Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Viral effects on the content and function of extracellular vesicles

Key Points

  • The transfer of extracellular vesicles (EVs) from one cell to another is thought to be an important mechanism for cell–cell communication, and EVs that are produced by virus-infected cells may modulate uninfected cells.

  • Viruses have specific receptors and therefore usually have a more restricted cellular tropism. By contrast, the uptake of EVs is almost universal and can occur through several cellular endocytic mechanisms in addition to direct fusion, a property that enables systemic delivery of their content.

  • The differences between viral and EV receptor usage can be used to separate and purify EVs. This enables the identification of specific EV-mediated effects and enables compounds that potentially inhibit the delivery and function of extracellular vesicles to be tested.

  • Viruses that establish chronic and persistent infections in a host probably use EVs to enhance the establishment and maintenance of infection. The EVs that are produced from virus-infected cells (and may therefore differ in content) may also restrict virus infection and enable continued host viability and persistent viral infection.

  • The incorporation of virions into EVs could prevent the recognition of viral proteins by the immune system and facilitate spread in the host.

Abstract

The release of membrane-bound vesicles from cells is being increasingly recognized as a mechanism of intercellular communication. Extracellular vesicles (EVs) or exosomes are produced by virus-infected cells and are thought to be involved in intercellular communication between infected and uninfected cells. Viruses, in particular oncogenic viruses and viruses that establish chronic infections, have been shown to modulate the production and content of EVs. Viral microRNAs, proteins and even entire virions can be incorporated into EVs, which can affect the immune recognition of viruses or modulate neighbouring cells. In this Review, we discuss the roles that EVs have during viral infection to either promote or restrict viral replication in target cells. We will also discuss our current understanding of the molecular mechanisms that underlie these roles, the potential consequences for the infected host and possible future diagnostic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modulation of the EV biogenesis pathway during viral infection.
Figure 2: Interactions between viruses and EVs.
Figure 3: Isolation of EVs and virions.
Figure 4: Local and systemic spread of viruses and EVs.

Similar content being viewed by others

References

  1. Raposo, G. & Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kowal, J., Tkach, M. & Thery, C. Biogenesis and secretion of exosomes. Curr. Opin. Cell Biol. 29, 116–125 (2014). This study provides a comprehensive review of the contribution of distinct vesicle transport proteins to the formation and secretion of exosomes.

    Article  CAS  PubMed  Google Scholar 

  3. Knipe, D. M. & Howley, P. M. Fields Virology 6th edn (Wolters Kluwer/Lippincott Williams & Wilkins Health, 2013).

    Google Scholar 

  4. Freed, E. O. HIV-1 assembly, release and maturation. Nat. Rev. Microbiol. 13, 484–496 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Feng, Z. et al. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature 496, 367–371 (2013). This study is the first to show that a non-enveloped virus can acquire EV membranes and remain infectious after being released from infected cells using the ESCRT complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hirai-Yuki, A., Hensley, L., Whitmire, J. K. & Lemon, S. M. Biliary secretion of quasi-enveloped human hepatitis A virus. mBio 7, e01998-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen, Y. H. et al. Phosphatidylserine vesicles enable efficient en bloc transmission of enteroviruses. Cell 160, 619–630 (2015). This study demonstrates that many virus particles can be incorporated into large microvesicles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Munz, C. The autophagic machinery in viral exocytosis. Front. Microbiol. 8, 269 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Robinson, S. M. et al. Coxsackievirus B exits the host cell in shed microvesicles displaying autophagosomal markers. PLoS Pathog. 10, e1004045 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meckes, D. G. Jr & Raab-Traub, N. Microvesicles and viral infection. J. Virol. 85, 12844–12854 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Spear, P. G. & Roizman, B. Proteins specified by herpes simplex virus. V. Purification and structural proteins of the herpesvirion. J. Virol. 9, 143–159 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA 113, E968–E977 (2016). This study provides evidence for different populations of EVs circulating at the same time, with each population being identified by a different composition of surface markers.

