Key Points
-
Neisseria meningitidis (the meningococcus) is an important commensal, pathogen and model organism with a small but hyperdynamic genome.
-
Meningococcal fitness, genome evolution and diversity result from a fine-tuned balance between mechanisms for variability and maintenance.
-
DNA-repair mechanisms probably have a key role in genome dynamics in the meningococcus.
-
Neisserial mutY mutants show high spontaneous mutation rates, and the meningococcal DNA glycosylase MutY has a prominent role in DNA repair.
-
Unique features of meningococcal DNA repair include the relative importance of MutY in synergy with Fpg, and the lesser influence of MutS in the prevention of spontaneous DNA damage.
-
Meningococcal DNA-uptake sequences required for transformation show a biased distribution towards genome-maintenance genes, ensuring their prioritized uptake through transformation if irreparably damaged or lost.
-
Instead of sensing the environment and responding accordingly, meningococcal cells seem to generate a surplus of genetic variants, on which selective pressures can act.
-
Horizontal gene transfer and DNA recombination are key processes that result in genome diversity in the meningococcus. Further analysis of these processes will enhance our understanding of genome dynamics.
-
Chromosomal alterations and polymorphisms ensuing from genome instability provide the meningococcus with adaptability and ensure immune evasion. These mechanisms also represent immense challenges for vaccine development and combating drug resistance.
Abstract
Neisseria meningitidis (the meningococcus) is an important commensal, pathogen and model organism that faces up to the environment in its exclusive human host with a small but hyperdynamic genome. Compared with Escherichia coli, several DNA-repair genes are absent in N. meningitidis, whereas the gene products of others interact differently. Instead of responding to external stimuli, the meningococcus spontaneously produces a plethora of genetic variants. The frequent genomic alterations and polymorphisms have profound consequences for the interaction of this microorganism with its host, impacting structural and antigenic changes in crucial surface components that are relevant for adherence and invasion as well as antibiotic resistance and vaccine development.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Anon. Meningococcal meningitis. World Health Organization [online],<http://www.who.int/mediacentre/factsheets/fs141/en/index.html> (2005).
Hardy, S. J., Christodoulides, M., Weller, R. O. & Heckels, J. E. Interactions of Neisseria meningitidis with cells of the human meninges. Mol. Microbiol. 36, 817–829 (2000).
Nassif, X. Microbiology. A furtive pathogen revealed. Science 287, 1767–1768 (2000).
Edwards, J. L. & Apicella, M. A. The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin. Microbiol. Rev. 17, 965–981 (2004).
Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).
Eisen, J. A. & Hanawalt, P. C. A phylogenomic study of DNA repair genes, proteins, and processes. Mutat. Res. 435, 171–213 (1999).
Tonjum, T. & Seeberg, E. Microbial fitness and genome dynamics. Trends Microbiol. 9, 356–358 (2001).
Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001).
Parkhill, J. et al. Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404, 502–506 (2000).
Tettelin, H. et al. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287, 1809–1815 (2000).
Demple, B. & Harrison, L. Repair of oxidative damage to DNA: enzymology and biology. Annu. Rev. Biochem. 63, 915–948 (1994).
Seeberg, E., Eide, L. & Bjoras, M. The base excision repair pathway. Trends Biochem. Sci. 20, 391–397 (1995).
Davidsen, T., Bjoras, M., Seeberg, E. C. & Tonjum, T. Antimutator role of DNA glycosylase MutY in pathogenic Neisseria species. J. Bacteriol. 187, 2801–2809 (2005). The first complete characterization of a meningococcal DNA-repair protein, emphasizing the importance of BER in Neisseria species.
Nghiem, Y., Cabrera, M., Cupples, C. G. & Miller, J. H. The mutY gene: a mutator locus in Escherichia coli that generates G.C→T.A transversions. Proc. Natl Acad. Sci. USA 85, 2709–2713 (1988).
Michaels, M. L., Cruz, C., Grollman, A. P. & Miller, J. H. Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Proc. Natl Acad. Sci. USA 89, 7022–7025 (1992).
