants in clinical cultures. Infect. Immun. 19, 332–340 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Seifert, H. S., Wright, C. J., Jerse, A. E., Cohen, M. S. & Cannon, J. G. Multiple gonococcal pilin antigenic variants are produced during experimental human infections. J. Clin. Invest. 93, 2744–2749 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Anderson, M. T., Byerly, L., Apicella, M. A. & Seifert, H. S. Seminal plasma promotes Neisseria gonorrhoeae aggregation and biofilm formation. J. Bacteriol. 198, 2228–2235 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Steichen, C. T., Cho, C., Shao, J. Q. & Apicella, M. A. The Neisseria gonorrhoeae biofilm matrix contains DNA, and an endogenous nuclease controls its incorporation. Infect. Immun. 79, 1504–1511 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Greiner, L. L. et al. Biofilm Formation by Neisseria gonorrhoeae. Infect. Immun. 73, 1964–1970 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Steichen, C. T., Shao, J. Q., Ketterer, M. R. & Apicella, M. A. Gonococcal cervicitis: a role for biofilm in pathogenesis. J. Infect. Dis. 198, 1856–1861 (2008).

    PubMed  PubMed Central  Google Scholar 

  53. Wetzler, L. M., Blake, M. S., Barry, K. & Gotschlich, E. C. Gonococcal porin vaccine evaluation: comparison of Por proteosomes, liposomes, and blebs isolated from rmp deletion mutants. J. Infect. Dis. 166, 551–555 (1992).

    CAS  PubMed  Google Scholar 

  54. Song, W., Ma, L., Chen, R. & Stein, D. C. Role of lipooligosaccharide in Opa-independent invasion of Neisseria gonorrhoeae into human epithelial cells. J. Exp. Med. 191, 949–960 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. van Vliet, S. J. et al. Variation of Neisseria gonorrhoeae lipooligosaccharide directs dendritic cell-induced T helper responses. PLOS Pathog. 5, e1000625 (2009).

    PubMed  PubMed Central  Google Scholar 

  56. Wetzler, L. M., Barry, K., Blake, M. S. & Gotschlich, E. C. Gonococcal lipooligosaccharide sialylation prevents complement-dependent killing by immune sera. Infect. Immun. 60, 39–43 (1992). This study shows that sialylation of gonococcal LOS prevents opsonophagocytosis by immune sera, which led to the later confirmation that sialylation of LOS prevents complement activation and killing.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kellogg, D. S. et al. Neisseria gonorrhoeae. I. Virulence genetically linked to clonial variation. J. Bacteriol. 85, 1274–1279 (1963).

    PubMed  PubMed Central  Google Scholar 

  58. Spence, J. M., Wright, L. & Clark, V. L. Laboratory maintenance of Neisseria gonorrhoeae. Curr. Protoc. Microbiol., Unit 4A (2008). This study compares selectively passaged, piliated N. gonorrhoeae capable of infecting human volunteers with non-selectively passaged, non-piliated clonal variants that became non-infectious, enabling researchers to realize that infectivity can be phenotypically followed by observing piliated and non-piliated colony morphology.

  59. Platt, D. J. Carbon dioxide requirement of Neisseria gonorrhoeae growing on a solid medium. J. Clin. Microbiol. 4, 129–132 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. St Amant, D. C., Valentin-Bon, I. E. & Jerse, A. E. Inhibition of Neisseria gonorrhoeae by Lactobacillus species that are commonly isolated from the female genital tract. Infect. Immun. 70, 7169–7171 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Spurbeck, R. R. & Arvidson, C. G. Inhibition of Neisseria gonorrhoeae epithelial cell interactions by vaginal Lactobacillus species. Infect. Immun. 76, 3124–3130 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Spurbeck, R. R. & Arvidson, C. G. Lactobacillus jensenii surface-associated proteins inhibit Neisseria gonorrhoeae adherence to epithelial cells. Infect. Immun. 78, 3103–3111 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Cassat, J. E. & Skaar, E. P. Iron in infection and immunity. Cell Host Microbe 13, 509–519 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Doherty, C. P. Host-pathogen interactions: the role of iron. J. Nutr. 137, 1341–1344 (2007).

    CAS  PubMed  Google Scholar 

  65. Bonnah, R. A. & Schryvers, A. B. Preparation and characterization of Neisseria meningitidis mutants deficient in production of the human lactoferrin-binding proteins LbpA and LbpB. J. Bacteriol. 180, 3080–3090 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Noinaj, N., Buchanan, S. K. & Cornelissen, C. N. The transferrin-iron import system from pathogenic Neisseria species. Mol. Microbiol. 86, 246–257 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Evans, R. W. & Oakhill, J. S. Transferrin-mediated iron acquisition by pathogenic Neisseria. Biochem. Soc. Trans. 30, 705–707 (2002).