    Article  CAS  PubMed  Google Scholar 

  13. Chugh, P. E. et al. Systemically circulating viral and tumor-derived microRNAs in KSHV-associated malignancies. PLoS Pathog. 9, e1003484 (2013). This study reveals the secretion of host and viral miRNAs within EVs in the sera of patients and in mouse models, and shows that the uptake of these EVs modulates cell behaviour and induces cell migration and the secretion of IL-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cliffe, A. R., Nash, A. A. & Dutia, B. M. Selective uptake of small RNA molecules in the virion of murine gammaherpesvirus 68. J. Virol. 83, 2321–2326 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Amen, M. A. & Griffiths, A. Packaging of non-coding RNAs into herpesvirus virions: comparisons to coding RNAs. Front. Genet. 2, 81 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Meckes, D. G. Jr et al. Human tumor virus utilizes exosomes for intercellular communication. Proc. Natl Acad. Sci. USA 107, 20370–20375 (2010). This study is the first to identify the biological properties of EVs produced by cells that express the viral oncogene LMP1, and shows that the uptake of EVs results in the activation of ERK and AKT signalling pathways.

    Article  PubMed  Google Scholar 

  17. Bihrer, V. et al. Serum miR-122 as a biomarker of necroinflammation in patients with chronic hepatitis C virus infection. Am. J. Gastroenterol. 106, 1663–1669 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Xu, J. et al. Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis. Mol. Carcinog. 50, 136–142 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Laterza, O. F. et al. Plasma microRNAs as sensitive and specific biomarkers of tissue injury. Clin. Chem. 55, 1977–1983 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Lanford, R. E. et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327, 198–201 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309, 1577–1581 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Masaki, T. et al. miR-122 stimulates hepatitis C virus RNA synthesis by altering the balance of viral RNAs engaged in replication versus translation. Cell Host Microbe 17, 217–228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gould, S. J., Booth, A. M. & Hildreth, J. E. The Trojan exosome hypothesis. Proc. Natl Acad. Sci. USA 100, 10592–10597 (2003). This paper proposes the Trojan horse hypothesis for hiding viruses and viral components inside EVs.

    Article  CAS  PubMed  Google Scholar 

  24. Pegtel, D. M. et al. Functional delivery of viral miRNAs via exosomes. Proc. Natl Acad. Sci. USA 107, 6328–6333 (2010). This study reports the delivery of viral miRNAs into target cells through EVs.

    Article  CAS  PubMed  Google Scholar 

  25. Sowinski, S. et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat. Cell Biol. 10, 211–219 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Karlikow, M. et al. Drosophila cells use nanotube-like structures to transfer dsRNA and RNAi machinery between cells. Sci. Rep. 6, 27085 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu, W. et al. HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits. Nat. Immunol. 10, 1008–1017 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wolfers, J. et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat. Med. 7, 297–303 (2001). This study reports evidence for the role of EVs in antigenic cross-priming.

    Article  CAS  PubMed  Google Scholar 

  29. Arrode, G., Boccaccio, C., Abastado, J. P. & Davrinche, C. Cross-presentation of human cytomegalovirus pp65 (UL83) to CD8+ T cells is regulated by virus-induced, soluble-mediator-dependent maturation of dendritic cells. J. Virol. 76, 142–150 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Joffre, O. P., Segura, E., Savina, A. & Amigorena, S. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 12, 557–569 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Mori, Y. et al. Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway. Traffic 9, 1728–1742 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lenassi, M. et al. HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic 11, 110–122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, J. H. et al. HIV-Nef and ADAM17-containing plasma extracellular vesicles induce and correlate with immune pathogenesis in chronic HIV infection. EBioMedicine 6, 103–113 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Raymond, A. D. et al. HIV type 1 Nef is released from infected cells in CD45+ microvesicles and is present in the plasma of HIV-infected individuals. AIDS Res. Hum. Retroviruses 27, 167–178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Caby, M. P., Lankar, D., Vincendeau-Scherrer, C., Raposo, G. & Bonnerot, C. Exosomal-like vesicles are present in human blood plasma. Int. Immunol. 17, 879–887 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Nolte-'t Hoen, E., Cremer, T., Gallo, R. C. & Margolis, L. B. Extracellular vesicles and viruses: are they close relatives? Proc. Natl Acad. Sci. USA 113, 9155–9161 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Meckes, D. G. Jr. Exosomal communication goes viral. J. Virol. 89, 5200–5203 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Longatti, A. The dual role of exosomes in hepatitis A and C virus transmission and viral immune activation. Viruses 7, 6707–6715 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hergenreider, E. et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat. Cell Biol. 14, 249–256 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Gibbings, D. J., Ciaudo, C., Erhardt, M. & Voinnet, O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell Biol. 11, 1143–1149 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Kosaka, N. et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem. 285, 17442–17452 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mathivanan, S., Fahner, C. J., Reid, G. E. & Simpson, R. J. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 40, D1241–D1244 (2012). This study provides details of a database of proteins and RNAs that have been reported to be associated with EVs.