Fowler, R. G. et al. Interactions among the Escherichia coli mutT, mutM, and mutY damage prevention pathways. DNA Repair (Amst.) 2, 159–173 (2003).
Schofield, M. J. & Hsieh, P. DNA mismatch repair: molecular mechanisms and biological function. Annu. Rev. Microbiol. 57, 579–608 (2003).
Belland, R. J. H-DNA formation by the coding repeat elements of neisserial opa genes. Mol. Microbiol. 5, 2351–2360 (1991).
Lamers, M. H. et al. The crystal structure of DNA mismatch repair protein MutS binding to a G x T mismatch. Nature 407, 711–717 (2000).
Obmolova, G., Ban, C., Hsieh, P. & Yang, W. Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. Nature 407, 703–710 (2000).
Ban, C., Junop, M. & Yang, W. Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell 97, 85–97 (1999).
Richardson, A. R. & Stojiljkovic, I. Mismatch repair and the regulation of phase variation in Neisseria meningitidis. Mol. Microbiol. 40, 645–655 (2001).
Richardson, A. R., Yu, Z., Popovic, T. & Stojiljkovic, I. Mutator clones of Neisseria meningitidis in epidemic serogroup A disease. Proc. Natl Acad. Sci. USA 99, 6103–6107 (2002). A high prevalence of mutators in serogroup A disease-associated isolates indicates that hypermutability might play a major role in meningococcal transmission between hosts.
Hanawalt, P. C. Subpathways of nucleotide excision repair and their regulation. Oncogene 21, 8949–8956 (2002).
Seeberg, E. Reconstitution of an Escherichia coli repair endonuclease activity from the separated uvrA+ and uvrB+/uvrC+ gene products. Proc. Natl Acad. Sci. USA 75, 2569–2573 (1978). The first in vitro reconstitution of the NER pathway in E. coli using purified proteins.
Campbell, L. A. & Yasbin, R. E. A DNA excision repair system for Neisseria gonorrhoeae. Mol. Gen. Genet. 193, 561–563 (1984).
Black, C. G., Fyfe, J. A. & Davies, J. K. Cloning, nucleotide sequence and transcriptional analysis of the uvrA gene from Neisseria gonorrhoeae. Mol. Gen. Genet. 254, 479–485 (1997).
Black, C. G., Fyfe, J. A. & Davies, J. K. A promoter associated with the neisserial repeat can be used to transcribe the uvrB gene from Neisseria gonorrhoeae. J. Bacteriol. 177, 1952–1958 (1995).
Courcelle, J., Khodursky, A., Peter, B., Brown, P. O. & Hanawalt, P. C. Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158, 41–64 (2001).
Freidberg, E. C., Walker, G. C. & Siede, W. DNA Repair and Mutagenesis (ASM, Washington DC, 1995).
Black, C. G., Fyfe, J. A. & Davies, J. K. Absence of an SOS-like system in Neisseria gonorrhoeae. Gene 208, 61–66 (1998). This paper describes an absence of an SOS response in N. gonorrhoeae and therefore highlights an important difference in the DNA-repair profile of Neisseria and E. coli.
Falnes, P. O. & Rognes, T. DNA repair by bacterial AlkB proteins. Res. Microbiol. 154, 531–538 (2003).
Mehr, I. J. & Seifert, H. S. Differential roles of homologous recombination pathways in Neisseria gonorrhoeae pilin antigenic variation, DNA transformation and DNA repair. Mol. Microbiol. 30, 697–710 (1998).
Koomey, J. M. & Falkow, S. Cloning of the recA gene of Neisseria gonorrhoeae and construction of gonococcal recA mutants. J. Bacteriol. 169, 790–795 (1987).
Stohl, E. A., Blount, L. & Seifert, H. S. Differential cross-complementation patterns of Escherichia coli and Neisseria gonorrhoeae RecA proteins. Microbiology 148, 1821–1831 (2002).
Kline, K. A., Sechman, E. V., Skaar, E. P. & Seifert, H. S. Recombination, repair and replication in the pathogenic Neisseriae: the 3 R's of molecular genetics of two human-specific bacterial pathogens. Mol. Microbiol. 50, 3–13 (2003).