    CAS  PubMed  Google Scholar 

  68. Kehl-Fie, T. E. & Skaar, E. P. Nutritional immunity beyond iron: a role for manganese and zinc. Curr. Opin. Chem. Biol. 14, 218–224 (2010).

    CAS  PubMed  Google Scholar 

  69. Ovcinnikov, N. M. & Delektorskij, V. V. Electron microscope studies of gonococci in the urethral secretions of patients with gonorrhoea. Br. J. Vener. Dis. 47, 419–439 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Farzadegan, H. & Roth, I. L. Scanning electron microscopy and freeze-etching of gonorrhoeal urethral exudate. Br. J. Vener. Dis. 51, 83–91 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Evans, B. A. Ultrastructural study of cervical gonorrhea. J. Infect. Dis. 136, 248–255 (1977).

    CAS  PubMed  Google Scholar 

  72. King, G., James, J. F. & Swanson, J. Studies on gonococcus infection. XI. Comparison of in vivo and vitro association of Neisseria gonorrhoeae with human neutrophils. J. Infect. Dis. 137, 38–43 (1978).

    CAS  PubMed  Google Scholar 

  73. Apicella, M. A. et al. The pathogenesis of gonococcal urethritis in men: confocal and immunoelectron microscopic analysis of urethral exudates from men infected with Neisseria gonorrhoeae. J. Infect. Dis. 173, 636–646 (1996).

    CAS  PubMed  Google Scholar 

  74. Criss, A. K. & Seifert, H. S. A bacterial siren song: intimate interactions between Neisseria and neutrophils. Nat. Rev. Microbiol. 10, 178–190 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lucas, C. E., Hagman, K. E., Levin, J. C., Stein, D. C. & Shafer, W. M. Importance of lipooligosaccharide structure in determining gonococcal resistance to hydrophobic antimicrobial agents resulting from the mtr efflux system. Mol. Microbiol. 16, 1001–1009 (1995).

    CAS  PubMed  Google Scholar 

  76. Zalucki, Y. M., Dhulipala, V. & Shafer, W. M. Dueling regulatory properties of a transcriptional activator (MtrA) and repressor (MtrR) that control efflux pump gene expression in Neisseria gonorrhoeae. mBio 3, e00446-12 (2012). This study compares the binding affinities and regulatory competition between MtrC–MtrD–MtrE efflux pump operon activator MtrA and repressor MtrR, building on previous data characterizing this important antimicrobial resistance pump and its transcriptional regulation.

    PubMed  PubMed Central  Google Scholar 

  77. Thaler, C. J., Vanderpuye, O. A., McIntyre, J. A. & Faulk, W. P. Lactoferrin binding molecules in human seminal plasma. Biol. Reprod. 43, 712–717 (1990).

    CAS  PubMed  Google Scholar 

  78. Mercante, A. D. et al. MpeR regulates the mtr efflux locus in Neisseria gonorrhoeae and modulates antimicrobial resistance by an iron-responsive mechanism. Antimicrob. Agents Chemother. 56, 1491–1501 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Laskos, L., Ryan, C. S., Fyfe, J. A. & Davies, J. K. The RpoH-mediated stress response in Neisseria gonorrhoeae is regulated at the level of activity. J. Bacteriol. 186, 8443–8452 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Householder, T. C., Belli, W. A., Lissenden, S., Cole, J. A. & Clark, V. L. cis- and trans- acting elements involved in the regulation of aniA, the gene encoding the major anaerobically induced outer membrane protein in Nesseria gonorrhoeae. J. Bacteriol. 181, 5411–5551 (1999).

    Google Scholar 

  81. Mellies, J., Rudel, T. & Meyer, T. F. Transcriptional regulation of pilC2 in Neisseria gonorrhoeae: response to oxygen availability and evidence for growth-phase regulation in Escherichia coli. Mol. Gen. Genet. 255, 285–293 (1997).

    CAS  PubMed  Google Scholar 

  82. Whitehead, R. N. et al. The small FNR regulon of Neisseria gonorrhoeae: comparison with the larger Escherichia coli FNR regulon and interaction with the NarQ-NarP regulon. BMC Genomics 8, 35 (2007).