    Article  CAS  PubMed  Google Scholar 

  43. Mittelbrunn, M. et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2, 282 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koppers-Lalic, D. et al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep. 8, 1649–1658 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Lunavat, T. R. et al. Small RNA deep sequencing discriminates subsets of extracellular vesicles released by melanoma cells — evidence of unique microRNA cargos. RNA Biol. 12, 810–823 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kharkwal, H., Smith, C. G. & Wilson, D. W. Herpes simplex virus capsid localization to ESCRT–VPS4 complexes in the presence and absence of the large tegument protein UL36p. J. Virol. 90, 7257–7267 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Verweij, F. J. et al. Exosomal sorting of the viral oncoprotein LMP1 is restrained by TRAF2 association at signalling endosomes. J. Extracell. Vesicles 4, 26334 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Hurwitz, S. N. et al. CD63 regulates Epstein–Barr virus LMP1 exosomal packaging, enhancement of vesicle production, and noncanonical NF-κB signaling. J. Virol. 91, e02251-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wilson, C. M. et al. Sortilin mediates the release and transfer of exosomes in concert with two tyrosine kinase receptors. J. Cell Sci. 127, 3983–3997 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Roucourt, B., Meeussen, S., Bao, J., Zimmermann, P. & David, G. Heparanase activates the syndecan–syntenin–ALIX exosome pathway. Cell Res. 25, 412–428 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ghossoub, R. et al. Syntenin–ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat. Commun. 5, 3477 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Ostrowski, M. et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol. 12, 19–30 (2010). This study demonstrates a role for specific GTPasesin the regulation of EVs.

    Article  CAS  PubMed  Google Scholar 

  53. Fotheringham, J. A. & Raab-Traub, N. Epstein–Barr virus latent membrane protein 2 induces autophagy to promote abnormal acinus formation. J. Virol. 89, 6940–6944 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Inoue, J. et al. HBV secretion is regulated through the activation of endocytic and autophagic compartments mediated by Rab7 stimulation. J. Cell Sci. 128, 1696–1706 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Johns, H. L., Gonzalez-Lopez, C., Sayers, C. L., Hollinshead, M. & Elliott, G. Rab6 dependent post-Golgi trafficking of HSV1 envelope proteins to sites of virus envelopment. Traffic 15, 157–178 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Veettil, M. V. et al. ESCRT-0 component Hrs promotes macropinocytosis of Kaposi's sarcoma-associated herpesvirus in human dermal microvascular endothelial cells. J. Virol. 90, 3860–3872 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hyenne, V. et al. RAL-1 controls multivesicular body biogenesis and exosome secretion. J. Cell Biol. 211, 27–37 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cruz, L. et al. Potent inhibition of human cytomegalovirus by modulation of cellular SNARE syntaxin 5. J. Virol. 91, e01637-16 (2017).