Skaar, E. P., Lazio, M. P. & Seifert, H. S. Roles of the recJ and recN genes in homologous recombination and DNA repair pathways of Neisseria gonorrhoeae. J. Bacteriol. 184, 919–927 (2002).
Kline, K. A. & Seifert, H. S. Role of the Rep helicase gene in homologous recombination in Neisseria gonorrhoeae. J. Bacteriol. 187, 2903–2907 (2005).
Hill, S. A. Neisseria gonorrhoeae recJ mutants show defects in recombinational repair of alkylated bases and UV-induced pyrimidine dimers. Mol. Gen. Genet. 264, 268–275 (2000).
Salvatore, P. et al. Phenotypes of a naturally defective recB allele in Neisseria meningitidis clinical isolates. Infect. Immun. 70, 4185–4195 (2002).
Seib, K. L., Tseng, H. J., McEwan, A. G., Apicella, M. A. & Jennings, M. P. Defenses against oxidative stress in Neisseria gonorrhoeae and Neisseria meningitidis: distinctive systems for different lifestyles. J. Infect. Dis. 190, 136–147 (2004).
Napolitano, R., Janel-Bintz, R., Wagner, J. & Fuchs, R. P. All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. EMBO J. 19, 6259–6265 (2000).
Martin, P., Sun, L., Hood, D. W. & Moxon, E. R. Involvement of genes of genome maintenance in the regulation of phase variation frequencies in Neisseria meningitidis. Microbiology 150, 3001–3012 (2004).
Campbell, L. A. & Yasbin, R. E. Deoxyribonucleic acid repair capacities of Neisseria gonorrhoeae: absence of photoreactivation. J. Bacteriol. 140, 1109–1111 (1979).
Sedgwick, B. & Lindahl, T. Recent progress on the Ada response for inducible repair of DNA alkylation damage. Oncogene 21, 8886–8894 (2002).
Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).
Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474 (1997).
Morelle, S., Carbonnelle, E. & Nassif, X. The REP2 repeats of the genome of Neisseria meningitidis are associated with genes coordinately regulated during bacterial cell interaction. J. Bacteriol. 185, 2618–2627 (2003).
Morelle, S., Carbonnelle, E., Matic, I. & Nassif, X. Contact with host cells induces a DNA repair system in pathogenic Neisseriae. Mol. Microbiol. 55, 853–861 (2005).
Moxon, E. R., Lenski, R. E. & Rainey, P. B. Adaptive evolution of highly mutable loci in pathogenic bacteria. Perspect. Biol. Med. 42, 154–155 (1998).
Feil, E. J. & Spratt, B. G. Recombination and the population structures of bacterial pathogens. Annu. Rev. Microbiol. 55, 561–590 (2001).
Snyder, L. A., Butcher, S. A. & Saunders, N. J. Comparative whole-genome analyses reveal over 100 putative phase-variable genes in the pathogenic Neisseria spp. Microbiology 147, 2321–2332 (2001). Experimental verification of predicted meningococcal contingency genes, leading to identification of a novel phase-variable gene that contains a tetranucleotide repeat tract.
Martin, P. et al. Experimentally revised repertoire of putative contingency loci in Neisseria meningitidis strain MC58: evidence for a novel mechanism of phase variation. Mol. Microbiol. 50, 245–257 (2003).
Henderson, I. R., Owen, P. & Nataro, J. P. Molecular switches — the ON and OFF of bacterial phase variation. Mol. Microbiol. 33, 919–932 (1999).
Shapiro, J. A. Repetitive DNA, genome system architecture and genome reorganization. Res. Microbiol. 153, 447–453 (2002).
Smith, H. O., Gwinn, M. L. & Salzberg, S. L. DNA uptake signal sequences in naturally transformable bacteria. Res. Microbiol. 150, 603–616 (1999).
Goodman, S. D. & Scocca, J. J. Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc. Natl Acad. Sci. USA 85, 6982–6986 (1988). The identification of the nucleotide composition of the gonoccocal DUS required for transformation and its prevalence in putative transcriptional terminators.