    PubMed  PubMed Central  Google Scholar 

  83. Berish, S. A., Subbarao, S., Chen, C. Y., Trees, D. L. & Morse, S. A. Identification and cloning of a fur homolog from Neisseria gonorrhoeae. Infect. Immun. 61, 4599–4606 (1993). This study identifies and initially characterizes the major iron-regulatory protein Fur in N. gonorrhoeae.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Isabella, V. M. & Clark, V. L. Deep sequencing-based analysis of the anaerobic stimulon in Neisseria gonorrhoeae. BMC Genomics 12, 51 (2011). This study identifies a wide array of genes that are differentially expressed under aerobic and anaerobic conditions in microaerophile N. gonorrhoeae , highlighting the large overlap among genes that are differentially regulated in response to low oxygen, changes in iron levels and the presence of reactive oxygen species.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ducey, T. F., Carson, M. B., Joshua, O. & Stintzi, A. P. & Dyer, D. W. Identification of the iron-responsive genes of Neisseria gonorrhoaea by microarray analysis in defined medium. J. Bacteriol. 187, 4865–4874 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Stohl, E. A., Criss, A. K. & Seifert, H. S. The transcriptome response of Neisseria gonorrhoeae to hydrogen peroxide reveals genes with previously uncharacterized roles in oxidative damage protection. Mol. Microbiol. 58, 520–532 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Makino, S., van Putten, J. P. & Meyer, T. F. Phase variation of the opacity outer membrane protein controls invasion by Neisseria gonorrhoeae into human epithelial cells. EMBO J. 10, 1307–1315 (1991). This study shows a positive correlation between the expression of Opa proteins and the binding and invasion of N. gonorrhoeae into Chang conjunctiva human epithelial cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Snyder, L. A., Butcher, S. A. & Saunders, N. J. Comparative whole-genome analyses reveal over 100 putative phase-variable genes in the pathogenic Neisseria spp. Microbiology 147, 2321–2332 (2001).

    CAS  PubMed  Google Scholar 

  89. Jordan, P. W., Snyder, L. A. & Saunders, N. J. Strain-specific differences in Neisseria gonorrhoeae associated with the phase variable gene repertoire. BMC Microbiol. 5, 21 (2005).

    PubMed  PubMed Central  Google Scholar 

  90. Srikhanta, Y. N. et al. Phasevarions mediate random switching of gene expression in pathogenic Neisseria. PLOS Pathog. 5, e1000400 (2009). This study characterizes phase-variable DNA methyltransferase activity in N. gonorrhoeae , showing that it affects the expression of virulence-related genes, antimicrobial resistance, human epithelial cervical cell interactions and biofilm formation.

    PubMed  PubMed Central  Google Scholar 

  91. Gawthorne, J. A., Beatson, S. A., Srikhanta, Y. N., Fox, K. L. & Jennings, M. P. Origin of the diversity in DNA recognition domains in phasevarion associated modA genes of pathogenic Neisseria and Haemophilus influenzae. PLOS ONE 7, e32337 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Jen, F. E., Seib, K. L. & Jennings, M. P. Phasevarions mediate epigenetic regulation of antimicrobial susceptibility in Neisseria meningitidis. Antimicrob. Agents Chemother. 58, 4219–4221 (2014).

    PubMed  PubMed Central  Google Scholar 

  93. Post, D. M. B. et al. Identification and characterization of AckA-dependent protein acetylation in Neisseria gonorrhoeae. PLOS ONE 12, e0179621 (2017).

    PubMed  PubMed Central  Google Scholar 

  94. Seib, K. L., Jen, F. E., Scott, A. L., Tan, A. & Jennings, M. P. Phase variation of DNA methyltransferases and the regulation of virulence and immune evasion in the pathogenic Neisseria. Pathog. Dis. 75, ftx080 (2017).

    Google Scholar 

  95. Gibson, F. P., Leach, D. R. & Lloyd, R. G. Identification of sbcD mutations as cosuppressors of recBC that allow propagation of DNA palindromes in Escherichia coli K-12. J. Bacteriol. 174, 1222–1228 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Jackson, L. A., Pan, J. C., Day, M. W. & Dyer, D. W. Control of RNA stability by NrrF, an iron-regulated small RNA in Neisseria gonorrhoeae. J. Bacteriol. 195, 5166–5173 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ngampasutadol, J. et al. Human factor H interacts selectively with Neisseria gonorrhoeae and results in species-specific complement evasion. J. Immunol. 180, 3426–3435 (2008). This study demonstrates how sialylated LOS binds human factor H and prevents complement-mediated killing of N. gonorrhoeae.

    CAS  PubMed  Google Scholar 

  98. Densen, P. Interaction of complement with Neisseria meningitidis and Neisseria gonorrhoeae. [Review]. Clin. Microbiol. Rev. 2 (Suppl.), S11–S17 (1989).

    PubMed  PubMed Central  Google Scholar 

  99. Petersen, B. H., Graham, J. A. & Brooks, G. F. Human deficiency of the eighth component of complement. The requirement of C8 for serum Neisseria gonorrhoeae bactericidal activity. J. Clin. Invest. 57, 283–290 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Edwards, J. L., Brown, E. J., Ault, K. A. & Apicella, M. A. The role of complement receptor 3 (CR3) in Neisseria gonorrhoeae infection of human cervical epithelia. Cell. Microbiol. 3, 611–622 (2001).