    Article  PubMed  Google Scholar 

  59. Elgner, F. et al. Characterization of α-taxilin as a novel factor controlling the release of hepatitis C virus. Biochem. J. 473, 145–155 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Kawabata, A., Serada, S., Naka, T. & Mori, Y. Human herpesvirus 6 gM/gN complex interacts with v-SNARE in infected cells. J. Gen. Virol. 95, 2769–2777 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Vallhov, H. et al. Exosomes containing glycoprotein 350 released by EBV-transformed B cells selectively target B cells through CD21 and block EBV infection in vitro. J. Immunol. 186, 73–82 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Fitzner, D. et al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J. Cell Sci. 124, 447–458 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. van Dongen, H. M., Masoumi, N., Witwer, K. W. & Pegtel, D. M. Extracellular vesicles exploit viral entry routes for cargo delivery. Microbiol. Mol. Biol. Rev. 80, 369–386 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ruiss, R., Jochum, S., Mocikat, R., Hammerschmidt, W. & Zeidler, R. EBV-gp350 confers B-cell tropism to tailored exosomes and is a neo-antigen in normal and malignant B cells — a new option for the treatment of B-CLL. PLoS ONE 6, e25294 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shukla, D. & Spear, P. G. Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J. Clin. Invest. 108, 503–510 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Christianson, H. C., Svensson, K. J., van Kuppevelt, T. H., Li, J. P. & Belting, M. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc. Natl Acad. Sci. USA 110, 17380–17385 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Koumangoye, R. B., Sakwe, A. M., Goodwin, J. S., Patel, T. & Ochieng, J. Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading. PLoS ONE 6, e24234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sung, B. H., Ketova, T., Hoshino, D., Zijlstra, A. & Weaver, A. M. Directional cell movement through tissues is controlled by exosome secretion. Nat. Commun. 6, 7164 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee, H. D., Koo, B. H., Kim, Y. H., Jeon, O. H. & Kim, D. S. Exosome release of ADAM15 and the functional implications of human macrophage-derived ADAM15 exosomes. FASEB J. 26, 3084–3095 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Akula, S. M., Pramod, N. P., Wang, F. Z. & Chandran, B. Integrin α3β1 (CD 49c/29) is a cellular receptor for Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell 108, 407–419 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Zheng, X. et al. Treatment with hyperimmune equine immunoglobulin or immunoglobulin fragments completely protects rodents from Ebola virus infection. Sci. Rep. 6, 24179 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. de Gassart, A., Geminard, C., Fevrier, B., Raposo, G. & Vidal, M. Lipid raft-associated protein sorting in exosomes. Blood 102, 4336–4344 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ono, M. et al. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci. Signal. 7, ra63 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Atay, S. et al. Oncogenic KIT-containing exosomes increase gastrointestinal stromal tumor cell invasion. Proc. Natl Acad. Sci. USA 111, 711–716 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Zhou, W. et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25, 501–515 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Catanese, M. T. et al. Ultrastructural analysis of hepatitis C virus particles. Proc. Natl Acad. Sci. USA 110, 9505–9510 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Xiao, F. et al. Hepatitis C virus cell–cell transmission and resistance to direct-acting antiviral agents. PLoS Pathog. 10, e1004128 (2014). This study shows the direct cell-to-cell transfer of HCV that was resistant to antivirals but could be sensitized using entry inhibitors such as claudin antibody.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ramakrishnaiah, V. et al. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proc. Natl Acad. Sci. USA 110, 13109–13113 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Dreux, M. et al. Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host Microbe 12, 558–570 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Masciopinto, F. et al. Association of hepatitis C virus envelope proteins with exosomes. Eur. J. Immunol. 34, 2834–2842 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, J. et al. CD81 is required for hepatitis C virus glycoprotein-mediated viral infection. J. Virol. 78, 1448–1455 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. von Schaewen, M. et al. Expanding the host range of hepatitis C virus through viral adaptation. mBio 7, e01915-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pileri, P. et al. Binding of hepatitis C virus to CD81. Science 282, 938–941 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Brimacombe, C. L. et al. Neutralizing antibody-resistant hepatitis C virus cell-to-cell transmission. J. Virol. 85, 596–605 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Inal, J. M. & Jorfi, S. Coxsackievirus B transmission and possible new roles for extracellular vesicles. Biochem. Soc. Trans. 41, 299–302 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Mao, L. et al. Enterovirus 71 transmission by exosomes establishes a productive infection in human neuroblastoma cells. Virus Genes 52, 189–194 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Brenchley, J. M. et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med. 12, 1365–1371 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Johnson, T. P. et al. Induction of IL-17 and nonclassical T-cell activation by HIV-Tat protein. Proc. Natl Acad. Sci. USA 110, 13588–13593 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Izquierdo-Useros, N. et al. HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse? PLoS Pathog. 6, e1000740 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fang, Y. et al. Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol. 5, e158 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nguyen, D. G., Booth, A., Gould, S. J. & Hildreth, J. E. Evidence that HIV budding in primary macrophages occurs through the exosome release pathway. J. Biol. Chem. 278, 52347–52354 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Doitsh, G. et al. Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue. Cell 143, 789–801 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kadiu, I., Narayanasamy, P., Dash, P. K., Zhang, W. & Gendelman, H. E. Biochemical and biologic characterization of exosomes and microvesicles as facilitators of HIV-1 infection in macrophages. J. Immunol. 189, 744–754 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Izquierdo-Useros, N. et al. Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood 113, 2732–2741 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wiley, R. D. & Gummuluru, S. Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc. Natl Acad. Sci. USA 103, 738–743 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Li, M. et al. Quantitative proteomic analysis of exosomes from HIV-1-infected lymphocytic cells. Proteomics 12, 2203–2211 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Sheehy, A. M., Gaddis, N. C., Choi, J. D. & Malim, M. H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Tumne, A. et al. Noncytotoxic suppression of human immunodeficiency virus type 1 transcription by exosomes secreted from CD8+ T cells. J. Virol. 83, 4354–4364 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Andre, F. et al. Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J. Immunol. 172, 2126–2136 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Kovar, M. et al. Direct stimulation of T cells by membrane vesicles from antigen-presenting cells. Proc. Natl Acad. Sci. USA 103, 11671–11676 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Gaulke, C. A. et al. Intestinal epithelial barrier disruption through altered mucosal microRNA expression in human immunodeficiency virus and simian immunodeficiency virus infections. J. Virol. 88, 6268–6280 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chang, S. T. et al. Next-generation sequencing of small RNAs from HIV-infected cells identifies phased microrna expression patterns and candidate novel microRNAs differentially expressed upon infection. mBio 4, e00549-12 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Triboulet, R. et al. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 315, 1579–1582 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Thapa, D. R. et al. Serum microRNAs in HIV-infected individuals as pre-diagnosis biomarkers for AIDS-NHL. J. Acquir. Immune Defic. Syndr. 66, 229–237 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Narayanan, A. et al. Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. J. Biol. Chem. 288, 20014–20033 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Whisnant, A. W. et al. In-depth analysis of the interaction of HIV-1 with cellular microRNA biogenesis and effector mechanisms. mBio 4, e000193 (2013).