Davidsen, T. et al. Biased distribution of DNA uptake sequences towards genome maintenance genes. Nucleic Acids Res. 32, 1050–1058 (2004). A higher density of DUSs in genes related to DNA repair, recombination, replication and restriction/modification than in any other gene group was found in phylogenetically diverse neisserial and Pasteurellaceae species. This reflects facilitated recovery of genome-preserving functions after genotoxic stress.
Elkins, C., Thomas, C. E., Seifert, H. S. & Sparling, P. F. Species-specific uptake of DNA by gonococci is mediated by a 10-base-pair sequence. J. Bacteriol. 173, 3911–3913 (1991).
Denamur, E. et al. Evolutionary implications of the frequent horizontal transfer of mismatch repair genes. Cell 103, 711–721 (2000).
Jordan, P., Snyder, L. A. & Saunders, N. J. Diversity in coding tandem repeats in related Neisseria spp. BMC Microbiol. 3, 23 (2003).
Tonjum, T., Caugant, D. A., Dunham, S. A. & Koomey, M. Structure and function of repetitive sequence elements associated with a highly polymorphic domain of the Neisseria meningitidis PilQ protein. Mol. Microbiol. 29, 111–124 (1998).
Correia, F. F., Inouye, S. & Inouye, M. A family of small repeated elements with some transposon-like properties in the genome of Neisseria gonorrhoeae. J. Biol. Chem. 263, 12194–12198 (1988).
Correia, F. F., Inouye, S. & Inouye, M. A 26-base-pair repetitive sequence specific for Neisseria gonorrhoeae and Neisseria meningitidis genomic DNA. J. Bacteriol. 167, 1009–1015 (1986).
Mazzone, M. et al. Whole-genome organization and functional properties of miniature DNA insertion sequences conserved in pathogenic Neisseriae. Gene 278, 211–222 (2001).
Liu, S. V., Saunders, N. J., Jeffries, A. & Rest, R. F. Genome analysis and strain comparison of correia repeats and correia repeat-enclosed elements in pathogenic Neisseria. J. Bacteriol. 184, 6163–6173 (2002).
Rouquette-Loughlin, C. E., Balthazar, J. T., Hill, S. A. & Shafer, W. M. Modulation of the mtrCDE-encoded efflux pump gene complex of Neisseria meningitidis due to a Correia element insertion sequence. Mol. Microbiol. 54, 731–741 (2004).
Moxon, E. R., Rainey, P. B., Nowak, M. A. & Lenski, R. E. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4, 24–33 (1994). The term 'contingency genes' was introduced to describe genes with high mutation rates that generate random phenotypic variation in Neisseria and H. influenzae.
Murphy, G. L., Connell, T. D., Barritt, D. S., Koomey, M. & Cannon, J. G. Phase variation of gonococcal protein II: regulation of gene expression by slipped-strand mispairing of a repetitive DNA sequence. Cell 56, 539–547 (1989). Identification of a RecA-independent slipped-strand mispairing mechanism of CTCTT repeats that regulates phase variation of gonococcal outer-membrane protein II.
Kawula, T. H., Aho, E. L., Barritt, D. S., Klapper, D. G. & Cannon, J. G. Reversible phase variation of expression of Neisseria meningitidis class 5 outer membrane proteins and their relationship to gonococcal proteins II. Infect. Immun. 56, 380–386 (1988).
Sarkari, J., Pandit, N., Moxon, E. R. & Achtman, M. Variable expression of the Opc outer membrane protein in Neisseria meningitidis is caused by size variation of a promoter containing poly-cytidine. Mol. Microbiol. 13, 207–217 (1994).
Rudel, T. et al. Role of pili and the phase-variable PilC protein in natural competence for transformation of Neisseria gonorrhoeae. Proc. Natl Acad. Sci. USA 92, 7986–7990 (1995).
Hammerschmidt, S. et al. Capsule phase variation in Neisseria meningitidis serogroup B by slipped-strand mispairing in the polysialyltransferase gene (siaD): correlation with bacterial invasion and the outbreak of meningococcal disease. Mol. Microbiol. 20, 1211–1220 (1996).