    CAS  PubMed  Google Scholar 

  101. Edwards, J. L. & Apicella, M. A. The role of lipooligosaccharide in Neisseria gonorrhoeae pathogenesis of cervical epithelia: lipid A serves as a C3 acceptor molecule. Cell. Microbiol. 4, 585–598 (2002).

    CAS  PubMed  Google Scholar 

  102. Edwards, J. L. et al. A co-operative interaction between Neisseria gonorrhoeae and complement receptor 3 mediates infection of primary cervical epithelial cells. Cell. Microbiol. 4, 571–584 (2002).

    CAS  PubMed  Google Scholar 

  103. Schweinle, J. E. et al. Interaction of Neisseria gonorrhoeae with classical complement components, C1-inhibitor, and a monoclonal antibody directed against the Neisserial H.8 antigen. J. Clin. Invest. 83, 397–403 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ram, S. et al. A novel sialic acid binding site on factor H mediates serum resistance of sialylated Neisseria gonorrhoeae. J. Exp. Med. 187, 743–752 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ram, S. et al. Binding of complement factor H to loop 5 of porin protein 1A: a molecular mechanism of serum resistance of nonsialylated Neisseria gonorrhoeae. J. Exp. Med. 188, 671–680 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ram, S. et al. Binding of C4b-binding protein to porin: a molecular mechanism of serum resistance of Neisseria gonorrhoeae. J. Exp. Med. 193, 281–295 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Gill, D. B. & Atkinson, J. P. CD46 in Neisseria pathogenesis. Trends Mol. Med. 10, 459–465 (2004).

    CAS  PubMed  Google Scholar 

  108. Feinen, B. & Russell, M. W. Contrasting roles of IL-22 and IL-17 in murine genital tract infection by Neisseria gonorrhoeae. Front. Immunol. 3, 11 (2012).

    PubMed  PubMed Central  Google Scholar 

  109. Edwards, J. L. & Butler, E. K. The pathobiology of Neisseria gonorrhoeae lower female genital tract infection. Front. Microbiol. 2, 102 (2011).

    PubMed  PubMed Central  Google Scholar 

  110. Melly, M. A., McGee, Z. A. & Rosenthal, R. S. Ability of monomeric peptidoglycan fragments from Neisseria gonorrhoeae to damage human fallopian-tube mucosa. J. Infect. Dis. 149, 378–386 (1984). This study demonstrates the ability of different N. gonorrhoeae peptidoglycan monomers to damage human fallopian tube mucosal cells in tissue culture.

    CAS  PubMed  Google Scholar 

  111. Mavrogiorgos, N., Mekasha, S., Yang, Y., Kelliher, M. A. & Ingalls, R. R. Activation of NOD receptors by Neisseria gonorrhoeae modulates the innate immune response. Innate Immun. 20, 377–389 (2014).

    PubMed  Google Scholar 

  112. Fisette, P. L., Ram, S., Andersen, J. M., Guo, W. & Ingalls, R. R. The Lip lipoprotein from Neisseria gonorrhoeae stimulates cytokine release and NF-kappaB activation in epithelial cells in a Toll-like receptor 2-dependent manner. J. Biol. Chem. 278, 46252–46260 (2003).

    CAS  PubMed  Google Scholar 

  113. Massari, P. et al. Cutting edge: Immune stimulation by neisserial porins is toll-like receptor 2 and MyD88 dependent. J. Immunol. 168, 1533–1537 (2002).

    CAS  PubMed  Google Scholar 

  114. Chateau, A. & Seifert, H. S. Neisseria gonorrhoeae survives within and modulates apoptosis and inflammatory cytokine production of human macrophages. Cell. Microbiol. 18, 546–560 (2016).

    CAS  PubMed  Google Scholar 

  115. Gaudet, R. G. et al. Cytosolic detection of the bacterial metabolite HBP activates TIFA-dependent innate immunity. Science 348, 1251–1255 (2015).

    CAS  PubMed  Google Scholar 

  116. Ortiz, M. C. et al. Neisseria gonorrhoeae modulates immunity by polarizing human macrophages to a M2 profile. PLOS ONE 10, e0130713 (2015).

    PubMed  PubMed Central  Google Scholar 

  117. Sadarangani, M., Pollard, A. J. & Gray-Owen, S. D. Opa proteins and CEACAMs: pathways of immune engagement for pathogenic Neisseria. FEMS Microbiol. Rev. 35, 498–514 (2011).