    Article  PubMed  Google Scholar 

  108. Cullen, B. R., Cherry, S. & tenOever, B. R. Is RNA interference a physiologically relevant innate antiviral immune response in mammals? Cell Host Microbe 14, 374–378 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Kincaid, R. P., Chen, Y., Cox, J. E., Rethwilm, A. & Sullivan, C. S. Noncanonical microRNA (miRNA) biogenesis gives rise to retroviral mimics of lymphoproliferative and immunosuppressive host miRNAs. mBio 5, e00074 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Whisnant, A. W. et al. Identification of novel, highly expressed retroviral microRNAs in cells infected by bovine foamy virus. J. Virol. 88, 4679–4686 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kincaid, R. P., Burke, J. M. & Sullivan, C. S. RNA virus microRNA that mimics a B-cell oncomiR. Proc. Natl Acad. Sci. USA 109, 3077–3082 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Nolte-'t Hoen, E. N. et al. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 40, 9272–9285 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pare, J. M. & Sullivan, C. S. Distinct antiviral responses in pluripotent versus differentiated cells. PLoS Pathog. 10, e1003865 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sufiawati, I. & Tugizov, S. M. HIV-associated disruption of tight and adherens junctions of oral epithelial cells facilitates HSV-1 infection and spread. PLoS ONE 9, e88803 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ensoli, B. et al. Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi's sarcoma. Nature 371, 674–680 (1994).

    Article  CAS  PubMed  Google Scholar 

  116. Debaisieux, S., Rayne, F., Yezid, H. & Beaumelle, B. The ins and outs of HIV-1 Tat. Traffic 13, 355–363 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Wender, P. A. et al. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc. Natl Acad. Sci. USA 97, 13003–13008 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Nagahara, H. et al. Transduction of full-length TAT fusion proteins into mammalian cells: TAT–p27Kip1 induces cell migration. Nat. Med. 4, 1449–1452 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Amorim, N. A. et al. Interaction of HIV-1 Nef protein with the host protein Alix promotes lysosomal targeting of CD4 receptor. J. Biol. Chem. 289, 27744–27756 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dikeakos, J. D. et al. An interdomain binding site on HIV-1 Nef interacts with PACS-1 and PACS-2 on endosomes to down-regulate MHC-I. Mol. Biol. Cell 23, 2184–2197 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Aqil, M. et al. The HIV Nef protein modulates cellular and exosomal miRNA profiles in human monocytic cells. J. Extracell. Vesicles http://dx.doi.org/10.3402/jev.v3.23129 (2014).

  122. Luo, X., Fan, Y., Park, I. W. & He, J. J. Exosomes are unlikely involved in intercellular Nef transfer. PLoS ONE 10, e0124436 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Flanagan, J., Middeldorp, J. & Sculley, T. Localization of the Epstein–Barr virus protein LMP1 to exosomes. J. Gen. Virol. 84, 1871–1879 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Raab-Traub, N. in Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis (eds Arvin, A. et al.) 986–1006 (Cambridge Univ. Press, 2007).

    Book  Google Scholar 

  125. Houali, K. et al. A new diagnostic marker for secreted Epstein–Barr virus encoded LMP1 and BARF1 oncoproteins in the serum and saliva of patients with nasopharyngeal carcinoma. Clin. Cancer Res. 13, 4993–5000 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Verweij, F. J. et al. LMP1 association with CD63 in endosomes and secretion via exosomes limits constitutive NF-κB activation. EMBO J. 30, 2115–2129 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ardila-Osorio, H. et al. TRAF interactions with raft-like buoyant complexes, better than TRAF rates of degradation, differentiate signaling by CD40 and EBV latent membrane protein 1. Int. J. Cancer 113, 267–275 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Dukers, D. F. et al. Direct immunosuppressive effects of EBV-encoded latent membrane protein 1. J. Immunol. 165, 663–670 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Klibi, J. et al. Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein–Barr virus-infected nasopharyngeal carcinoma cells. Blood 113, 1957–1966 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Keryer-Bibens, C. et al. Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral latent membrane protein 1 and the immunomodulatory protein galectin 9. BMC Cancer 6, 283 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Meckes, D. G. Jr et al. Modulation of B-cell exosome proteins by gamma herpesvirus infection. Proc. Natl Acad. Sci. USA 110, E2925–E2933 (2013). This study reports a comprehensive proteomic analysis of EVs that are produced by B cell lines infected with EBV, KSHV, or EBV and KSHV, which led to the prediction that EVs can modulate cell death and survival.

    Article  CAS  PubMed  Google Scholar 

  132. Ceccarelli, S. et al. Epstein–Barr virus latent membrane protein 1 promotes concentration in multivesicular bodies of fibroblast growth factor 2 and its release through exosomes. Int. J. Cancer 121, 1494–1506 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Aga, M. et al. Exosomal HIF1α supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene 33, 4613–4622 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Baglio, S. R. et al. Sensing of latent EBV infection through exosomal transfer of 5′pppRNA. Proc. Natl Acad. Sci. USA 113, E587–E596 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Cavallin, L. E., Goldschmidt-Clermont, P. & Mesri, E. A. Molecular and cellular mechanisms of KSHV oncogenesis of Kaposi's sarcoma associated with HIV/AIDS. PLoS Pathog. 10, e1004154 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cai, X. et al. Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl Acad. Sci. USA 102, 5570–5575 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Samols, M. A., Hu, J., Skalsky, R. L. & Renne, R. Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi's sarcoma-associated herpesvirus. J. Virol. 79, 9301–9305 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. O'Hara, A. J. et al. Pre-micro RNA signatures delineate stages of endothelial cell transformation in Kaposi sarcoma. PLoS Pathog. 5, e1000389 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lin, X., Li, X., Liang, D. & Lan, K. MicroRNAs and unusual small RNAs discovered in Kaposi's sarcoma-associated herpesvirus virions. J. Virol. 86, 12717–12730 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chugh, P., Tamburro, K. & Dittmer, D. P. Profiling of pre-micro RNAs and microRNAs using quantitative real-time PCR (qPCR) arrays. J. Vis. Exp. http://dx.doi.org/10.3791/2210 (2010).

  141. Myoung, J. & Ganem, D. Generation of a doxycycline-inducible KSHV producer cell line of endothelial origin: maintenance of tight latency with efficient reactivation upon induction. J. Virol. Methods 174, 12–21 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rainy, N., Zayoud, M., Kloog, Y., Rechavi, O. & Goldstein, I. Viral oncomiR spreading between B and T cells is employed by Kaposi's sarcoma herpesvirus to induce non-cell-autonomous target gene regulation. Oncotarget 7, 41870–41884 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Singh, V. V. et al. Kaposi's sarcoma-associated herpesvirus latency in endothelial and B cells activates gamma interferon-inducible protein 16-mediated inflammasomes. J. Virol. 87, 4417–4431 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sullivan, B. M. & Coscoy, L. The U24 protein from human herpesvirus 6 and 7 affects endocytic recycling. J. Virol. 84, 1265–1275 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Temme, S., Eis-Hubinger, A. M., McLellan, A. D. & Koch, N. The herpes simplex virus-1 encoded glycoprotein B diverts HLA-DR into the exosome pathway. J. Immunol. 184, 236–243 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Hogue, I. B., Scherer, J. & Enquist, L. W. Exocytosis of alphaherpesvirus virions, light particles, and glycoproteins uses constitutive secretory mechanisms. mBio 7, e00820-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Tandon, R., AuCoin, D. P. & Mocarski, E. S. Human cytomegalovirus exploits ESCRT machinery in the process of virion maturation. J. Virol. 83, 10797–10807 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cepeda, V., Esteban, M. & Fraile-Ramos, A. Human cytomegalovirus final envelopment on membranes containing both trans-Golgi network and endosomal markers. Cell. Microbiol. 12, 386–404 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Walker, J. D., Maier, C. L. & Pober, J. S. Cytomegalovirus-infected human endothelial cells can stimulate allogeneic CD4+ memory T cells by releasing antigenic exosomes. J. Immunol. 182, 1548–1559 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kalamvoki, M., Du, T. & Roizman, B. Cells infected with herpes simplex virus 1 export to uninfected cells exosomes containing STING, viral mRNAs, and microRNAs. Proc. Natl Acad. Sci. USA 111, E4991–E4996 (2014). This study demonstrates that STING, an innate immune sensor, as well as viral mRNAs and host miRNAs are transferred from virus-infected cells to neighbouring cells without being transmitted by a virus.

    Article  CAS  PubMed  Google Scholar 

  151. Kalamvoki, M. & Deschamps, T. Extracellular vesicles during herpes simplex virus type 1 infection: an inquire. Virol. J. 13, 63 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bridgeman, A. et al. Viruses transfer the antiviral second messenger cGAMP between cells. Science 349, 1228–1232 (2015). This study demonstrates that a small molecule that is involved in innate immune sensing is transferred by virions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Han, Z. et al. miR-H28 and miR-H29 expressed late in productive infection are exported and restrict HSV-1 replication and spread in recipient cells. Proc. Natl Acad. Sci. USA 113, E894–E901 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Schifano, J. M., Corcoran, K., Kelkar, H. & Dittmer, D. P. Expression of the antisense-to-latency transcript long noncoding RNA in Kaposi's sarcoma-associated herpesvirus. J. Virol. 91, e01698-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Fabbri, M. et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. Natl Acad. Sci. USA 109, E2110–E2116 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Li, J. et al. Exosomes mediate the cell-to-cell transmission of IFN-α-induced antiviral activity. Nat. Immunol. 14, 793–803 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Robbins, P. D. & Morelli, A. E. Regulation of immune responses by extracellular vesicles. Nat. Rev. Immunol. 14, 195–208 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Taylor, D. D. & Shah, S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods 87, 3–10 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. de Menezes-Neto, A. et al. Size-exclusion chromatography as a stand-alone methodology identifies novel markers in mass spectrometry analyses of plasma-derived vesicles from healthy individuals. J. Extracell. Vesicles 4, 27378 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Hong, C. S., Funk, S., Muller, L., Boyiadzis, M. & Whiteside, T. L. Isolation of biologically active and morphologically intact exosomes from plasma of patients with cancer. J. Extracell. Vesicles 5, 29289 (2016).

    Article  CAS  PubMed  Google Scholar 

  161. Welton, J. L., Webber, J. P., Botos, L. A., Jones, M. & Clayton, A. Ready-made chromatography columns for extracellular vesicle isolation from plasma. J. Extracell. Vesicles 4, 27269 (2015).

    Article  PubMed  Google Scholar 

  162. Lock, M. et al. Rapid, simple, and versatile manufacturing of recombinant adeno-associated viral vectors at scale. Hum. Gene Ther. 21, 1259–1271 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Arroyo, J. D. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA 108, 5003–5008 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Oksvold, M. P. et al. Expression of B-cell surface antigens in subpopulations of exosomes released from B-cell lymphoma cells. Clin. Ther. 36, 847–862.e1 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Zomer, A. et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161, 1046–1057 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kalra, H. et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 10, e1001450 (2012). This study provides details of a database of proteins and RNAs that are reported to be associated with EVs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratories is supported by public health service grants (DA040394 and CA019014) and the University Cancer Research Fund (UCRF). The authors thank their colleagues R. McNamara, P. Chugh and B. Damania for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nancy Raab-Traub or Dirk P. Dittmer.

Ethics declarations

Competing interests

D.P.D. has received early access and beta testing reagents related to extracellular vesicles and miRNA diagnostics from JSR Micro, Life Sciences Inc. and Aclea Inc. This did not influence the opinions expressed in this Review.

PowerPoint slides

Glossary

Multivesicular bodies

(MVBs). Structures below the plasma membrane that function as the central hub for the sorting of molecules into other specialized compartments, into and out of cells.

Biomarker

A protein, mRNA or other small molecule that can be measured and is associated with disease outcome, either independent of treatment (prognostic) or in relation to treatment (predictive).

Crowding agents

Chemicals, such as polyethylene glycol or acetone that change the availability of free solvent for proteins and other macromolecular structures, which results in aggregation.

Nanotubes

Membranous protrusions that connect adjacent cells over extended distances (up to 100 μM) and can transfer cellular components and viruses.

Cross-priming

The transfer of antigens from one cell to another cell, often to a professional antigen-presenting cell, that does not make the antigen; the phrase was originally coined to explain counterintuitive aspects of T cell responses.

Latent infections

The long-term presence of viral genomes (DNA or RNA) in a cell without any evidence of virion production.

Capsid

Proteins that encapsulate viral genomes. Capsids are rigid, highly structured and are similar to crystals with a defined symmetry. The size, shape and symmetry of the capsid can be determined by electron microscopy and is sometimes used to classify viruses into taxa.

Endosomal sorting complex required for transport machinery

(ESCRT machinery). A multiprotein complex that is involved in the biogenesis of membrane vesicles. Viruses use the ESCRT machinery to assemble virions and bud.

RGD motif

The tripeptide Arg-Gly-Asp (RGD) is recognized by many integrins, either as part of a short peptide (blocking peptide) or as repeat region in extracellular matrix proteins.

Angiogenesis

The formation of new vessels that carry either blood or lymph, which involves the migration, growth and differentiation of endothelial cells.

Hyperimmune serum

Serum obtained from one, or many, infected convalescent animals that contains high levels of blocking antibodies to a target virus.

Cytopathic effect

Changes in host cells that are caused by virus infection.

Interstitial spaces

Small, narrow spaces between tissues that are typically filled with interstitial liquid.

Principal component analysis

A statistical method used to uncover relationships defined by 10–1,000 or more correlated variables, which identifies the factors that contribute to variability. Typically, the first 3–5 principal components are composed of the variables that have the greatest explanatory power.

Spectral counting

A method that determines the relative presence or absence of a peptide in a pair of samples analysed by mass spectroscopy.

Primary effusion lymphoma

A diffuse large B cell lymphoma that is caused by Kaposi sarcoma-associated herpesvirus.

Paracrine

Affecting the physiology of neighbouring cells without cell-to-cell contact, typically through cytokines or growth factors. If the growth factors act on the same cell type from which they originate the process is called an autocrine loop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raab-Traub, N., Dittmer, D. Viral effects on the content and function of extracellular vesicles. Nat Rev Microbiol 15, 559–572 (2017). https://doi.org/10.1038/nrmicro.2017.60

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro.2017.60

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research