Rytkonen, A. et al. Neisseria meningitidis undergoes PilC phase variation and PilE sequence variation during invasive disease. J. Infect. Dis. 189, 402–409 (2004).
Jennings, M. P. et al. The genetic basis of the phase variation repertoire of lipopolysaccharide immunotypes in Neisseria meningitidis. Microbiology 145, 3013–3021 (1999).
Berrington, A. W. et al. Phase variation in meningococcal lipooligosaccharide biosynthesis genes. FEMS Immunol. Med. Microbiol. 34, 267–275 (2002).
Alexander, H. L., Richardson, A. R. & Stojiljkovic, I. Natural transformation and phase variation modulation in Neisseria meningitidis. Mol. Microbiol. 52, 771–783 (2004).
Alexander, H. L., Rasmussen, A. W. & Stojiljkovic, I. Identification of Neisseria meningitidis genetic loci involved in the modulation of phase variation frequencies. Infect. Immun. 72, 6743–6747 (2004).
Jolley, K. A., Sun, L., Moxon, E. R. & Maiden, M. C. Dam inactivation in Neisseria meningitidis: prevalence among diverse hyperinvasive lineages. BMC Microbiol. 4, 34 (2004).
Bucci, C. et al. Hypermutation in pathogenic bacteria: frequent phase variation in meningococci is a phenotypic trait of a specialized mutator biotype. Mol. Cell 3, 435–445 (1999).
Martin, P., Makepeace, K., Hill, S. A., Hood, D. W. & Moxon, E. R. Microsatellite instability regulates transcription factor binding and gene expression. Proc. Natl Sci. USA 102, 3800–3804 (2005).
Borst, P. Molecular genetics of antigenic variation. Immunol. Today 12, A29–A33 (1991).
Connell, T. D., Shaffer, D. & Cannon, J. G. Characterization of the repertoire of hypervariable regions in the Protein II (opa) gene family of Neisseria gonorrhoeae. Mol. Microbiol. 4, 439–449 (1990).
Swanson, J. et al. Gene conversion involving the pilin structural gene correlates with pilus+ in equilibrium with pilus– changes in Neisseria gonorrhoeae. Cell 47, 267–276 (1986).
Bhat, K. S. et al. The opacity proteins of Neisseria gonorrhoeae strain MS11 are encoded by a family of 11 complete genes. Mol. Microbiol. 5, 1889–1901 (1991).
Aho, E. L., Dempsey, J. A., Hobbs, M. M., Klapper, D. G. & Cannon, J. G. Characterization of the opa (class 5) gene family of Neisseria meningitidis. Mol. Microbiol. 5, 1429–1437 (1991).
Vazquez, J. A. et al. Interspecies recombination in nature: a meningococcus that has acquired a gonococcal PIB porin. Mol. Microbiol. 15, 1001–1007 (1995).
Hagblom, P., Segal, E., Billyard, E. & So, M. Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae. Nature 315, 156–158 (1985).
Stern, A., Brown, M., Nickel, P. & Meyer, T. F. Opacity genes in Neisseria gonorrhoeae: control of phase and antigenic variation. Cell 47, 61–71 (1986).
Koomey, M., Gotschlich, E. C., Robbins, K., Bergstrom, S. & Swanson, J. Effects of recA mutations on pilus antigenic variation and phase transitions in Neisseria gonorrhoeae. Genetics 117, 391–398 (1987).
Zhang, Q. Y., DeRyckere, D., Lauer, P. & Koomey, M. Gene conversion in Neisseria gonorrhoeae: evidence for its role in pilus antigenic variation. Proc. Natl Acad. Sci. USA 89, 5366–5370 (1992).
Gibbs, C. P. et al. Reassortment of pilin genes in Neisseria gonorrhoeae occurs by two distinct mechanisms. Nature 338, 651–652 (1989).
Perry, A. C., Nicolson, I. J. & Saunders, J. R. Neisseria meningitidis C114 contains silent, truncated pilin genes that are homologous to Neisseria gonorrhoeae pil sequences. J. Bacteriol. 170, 1691–1697 (1988).
Swanson, J., Morrison, S., Barrera, O. & Hill, S. Piliation changes in transformation-defective gonococci. J. Exp. Med. 171, 2131–2139 (1990). This paper and reference 91 show the role of gene conversion, and not transformation, in creating pilin variants.
Chen, I. & Dubnau, D. DNA uptake during bacterial transformation. Nature Rev. Microbiol. 2, 241–249 (2004).
Koomey, M. Competence for natural transformation in Neisseria gonorrhoeae: a model system for studies of horizontal gene transfer. APMIS Suppl. 84, 56–61 (1998).
Fussenegger, M., Rudel, T., Barten, R., Ryll, R. & Meyer, T. F. Transformation competence and type-4 pilus biogenesis in Neisseria gonorrhoeae — a review. Gene 192, 125–134 (1997).
Jyssum, K. & Lie, S. Genetic factors determining competence in transformation of Neisseria meningitidis. 1. A permanent loss of competence. Acta Pathol. Microbiol. Scand. 63, 306–316 (1965). The first demonstration of natural competence for transformation in N. meningitidis.
Sparling, P. F. Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J. Bacteriol. 92, 1364–1371 (1966).
Singh, R. N. & Pitale, M. P. Competence and deoxyribonucleic acid uptake in Bacillus subtilis. J. Bacteriol. 95, 864–866 (1968).
Havarstein, L. S., Coomaraswamy, G. & Morrison, D. A. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Natl Acad. Sci. USA 92, 11140–11144 (1995).
MacFadyen, L. P. et al. Competence development by Haemophilus influenzae is regulated by the availability of nucleic acid precursors. Mol. Microbiol. 40, 700–707 (2001).
Graves, J. F., Biswas, G. D. & Sparling, P. F. Sequence-specific DNA uptake in transformation of Neisseria gonorrhoeae. J. Bacteriol. 152, 1071–1077 (1982).
Biswas, G. D., Sox, T., Blackman, E. & Sparling, P. F. Factors affecting genetic transformation of Neisseria gonorrhoeae. J. Bacteriol. 129, 983–992 (1977).
Tonjum, T. & Koomey, M. The pilus colonization factor of pathogenic neisserial species: organelle biogenesis and structure/function relationships — a review. Gene 192, 155–163 (1997).
Collins, R. F. et al. Interaction with type IV pili induces structural changes in the bacterial outer membrane secretin PilQ. J. Biol. Chem. 280, 18923–18930 (2005).
Wolfgang, M., van Putten, J. P., Hayes, S. F. & Koomey, M. The comP locus of Neisseria gonorrhoeae encodes a type IV prepilin that is dispensable for pilus biogenesis but essential for natural transformation. Mol. Microbiol. 31, 1345–1357 (1999).
Aas, F. E., Lovold, C. & Koomey, M. An inhibitor of DNA binding and uptake events dictates the proficiency of genetic transformation in Neisseria gonorrhoeae: mechanism of action and links to Type IV pilus expression. Mol. Microbiol. 46, 1441–1450 (2002).
Kroll, J. S., Wilks, K. E., Farrant, J. L. & Langford, P. R. Natural genetic exchange between Haemophilus and Neisseria: intergeneric transfer of chromosomal genes between major human pathogens. Proc. Natl Acad. Sci. USA 95, 12381–12385 (1998).
Spratt, B. G., Bowler, L. D., Zhang, Q. Y., Zhou, J. & Smith, J. M. Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J. Mol. Evol. 34, 115–125 (1992). Highlights the importance of DNA transformation in the spread of antibiotic resistance from commensal to pathogenic Neisseria.
Sniegowski, P. D., Gerrish, P. J. & Lenski, R. E. Evolution of high mutation rates in experimental populations of E. coli. Nature 387, 703–705 (1997).
Matic, I. et al. Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science 277, 1833–1834 (1997).
LeClerc, J. E., Li, B., Payne, W. L. & Cebula, T. A. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274, 1208–1211 (1996).
Bjorkholm, B. et al. Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori. Proc. Natl Acad. Sci. USA 98, 14607–14612 (2001).
Oliver, A., Canton, R., Campo, P., Baquero, F. & Blazquez, J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288, 1251–1254 (2000). The identification of a high proportion of mutators in P. aeruginosa isolates from cystic fibrosis patients indicates a link between high mutation rates in vivo and the evolution of antibiotic resistance.
Rad, M. E. et al. Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing family. Emerg. Infect. Dis. 9, 838–845 (2003).
Giraud, A. et al. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291, 2606–2608 (2001).
Notley-McRobb, L., Seeto, S. & Ferenci, T. Enrichment and elimination of mutY mutators in Escherichia coli populations. Genetics 162, 1055–1062 (2002).
Harris, S. L. et al. Isolation and characterization of mutants with lesions affecting pellicle formation and erythrocyte agglutination by type 1 piliated Escherichia coli. J. Bacteriol. 172, 6411–6418 (1990).
Matic, I., Taddei, F. & Radman, M. Survival versus maintenance of genetic stability: a conflict of priorities during stress. Res. Microbiol. 155, 337–341 (2004).
Rosenberg, S. M. & Hastings, P. J. Microbiology and evolution. Modulating mutation rates in the wild. Science 300, 1382–1383 (2003).
Wright, B. E. Stress-directed adaptive mutations and evolution. Mol. Microbiol. 52, 643–650 (2004).
Blaisdell, J. O., Hatahet, Z. & Wallace, S. S. A novel role for Escherichia coli endonuclease VIII in prevention of spontaneous G→T transversions. J. Bacteriol. 181, 6396–6402 (1999).
Lu, A. L. & Fawcett, W. P. Characterization of the recombinant MutY homolog, an adenine DNA glycosylase, from yeast Schizosaccharomyces pombe. J. Biol. Chem. 273, 25098–25105 (1998).
Prudhomme, M., Mejean, V., Martin, B. & Claverys, J. P. Mismatch repair genes of Streptococcus pneumoniae: HexA confers a mutator phenotype in Escherichia coli by negative complementation. J. Bacteriol. 173, 7196–7203 (1991).
Biswas, I. et al. Disruption of the helix-u-turn-helix motif of MutS protein: loss of subunit dimerization, mismatch binding and ATP hydrolysis. J. Mol. Biol. 305, 805–816 (2001).
Tonjum, T., Havarstein, L. S., Koomey, M. & Seeberg, E. Transformation and DNA repair: linkage by DNA recombination. Trends Microbiol. 12, 1–4 (2004).
Segal, E., Hagblom, P., Seifert, H. S. & So, M. Antigenic variation of gonococcal pilus involves assembly of separated silent gene segments. Proc. Natl Acad. Sci. USA 83, 2177–2181 (1986).
Jonsson, A. B., Nyberg, G. & Normark, S. Phase variation of gonococcal pili by frameshift mutation in pilC, a novel gene for pilus assembly. EMBO J. 10, 477–488 (1991).
Stern, A. & Meyer, T. F. Common mechanism controlling phase and antigenic variation in pathogenic Neisseriae. Mol. Microbiol. 1, 5–12 (1987).
van der Ende, A. et al. Variable expression of class 1 outer membrane protein in Neisseria meningitidis is caused by variation in the spacing between the −10 and −35 regions of the promoter. J. Bacteriol. 177, 2475–2480 (1995).
Lewis, L. A. et al. Phase variation of HpuAB and HmbR, two distinct haemoglobin receptors of Neisseria meningitidis DNM2. Mol. Microbiol. 32, 977–989 (1999).
Acknowledgements
We deeply appreciate the discussions with the late Erling Seeberg on mechanisms of DNA repair. We thank O.H. Ambur and I. Alseth for critical reading of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Related links
DATABASES
Entrez
Salmonella enterica serovar typhimurium
FURTHER INFORMATION
Tone Tønjum's research homepages
Tone Tønjum's research homepages
Glossary
- Meningitis
-
Inflammation of the membranes (meninges) surrounding the brain.
- Salpingitis
-
Inflammation of the fallopian tubes.
- Recombination
-
The process by which parts, or all, of DNA molecules from two separate sources are exchanged or brought together into a single unit.
- Oxidative burst
-
The release of reactive oxygen species by specialized immune cells of humans.
- DNA uptake sequences
-
(DUS). Small repeated sequences that are required for DNA binding or uptake in natural transformation in members of the genus Neisseria.
- Excision repair
-
A process for repairing altered bases, mismatches or small loops in DNA, in which a single-stranded section containing the aberrant structure is removed and the resulting gap is filled by DNA replication that is templated from the complementary strand.
- Base excision repair
-
(BER). The excision and repair of bases that have been altered by small chemical modifications.
- Mismatch repair
-
(MMR). An excision-repair pathway that identifies and corrects mispaired bases and 1–3-nucleotide loops.
- Nucleotide excision repair
-
(NER). The replacement of DNA bases that are altered by large chemical additions or crosslinks through the excision of a short, single-stranded segment containing the damage.
- Recombinational repair
-
A repair process that uses recombination enzymes to remove a DNA lesion and repair the patch by strand exchange.
- DNA glycosylase
-
An enzyme involved in base excision repair that hydrolyses the N-glycosylic bond to release the altered base from the sugar–phosphate backbone, leaving an abasic site.
- 8oxoG system
-
A DNA-repair system dedicated to the removal of the oxidized form of guanine, 8oxoG. Composed of a triplet of enzymes — MutY, MutM (Fpg) and MutT.
- Mutator
-
A bacterial strain showing an elevated mutation rate.
- Phase variation
-
A molecular mechanism leading to a switching of the gene expression state, for example, on–off expression. Mediated by tandem repeats within the promoter region or the open reading frame.
- SOS response
-
An inducible response allowing bacteria to circumvent the presence of abundant DNA damage by activating several DNA-repair genes as well as translesion DNA polymerases that are under the control of the LexA protein.
- Antigenic variation
-
A molecular mechanism leading to a change in the antigenic expression state of surface components so that pre-existing host antibodies no longer recognize the component (immune evasion).
- σ factor
-
A subunit of the RNA polymerase that dictates which promoters are being transcribed.
- Two-component regulatory systems
-
System that responds to an environmental stimulus and regulates gene expression accordingly. Composed of a histidine-kinase sensor, usually situated in the outer membrane, that phosphorylates a response regulator in the cytoplasm which in turn activates transcription from selected promoters.
- Global regulatory component
-
A component with a 'genome-wide' regulatory function.
- Regulatory response elements
-
Elements that respond to a change in the environment and subsequently regulate gene expression, for example, σfactors, two-component regulatory systems and specific or global regulatory proteins.
- Insertion sequences
-
A mobile stretch of DNA that can insertionally disrupt, and thereby inactivate, genes.
- Natural transformation
-
Binding and uptake of free DNA, which is subsequently integrated into the genome by recombination.
- Correia elements
-
Small insertion elements of 100–150 bp that are flanked by long terminal repeats.
- Neisserial intergenic mosaic elements
-
(NIMEs). Repeat units of ∼50–150 bp, each flanked by 20-bp inverted repeats.
- Homopolymeric tract
-
Several identical copies of single, di- tri- or tetranucleotides.
- Gene conversion
-
A non-reciprocal transfer of genetic information.
Rights and permissions
About this article
Cite this article
Davidsen, T., Tønjum, T. Meningococcal genome dynamics. Nat Rev Microbiol 4, 11–22 (2006). https://doi.org/10.1038/nrmicro1324
Issue date:
DOI: https://doi.org/10.1038/nrmicro1324
This article is cited by
-
Neisseria meningitidis: using genomics to understand diversity, evolution and pathogenesis
Nature Reviews Microbiology (2020)
-
Comparative proteomic analysis of Neisseria meningitidis wildtype and dprA null mutant strains links DNA processing to pilus biogenesis
BMC Microbiology (2017)
-
The invasive Neisseria meningitidis MenC CC103 from Brazil is characterized by an accessory gene repertoire
Scientific Reports (2017)
-
The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens
Nature Reviews Microbiology (2015)
-
Virulence determinants involved in differential host niche adaptation of Neisseria meningitidis and Neisseria gonorrhoeae
Medical Microbiology and Immunology (2010)