    CAS  PubMed  Google Scholar 

  118. Schmitter, T., Agerer, F., Peterson, L., Munzner, P. & Hauck, C. R. Granulocyte CEACAM3 is a phagocytic receptor of the innate immune system that mediates recognition and elimination of human-specific pathogens. J. Exp. Med. 199, 35–46 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Sarantis, H. & Gray-Owen, S. D. The specific innate immune receptor CEACAM3 triggers neutrophil bactericidal activities via a Syk kinase-dependent pathway. Cell. Microbiol. 9, 2167–2180 (2007).

    CAS  PubMed  Google Scholar 

  120. Packiam, M., Veit, S. J., Anderson, D. J., Ingalls, R. R. & Jerse, A. E. Mouse strain-dependent differences in susceptibility to Neisseria gonorrhoeae infection and induction of innate immune responses. Infect. Immun. 78, 433–440 (2010).

    CAS  PubMed  Google Scholar 

  121. Dilworth, J. A., Hendley, J. O. & Mandell, G. L. Attachment and ingestion of gonococci human neutrophils. Infect. Immun. 11, 512–516 (1975). This early study shows adherence and ingestion of two different gonococci strains by polymorphonuclear leukocyte neutrophils (PMNs).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Criss, A. K. & Seifert, H. S. Neisseria gonorrhoeae suppresses the oxidative burst of human polymorphonuclear leukocytes. Cell. Microbiol. 10, 2257–2270 (2008). This study demonstrates how different types of Opa-expressing or Opa-less N. gonorrhoeae grown under different conditions differ in their ability to elicit a PMN oxidative burst, as well as the ability of some strains to inhibit the PMN oxidative burst.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Gunderson, C. W. & Seifert, H. S. Neisseria gonorrhoeae elicits extracellular traps in primary neutrophil culture while suppressing the oxidative burst. mBio 6, e02452-14 (2015).

    PubMed  PubMed Central  Google Scholar 

  124. Criss, A. K., Katz, B. Z. & Seifert, H. S. Resistance of Neisseria gonorrhoeae to non-oxidative killing by adherent human polymorphonuclear leucocytes. Cell. Microbiol. 11, 1074–1087 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Johnson, M. B. & Criss, A. K. Resistance of Neisseria gonorrhoeae to neutrophils. Front. Microbiol. 2, 77 (2011).

    PubMed  PubMed Central  Google Scholar 

  126. Soler-Garcia, A. A. & Jerse, A. E. A. Neisseria gonorrhoeae catalase mutant is more sensitive to hydrogen peroxide and paraquat, an inducer of toxic oxygen radicals. Microb. Pathog. 37, 55–63 (2004).

    CAS  PubMed  Google Scholar 

  127. Gunesekere, I. C. et al. Ecf, an alternative sigma factor from Neisseria gonorrhoeae, controls expression of msrAB, which encodes methionine sulfoxide reductase. J. Bacteriol. 188, 3463–3469 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Pilch, B. & Mann, M. Large-scale and high-confidence proteomic analysis of human seminal plasma. Genome Biol. 7, R40 (2006).

    PubMed  PubMed Central  Google Scholar 

  129. Schmidt, K. A. et al. Experimental gonococcal urethritis and reinfection with homologous gonococci in male volunteers. Sex. Transm. Dis. 28, 555–564 (2001).

    CAS  PubMed  Google Scholar 

  130. Cahoon, L. A. & Seifert, H. S. Focusing homologous recombination: pilin antigenic variation in the pathogenic Neisseria. Mol. Microbiol. 81, 1136–1143 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Mandrell, R. E., Griffiss, J. M. & Macher, B. A. Lipooligosaccharides (LOS) of Neisseria gonorrhoeae and Neisseria meningitidis have components that are immunochemically similar to precursors of human blood group antigens. Carbohydrate sequence specificity of the mouse monoclonal antibodies that recognize crossreacting antigens on LOS and human erythrocytes [published erratum appears in J. Exp Med 1988 Oct 1;168, 1517]. J. Exp. Med. 168, 107–126 (1988).

    CAS  PubMed  Google Scholar 

  132. Mandrell, R. E. Further antigenic similarities of Neisseria gonorrhoeae lipooligosaccharides and human glycosphingolipids. Infect. Immun. 60, 3017–3020 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Gulati, S., McQuillen, D. P., Mandrell, R. E., Jani, D. B. & Rice, P. A. Immunogenicity of Neisseria gonorrhoeae lipooligosaccharide epitope 2C7, widely expressed in vivo with no immunochemical similarity to human glycosphingolipids. J. Infect. Dis. 174, 1223–1237 (1996).

    CAS  PubMed  Google Scholar 

  134. Liu, Y., Islam, E., Jarvis, G., Gray-Owen, S. & Russell, M. Neisseria gonorrhoeae selectively suppresses the development of Th1 and Th2 cells, and enhances Th17 cell responses, through TGF-α- dependent mechanisms. Mucosal Immunol. 5, 320–331 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Liu, Y., Liu, W. & Russell, M. W. Suppression of host adaptive immune responses by Neisseria gonorrhoeae: role of interleukin 10 and type 1 regulatory T cells. Mucosal Immunol. 7, 165–176 (2014).

    CAS  PubMed  Google Scholar 

  136. Zhu, W. et al. Neisseria gonorrhoeae suppresses dendritic cell-induced, antigen-dependent CD4 T cell proliferation. PLOS ONE 7, e41260 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu, Y., Feinen, B. & Russell, M. W. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host. Front. Microbiol. 2, 52 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Jerse, A. E., Bash, M. C. & Russell, M. W. Vaccines against gonorrhea: current status and future challenges. Vaccine 32, 1579–1587 (2014).

    CAS  PubMed  Google Scholar 

  139. Petousis-Harris, H. et al. Effectiveness of a group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: a retrospective case-control study. Lancet 390, 1603–1610 (2017).

    CAS  PubMed  Google Scholar 

  140. Zhao, S. et al. Genetics of chromosomally mediated intermediate resistance to ceftriaxone and cefixime in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 53, 3744–3751 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Hagman, K. E. et al. Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology 141, 611–622 (1995).

    CAS  PubMed  Google Scholar 

  142. Zhao, S., Tobiason, D. M., Hu, M., Seifert, H. S. & Nicholas, R. A. The penC mutation conferring antibiotic resistance in Neisseria gonorrhoeae arises from a mutation in the PilQ secretin that interferes with multimer stability. Mol. Microbiol. 57, 1238–1251 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Unemo, M. & Shafer, W. M. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin. Microbiol. Rev. 27, 587–613 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Jerse, A. E. et al. A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. Infect. Immun. 71, 5576–5582 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Unemo, M. & Shafer, W. M. Antibiotic resistance in Neisseria gonorrhoeae: origin, evolution, and lessons learned for the future. Ann. NY Acad. Sci. 1230, E19–E28 (2011).

    PubMed  Google Scholar 

  146. Hook, M. W., Schafer, W., Deal, C., Kirkcaldy, R. D. & Iskander, J. CDC Grand Rounds: the growing threat of multidrug-resistant gonorrhea. MMWR Morb. Mortal. Wkly Rep. 62, 103–106 (2013).

    PubMed Central  Google Scholar 

  147. Unemo, M. & Nicholas, R. A. Emergence of multidrug-resistant, extensively drug-resistant and untreatable gonorrhea. Future Microbiol. 7, 1401–1422 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Aas, F. E., Lovold, C. & Koomey, M. An inhibitor of DNA binding and uptake events dictates the proficiency of genetic transformation in Neisseria gonorrhoeae: mechanism of action and links to Type IV pilus expression. Mol. Microbiol. 46, 1441–1450 (2002).

    CAS  PubMed  Google Scholar 

  149. Hamilton, H. L. & Dillard, J. P. Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination. Mol. Microbiol. 59, 376–385 (2006).

    CAS  PubMed  Google Scholar 

  150. Bowler, L. D., Zhang, Q. Y., Riou, J. Y. & Spratt, B. G. Interspecies recombination between the penA genes of Neisseria meningitidis and commensal Neisseria species during the emergence of penicillin resistance in N. meningitidis: natural events and laboratory simulation. J. Bacteriol. 176, 333–337 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Ng, L. K. & Martin, I. E. The laboratory diagnosis of Neisseria gonorrhoeae. Can. J. Infect. Dis. Med. Microbiol. 16, 15–25 (2005).

    PubMed  PubMed Central  Google Scholar 

  152. De Silva, D. et al. Whole-genome sequencing to determine transmission of Neisseria gonorrhoeae: an observational study. Lancet Infect. Dis. 16, 1295–1303 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Harrison, O. B. et al. Genomic analysis of urogenital and rectal Neisseria meningitidis isolates reveals encapsulated hyperinvasive meningococci and coincident multidrug-resistant gonococci. Sex. Transm. Infect. 93, 445–451 (2017).

    PubMed  PubMed Central  Google Scholar 

  154. Johnson, L. F. & Lewis, D. A. The effect of genital tract infections on HIV-1 shedding in the genital tract: a systematic review and meta-analysis. Sex. Transm. Dis. 35, 946–959 (2008).

    PubMed  Google Scholar 

  155. Kalichman, S. C., Pellowski, J. & Turner, C. Prevalence of sexually transmitted co-infections in people living with HIV/AIDS: systematic review with implications for using HIV treatments for prevention. Sex. Transm. Infect. 87, 183–190 (2011).

    PubMed  PubMed Central  Google Scholar 

  156. Jerse, A. E. et al. Estradiol-Treated female mice as surrogate hosts for Neisseria gonorrhoeae genital tract infections. Front. Microbiol. 2, 107 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Zarantonelli, M. L. et al. Transgenic mice expressing human transferrin as a model for meningococcal infection. Infect. Immun. 75, 5609–5614 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Gu, A., Zhang, Z., Zhang, N., Tsark, W. & Shively, J. E. Generation of human CEACAM1 transgenic mice and binding of Neisseria Opa protein to their neutrophils. PLOS ONE 5, e10067 (2010).

    PubMed  PubMed Central  Google Scholar 

  159. Li, G. et al. Establishment of a human CEACAM1 transgenic mouse model for the study of gonococcal infections. J. Microbiol. Methods 87, 350–354 (2011). This study presents and characterizes a transgenic mouse model for gonorrhoea infection wherein the mouse has been made to express a humanized CEACAM receptor molecule important for adherence and colonization, enabling N. gonorrhoeae to intravaginally colonize the mouse.

    CAS  PubMed  Google Scholar 

  160. Winther-Larsen, H. C. et al. in 13th International Pathogenic Neisseria Conference (eds Caugant, D. A. & Wedege, E.) 37 (Oslo, 2002)

    Google Scholar 

  161. Pearce, W. A. & Buchanan, T. M. Attachment role of gonococcal pili. Optimum conditions and quantitation of adherence of isolated pili to human cells in vitro. J. Clin. Invest. 61, 931–943 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Kaparakis, M. et al. Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cell. Microbiol. 12, 372–385 (2010).

    CAS  PubMed  Google Scholar 

  163. Zhou, X. et al. Hexa-acylated lipid A is required for host inflammatory response to Neisseria gonorrhoeae in experimental gonorrhea. Infect. Immun. 82, 184–192 (2014).

    PubMed  PubMed Central  Google Scholar 

  164. Singleton, T. E., Massari, P. & Wetzler, L. M. Neisserial porin-induced dendritic cell activation is MyD88 and TLR2 dependent. J. Immunol. 174, 3545–3550 (2005).

    CAS  PubMed  Google Scholar 

  165. Liu, X. et al. Gonococcal lipooligosaccharide suppresses HIV infection in human primary macrophages through induction of innate immunity. J. Infect. Dis. 194, 751–759 (2006).

    CAS  PubMed  Google Scholar 

  166. Remmele, C. W. et al. Transcriptional landscape and essential genes of Neisseria gonorrhoeae. Nucleic Acids Res. 42, 10579–10595 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Lee, E. H. & Shafer, W. M. The farAB-encoded efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids. Mol. Microbiol. 33, 839–845 (1999).

    CAS  PubMed  Google Scholar 

  168. Lee, E. H., Rouquette-Loughlin, C., Folster, J. P. & Shafer, W. M. FarR regulates the farAB-encoded efflux pump of Neisseria gonorrhoeae via an MtrR regulatory mechanism. J. Bacteriol. 185, 7145–7152 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Warner, D. M., Folster, J. P., Shafer, W. M. & Jerse, A. E. Regulation of the MtrC-MtrD-MtrE efflux-pump system modulates the in vivo fitness of Neisseria gonorrhoeae. J. Infect. Dis. 196, 1804–1812 (2007).

    CAS  PubMed  Google Scholar 

  170. Seib, K. L. et al. Characterization of the OxyR regulon of Neisseria gonorrhoeae. Mol. Microbiol. 63, 54–68 (2007).

    CAS  PubMed  Google Scholar 

  171. Overton, T. W. et al. Coordinated regulation of the Neisseria gonorrhoeae-truncated denitrification pathway by the nitric oxide-sensitive repressor, NsrR, and nitrite-insensitive NarQ-NarP. J. Biol. Chem. 281, 33115–33126 (2006).

    CAS  PubMed  Google Scholar 

  172. Wu, H. J. et al. PerR controls Mn-dependent resistance to oxidative stress in Neisseria gonorrhoeae. Mol. Microbiol. 60, 401–416 (2006).

    CAS  PubMed  Google Scholar 

  173. Gunesekere, I. C. et al. Comparison of the RpoH-dependent regulon and general stress response in Neisseria gonorrhoeae. J. Bacteriol. 188, 4769–4776 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Gangaiah, D. et al. Both MisR (CpxR) and MisS (CpxA) are required for Neisseria gonorrhoeae infection in a murine model of lower genital tract infection. Infect. Immun. 85, e00307-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  175. Yu, C., McClure, R., Nudel, K., Daou, N. & Genco, C. A. Characterization of the Neisseria gonorrhoeae iron and Fur regulatory network. J. Bacteriol. 198, 2180–2191 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Tseng, H. J., McEwan, A. G., Apicella, M. A. & Jennings, M. P. OxyR acts as a repressor of catalase expression in Neisseria gonorrhoeae. Infect. Immun. 71, 550–556 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Kim, J. J., Zhou, D., Mandrell, R. E. & Griffiss, J. M. Effect of exogenous sialylation of the lipooligosaccharide of Neisseria gonorrhoeae on opsonophagocytosis. Infect. Immun. 60, 4439–4442 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Blom, A. M. & Ram, S. Contribution of interactions between complement inhibitor C4b-binding protein and pathogens to their ability to establish infection with particular emphasis on Neisseria gonorrhoeae. Vaccine 26 (Suppl. 8), I49–I55 (2008).

    CAS  PubMed  Google Scholar 

  179. Jarvis, G. A. Analysis of C3 deposition and degradation on Neisseria meningitidis and Neisseria gonorrhoeae. Infect. Immun. 62, 1755–1760 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Yu, Q. et al. Association of Neisseria gonorrhoeae Opa(CEA) with dendritic cells suppresses their ability to elicit an HIV-1-specific T cell memory response. PLOS ONE 8, e56705 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Ison, C. A., Deal, C. & Unemo, M. Current and future treatment options for gonorrhoea. Sex. Transm. Infect. 89 (Suppl. 4), iv52–iv56 (2013).

    PubMed  Google Scholar 

Download references

Acknowledgements

H.S.S. was supported by the US National Institutes of Health (NIH) grant R37-AI033493. S.J.Q. was partially supported by NIH grant T32-AI0007476.

Author information

Authors and Affiliations

Authors

Contributions

S.J.Q. and H.S.S. contributed to researching data for the article. S.J.Q. and H.S.S. substantially contributed to the discussion of content. S.J.Q. and H.S.S. wrote the article. S.J.Q. and H.S.S. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to H Steven Seifert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Exotoxins

Bacterial secreted proteins that damage host cells.

Pelvic inflammatory disease

A clinical syndrome where infected fallopian tube tissues are damaged by the host inflammatory response to bacteria.

Ectopic pregnancy

A sequela of pelvic inflammatory disease that occurs when a fertilized egg implants anywhere other than the uterine lining, such as in the fallopian tube, which risks organ damage and blood loss.

Purulent exudate

The hallmark symptom of gonorrhoea; a liquid genital secretion composed of neutrophils and Neisseria gonorrhoeae.

Microcolonies

Collections of bacterial cells that exist as discrete formations.

Antigenic variation

A reversible process by which a microorganism provides many different versions of a gene product at a frequency higher than the normal mutation rate.

Phase variation

A stochastic form of genetic change that varies gene expression on/off or up/down.

Biofilms

Structured formations of bacterial cells within an extracellular matrix that stick to one another and together on a surface.

C4b-binding protein

(C4BP). A classical complement pathway regulatory protein, akin to factor H in the alternative pathway, that regulates complement activation on host cells.

Factor H

A control protein of the alternative complement pathway that binds C3b, displacing activated factor Bb and enabling cleavage and subsequent inactivation of C3b by factor I-induced conversion to iC3b.

Oxidative burst

An antimicrobial response through the release of reactive oxygen species from host cells.

Transcytosis

The transit of the cellular epithelium by a bacterium.

Nutritional immunity

The ability of the host to sequester important nutrients during infection.

Siderophores

Low molecular mass iron-binding chemical compounds secreted by bacteria to chelate iron for subsequent uptake into the bacterial cell.

Microaerophilic

Environments where oxygen concentration is limited but not zero.

Alternative complement pathway

One arm of the complement system that is triggered by C3b binding to a microorganism or other surface, damaged tissue and foreign material.

Classical complement pathway

One arm of the complement system triggered by antigen–antibody complexes with immunoglobulin G (IgG) and IgM antibodies.

Complement C3

An innate immune protein at the centre of the alternative and classical complement pathways.

Membrane attack complexes

Groups of proteins that are formed of complement components C8 and C9 that form pores in the membranes of microorganisms.

Complement system

An innate immune defence that recognizes and kills microorganisms through opsonization and formation of membrane attack complexes.

Opsonization

The process by which host molecules bind to the surface of a microorganism to enhance phagocytosis.

Outer membrane vesicle

A membrane-bound vesicle that is secreted from the bacterial envelope and can contain a variety of cellular material.

Mosaic alleles

Gene alleles that are produced by recombination of different gene sequences.

Multilocus sequence typing

A system to define strains of a species by defining the DNA sequence of alleles of a defined series of housekeeping genes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quillin, S., Seifert, H. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat Rev Microbiol 16, 226–240 (2018). https://doi.org/10.1038/nrmicro.2017.169

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro.2017.169

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology