Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Meningococcal genome dynamics

Key Points

  • Neisseria meningitidis (the meningococcus) is an important commensal, pathogen and model organism with a small but hyperdynamic genome.

  • Meningococcal fitness, genome evolution and diversity result from a fine-tuned balance between mechanisms for variability and maintenance.

  • DNA-repair mechanisms probably have a key role in genome dynamics in the meningococcus.

  • Neisserial mutY mutants show high spontaneous mutation rates, and the meningococcal DNA glycosylase MutY has a prominent role in DNA repair.

  • Unique features of meningococcal DNA repair include the relative importance of MutY in synergy with Fpg, and the lesser influence of MutS in the prevention of spontaneous DNA damage.

  • Meningococcal DNA-uptake sequences required for transformation show a biased distribution towards genome-maintenance genes, ensuring their prioritized uptake through transformation if irreparably damaged or lost.

  • Instead of sensing the environment and responding accordingly, meningococcal cells seem to generate a surplus of genetic variants, on which selective pressures can act.

  • Horizontal gene transfer and DNA recombination are key processes that result in genome diversity in the meningococcus. Further analysis of these processes will enhance our understanding of genome dynamics.

  • Chromosomal alterations and polymorphisms ensuing from genome instability provide the meningococcus with adaptability and ensure immune evasion. These mechanisms also represent immense challenges for vaccine development and combating drug resistance.

Abstract

Neisseria meningitidis (the meningococcus) is an important commensal, pathogen and model organism that faces up to the environment in its exclusive human host with a small but hyperdynamic genome. Compared with Escherichia coli, several DNA-repair genes are absent in N. meningitidis, whereas the gene products of others interact differently. Instead of responding to external stimuli, the meningococcus spontaneously produces a plethora of genetic variants. The frequent genomic alterations and polymorphisms have profound consequences for the interaction of this microorganism with its host, impacting structural and antigenic changes in crucial surface components that are relevant for adherence and invasion as well as antibiotic resistance and vaccine development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic diversity, genetic instability and fitness of the meningococcus.
Figure 2: Major DNA-repair pathways in Escherichia coli and the meningococcus.
Figure 3: Spontaneous mutagenicity of DNA-repair-deficient meningococci and Escherichia coli strains.
Figure 4: Mechanisms of meningococcal phase variation.
Figure 5: Antigenic variation.
Figure 6: Horizontal gene transfer by transformation of exogenous DNA.

Similar content being viewed by others

References

  1. Anon. Meningococcal meningitis. World Health Organization [online],<http://www.who.int/mediacentre/factsheets/fs141/en/index.html> (2005).

  2. Hardy, S. J., Christodoulides, M., Weller, R. O. & Heckels, J. E. Interactions of Neisseria meningitidis with cells of the human meninges. Mol. Microbiol. 36, 817–829 (2000).

    CAS  PubMed  Google Scholar 

  3. Nassif, X. Microbiology. A furtive pathogen revealed. Science 287, 1767–1768 (2000).

    CAS  PubMed  Google Scholar 

  4. Edwards, J. L. & Apicella, M. A. The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin. Microbiol. Rev. 17, 965–981 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

    CAS  PubMed  Google Scholar 

  6. Eisen, J. A. & Hanawalt, P. C. A phylogenomic study of DNA repair genes, proteins, and processes. Mutat. Res. 435, 171–213 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tonjum, T. & Seeberg, E. Microbial fitness and genome dynamics. Trends Microbiol. 9, 356–358 (2001).

    CAS  PubMed  Google Scholar 

  8. Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001).

    CAS  Google Scholar 

  9. Parkhill, J. et al. Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404, 502–506 (2000).

    CAS  PubMed  Google Scholar 

  10. Tettelin, H. et al. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287, 1809–1815 (2000).

    CAS  PubMed  Google Scholar 

  11. Demple, B. & Harrison, L. Repair of oxidative damage to DNA: enzymology and biology. Annu. Rev. Biochem. 63, 915–948 (1994).

    CAS  PubMed  Google Scholar 

  12. Seeberg, E., Eide, L. & Bjoras, M. The base excision repair pathway. Trends Biochem. Sci. 20, 391–397 (1995).

    CAS  PubMed  Google Scholar 

  13. Davidsen, T., Bjoras, M., Seeberg, E. C. & Tonjum, T. Antimutator role of DNA glycosylase MutY in pathogenic Neisseria species. J. Bacteriol. 187, 2801–2809 (2005). The first complete characterization of a meningococcal DNA-repair protein, emphasizing the importance of BER in Neisseria species.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Nghiem, Y., Cabrera, M., Cupples, C. G. & Miller, J. H. The mutY gene: a mutator locus in Escherichia coli that generates G.C→T.A transversions. Proc. Natl Acad. Sci. USA 85, 2709–2713 (1988).

    CAS  PubMed  Google Scholar 

  15. Michaels, M. L., Cruz, C., Grollman, A. P. & Miller, J. H. Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Proc. Natl Acad. Sci. USA 89, 7022–7025 (1992).

    CAS  PubMed  Google Scholar 

  16. Fowler, R. G. et al. Interactions among the Escherichia coli mutT, mutM, and mutY damage prevention pathways. DNA Repair (Amst.) 2, 159–173 (2003).

    CAS  Google Scholar 

  17. Schofield, M. J. & Hsieh, P. DNA mismatch repair: molecular mechanisms and biological function. Annu. Rev. Microbiol. 57, 579–608 (2003).

    CAS  PubMed  Google Scholar 

  18. Belland, R. J. H-DNA formation by the coding repeat elements of neisserial opa genes. Mol. Microbiol. 5, 2351–2360 (1991).

    CAS  PubMed  Google Scholar 

  19. Lamers, M. H. et al. The crystal structure of DNA mismatch repair protein MutS binding to a G x T mismatch. Nature 407, 711–717 (2000).

    CAS  PubMed  Google Scholar 

  20. Obmolova, G., Ban, C., Hsieh, P. & Yang, W. Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. Nature 407, 703–710 (2000).

    CAS  PubMed  Google Scholar 

  21. Ban, C., Junop, M. & Yang, W. Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell 97, 85–97 (1999).

    CAS  PubMed  Google Scholar 

  22. Richardson, A. R. & Stojiljkovic, I. Mismatch repair and the regulation of phase variation in Neisseria meningitidis. Mol. Microbiol. 40, 645–655 (2001).

    CAS  PubMed  Google Scholar 

  23. Richardson, A. R., Yu, Z., Popovic, T. & Stojiljkovic, I. Mutator clones of Neisseria meningitidis in epidemic serogroup A disease. Proc. Natl Acad. Sci. USA 99, 6103–6107 (2002). A high prevalence of mutators in serogroup A disease-associated isolates indicates that hypermutability might play a major role in meningococcal transmission between hosts.

    CAS  PubMed  Google Scholar 

  24. Hanawalt, P. C. Subpathways of nucleotide excision repair and their regulation. Oncogene 21, 8949–8956 (2002).

    CAS  PubMed  Google Scholar 

  25. Seeberg, E. Reconstitution of an Escherichia coli repair endonuclease activity from the separated uvrA+ and uvrB+/uvrC+ gene products. Proc. Natl Acad. Sci. USA 75, 2569–2573 (1978). The first in vitro reconstitution of the NER pathway in E. coli using purified proteins.

    CAS  PubMed  Google Scholar 

  26. Campbell, L. A. & Yasbin, R. E. A DNA excision repair system for Neisseria gonorrhoeae. Mol. Gen. Genet. 193, 561–563 (1984).

    CAS  PubMed  Google Scholar 

  27. Black, C. G., Fyfe, J. A. & Davies, J. K. Cloning, nucleotide sequence and transcriptional analysis of the uvrA gene from Neisseria gonorrhoeae. Mol. Gen. Genet. 254, 479–485 (1997).

    CAS  PubMed  Google Scholar 

  28. Black, C. G., Fyfe, J. A. & Davies, J. K. A promoter associated with the neisserial repeat can be used to transcribe the uvrB gene from Neisseria gonorrhoeae. J. Bacteriol. 177, 1952–1958 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Courcelle, J., Khodursky, A., Peter, B., Brown, P. O. & Hanawalt, P. C. Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158, 41–64 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Freidberg, E. C., Walker, G. C. & Siede, W. DNA Repair and Mutagenesis (ASM, Washington DC, 1995).

    Google Scholar 

  31. Black, C. G., Fyfe, J. A. & Davies, J. K. Absence of an SOS-like system in Neisseria gonorrhoeae. Gene 208, 61–66 (1998). This paper describes an absence of an SOS response in N. gonorrhoeae and therefore highlights an important difference in the DNA-repair profile of Neisseria and E. coli.

    CAS  PubMed  Google Scholar 

  32. Falnes, P. O. & Rognes, T. DNA repair by bacterial AlkB proteins. Res. Microbiol. 154, 531–538 (2003).

    CAS  PubMed  Google Scholar 

  33. Mehr, I. J. & Seifert, H. S. Differential roles of homologous recombination pathways in Neisseria gonorrhoeae pilin antigenic variation, DNA transformation and DNA repair. Mol. Microbiol. 30, 697–710 (1998).

    CAS  PubMed  Google Scholar 

  34. Koomey, J. M. & Falkow, S. Cloning of the recA gene of Neisseria gonorrhoeae and construction of gonococcal recA mutants. J. Bacteriol. 169, 790–795 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Stohl, E. A., Blount, L. & Seifert, H. S. Differential cross-complementation patterns of Escherichia coli and Neisseria gonorrhoeae RecA proteins. Microbiology 148, 1821–1831 (2002).

    CAS  PubMed  Google Scholar 

  36. Kline, K. A., Sechman, E. V., Skaar, E. P. & Seifert, H. S. Recombination, repair and replication in the pathogenic Neisseriae: the 3 R's of molecular genetics of two human-specific bacterial pathogens. Mol. Microbiol. 50, 3–13 (2003).

    CAS  PubMed  Google Scholar 

  37. Skaar, E. P., Lazio, M. P. & Seifert, H. S. Roles of the recJ and recN genes in homologous recombination and DNA repair pathways of Neisseria gonorrhoeae. J. Bacteriol. 184, 919–927 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kline, K. A. & Seifert, H. S. Role of the Rep helicase gene in homologous recombination in Neisseria gonorrhoeae. J. Bacteriol. 187, 2903–2907 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hill, S. A. Neisseria gonorrhoeae recJ mutants show defects in recombinational repair of alkylated bases and UV-induced pyrimidine dimers. Mol. Gen. Genet. 264, 268–275 (2000).

    CAS  PubMed  Google Scholar 

  40. Salvatore, P. et al. Phenotypes of a naturally defective recB allele in Neisseria meningitidis clinical isolates. Infect. Immun. 70, 4185–4195 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Seib, K. L., Tseng, H. J., McEwan, A. G., Apicella, M. A. & Jennings, M. P. Defenses against oxidative stress in Neisseria gonorrhoeae and Neisseria meningitidis: distinctive systems for different lifestyles. J. Infect. Dis. 190, 136–147 (2004).

    CAS  PubMed  Google Scholar 

  42. Napolitano, R., Janel-Bintz, R., Wagner, J. & Fuchs, R. P. All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. EMBO J. 19, 6259–6265 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Martin, P., Sun, L., Hood, D. W. & Moxon, E. R. Involvement of genes of genome maintenance in the regulation of phase variation frequencies in Neisseria meningitidis. Microbiology 150, 3001–3012 (2004).

    CAS  PubMed  Google Scholar 

  44. Campbell, L. A. & Yasbin, R. E. Deoxyribonucleic acid repair capacities of Neisseria gonorrhoeae: absence of photoreactivation. J. Bacteriol. 140, 1109–1111 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sedgwick, B. & Lindahl, T. Recent progress on the Ada response for inducible repair of DNA alkylation damage. Oncogene 21, 8886–8894 (2002).

    CAS  PubMed  Google Scholar 

  46. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    CAS  Google Scholar 

  47. Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474 (1997).

    CAS  Google Scholar 

  48. Morelle, S., Carbonnelle, E. & Nassif, X. The REP2 repeats of the genome of Neisseria meningitidis are associated with genes coordinately regulated during bacterial cell interaction. J. Bacteriol. 185, 2618–2627 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Morelle, S., Carbonnelle, E., Matic, I. & Nassif, X. Contact with host cells induces a DNA repair system in pathogenic Neisseriae. Mol. Microbiol. 55, 853–861 (2005).

    CAS  PubMed  Google Scholar 

  50. Moxon, E. R., Lenski, R. E. & Rainey, P. B. Adaptive evolution of highly mutable loci in pathogenic bacteria. Perspect. Biol. Med. 42, 154–155 (1998).

    CAS  PubMed  Google Scholar 

  51. Feil, E. J. & Spratt, B. G. Recombination and the population structures of bacterial pathogens. Annu. Rev. Microbiol. 55, 561–590 (2001).

    CAS  PubMed  Google Scholar 

  52. Snyder, L. A., Butcher, S. A. & Saunders, N. J. Comparative whole-genome analyses reveal over 100 putative phase-variable genes in the pathogenic Neisseria spp. Microbiology 147, 2321–2332 (2001). Experimental verification of predicted meningococcal contingency genes, leading to identification of a novel phase-variable gene that contains a tetranucleotide repeat tract.

    CAS  PubMed  Google Scholar 

  53. Martin, P. et al. Experimentally revised repertoire of putative contingency loci in Neisseria meningitidis strain MC58: evidence for a novel mechanism of phase variation. Mol. Microbiol. 50, 245–257 (2003).

    CAS  PubMed  Google Scholar 

  54. Henderson, I. R., Owen, P. & Nataro, J. P. Molecular switches — the ON and OFF of bacterial phase variation. Mol. Microbiol. 33, 919–932 (1999).

    CAS  PubMed  Google Scholar 

  55. Shapiro, J. A. Repetitive DNA, genome system architecture and genome reorganization. Res. Microbiol. 153, 447–453 (2002).

    CAS  PubMed  Google Scholar 

  56. Smith, H. O., Gwinn, M. L. & Salzberg, S. L. DNA uptake signal sequences in naturally transformable bacteria. Res. Microbiol. 150, 603–616 (1999).

    CAS  PubMed  Google Scholar 

  57. Goodman, S. D. & Scocca, J. J. Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc. Natl Acad. Sci. USA 85, 6982–6986 (1988). The identification of the nucleotide composition of the gonoccocal DUS required for transformation and its prevalence in putative transcriptional terminators.

    CAS  PubMed  Google Scholar 

  58. Davidsen, T. et al. Biased distribution of DNA uptake sequences towards genome maintenance genes. Nucleic Acids Res. 32, 1050–1058 (2004). A higher density of DUSs in genes related to DNA repair, recombination, replication and restriction/modification than in any other gene group was found in phylogenetically diverse neisserial and Pasteurellaceae species. This reflects facilitated recovery of genome-preserving functions after genotoxic stress.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Elkins, C., Thomas, C. E., Seifert, H. S. & Sparling, P. F. Species-specific uptake of DNA by gonococci is mediated by a 10-base-pair sequence. J. Bacteriol. 173, 3911–3913 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Denamur, E. et al. Evolutionary implications of the frequent horizontal transfer of mismatch repair genes. Cell 103, 711–721 (2000).

    CAS  PubMed  Google Scholar 

  61. Jordan, P., Snyder, L. A. & Saunders, N. J. Diversity in coding tandem repeats in related Neisseria spp. BMC Microbiol. 3, 23 (2003).

    PubMed  PubMed Central  Google Scholar 

  62. Tonjum, T., Caugant, D. A., Dunham, S. A. & Koomey, M. Structure and function of repetitive sequence elements associated with a highly polymorphic domain of the Neisseria meningitidis PilQ protein. Mol. Microbiol. 29, 111–124 (1998).

    CAS  PubMed  Google Scholar 

  63. Correia, F. F., Inouye, S. & Inouye, M. A family of small repeated elements with some transposon-like properties in the genome of Neisseria gonorrhoeae. J. Biol. Chem. 263, 12194–12198 (1988).

    CAS  PubMed  Google Scholar 

  64. Correia, F. F., Inouye, S. & Inouye, M. A 26-base-pair repetitive sequence specific for Neisseria gonorrhoeae and Neisseria meningitidis genomic DNA. J. Bacteriol. 167, 1009–1015 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Mazzone, M. et al. Whole-genome organization and functional properties of miniature DNA insertion sequences conserved in pathogenic Neisseriae. Gene 278, 211–222 (2001).

    CAS  PubMed  Google Scholar 

  66. Liu, S. V., Saunders, N. J., Jeffries, A. & Rest, R. F. Genome analysis and strain comparison of correia repeats and correia repeat-enclosed elements in pathogenic Neisseria. J. Bacteriol. 184, 6163–6173 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rouquette-Loughlin, C. E., Balthazar, J. T., Hill, S. A. & Shafer, W. M. Modulation of the mtrCDE-encoded efflux pump gene complex of Neisseria meningitidis due to a Correia element insertion sequence. Mol. Microbiol. 54, 731–741 (2004).

    CAS  PubMed  Google Scholar 

  68. Moxon, E. R., Rainey, P. B., Nowak, M. A. & Lenski, R. E. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4, 24–33 (1994). The term 'contingency genes' was introduced to describe genes with high mutation rates that generate random phenotypic variation in Neisseria and H. influenzae.

    CAS  PubMed  Google Scholar 

  69. Murphy, G. L., Connell, T. D., Barritt, D. S., Koomey, M. & Cannon, J. G. Phase variation of gonococcal protein II: regulation of gene expression by slipped-strand mispairing of a repetitive DNA sequence. Cell 56, 539–547 (1989). Identification of a RecA-independent slipped-strand mispairing mechanism of CTCTT repeats that regulates phase variation of gonococcal outer-membrane protein II.

    PubMed  Google Scholar 

  70. Kawula, T. H., Aho, E. L., Barritt, D. S., Klapper, D. G. & Cannon, J. G. Reversible phase variation of expression of Neisseria meningitidis class 5 outer membrane proteins and their relationship to gonococcal proteins II. Infect. Immun. 56, 380–386 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sarkari, J., Pandit, N., Moxon, E. R. & Achtman, M. Variable expression of the Opc outer membrane protein in Neisseria meningitidis is caused by size variation of a promoter containing poly-cytidine. Mol. Microbiol. 13, 207–217 (1994).

    CAS  PubMed  Google Scholar 

  72. Rudel, T. et al. Role of pili and the phase-variable PilC protein in natural competence for transformation of Neisseria gonorrhoeae. Proc. Natl Acad. Sci. USA 92, 7986–7990 (1995).

    CAS  PubMed  Google Scholar 

  73. Hammerschmidt, S. et al. Capsule phase variation in Neisseria meningitidis serogroup B by slipped-strand mispairing in the polysialyltransferase gene (siaD): correlation with bacterial invasion and the outbreak of meningococcal disease. Mol. Microbiol. 20, 1211–1220 (1996).

    CAS  PubMed  Google Scholar 

  74. Rytkonen, A. et al. Neisseria meningitidis undergoes PilC phase variation and PilE sequence variation during invasive disease. J. Infect. Dis. 189, 402–409 (2004).

    PubMed  Google Scholar 

  75. Jennings, M. P. et al. The genetic basis of the phase variation repertoire of lipopolysaccharide immunotypes in Neisseria meningitidis. Microbiology 145, 3013–3021 (1999).

    CAS  PubMed  Google Scholar 

  76. Berrington, A. W. et al. Phase variation in meningococcal lipooligosaccharide biosynthesis genes. FEMS Immunol. Med. Microbiol. 34, 267–275 (2002).

    CAS  PubMed  Google Scholar 

  77. Alexander, H. L., Richardson, A. R. & Stojiljkovic, I. Natural transformation and phase variation modulation in Neisseria meningitidis. Mol. Microbiol. 52, 771–783 (2004).

    CAS  PubMed  Google Scholar 

  78. Alexander, H. L., Rasmussen, A. W. & Stojiljkovic, I. Identification of Neisseria meningitidis genetic loci involved in the modulation of phase variation frequencies. Infect. Immun. 72, 6743–6747 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Jolley, K. A., Sun, L., Moxon, E. R. & Maiden, M. C. Dam inactivation in Neisseria meningitidis: prevalence among diverse hyperinvasive lineages. BMC Microbiol. 4, 34 (2004).

    PubMed  PubMed Central  Google Scholar 

  80. Bucci, C. et al. Hypermutation in pathogenic bacteria: frequent phase variation in meningococci is a phenotypic trait of a specialized mutator biotype. Mol. Cell 3, 435–445 (1999).

    CAS  PubMed  Google Scholar 

  81. Martin, P., Makepeace, K., Hill, S. A., Hood, D. W. & Moxon, E. R. Microsatellite instability regulates transcription factor binding and gene expression. Proc. Natl Sci. USA 102, 3800–3804 (2005).

    CAS  Google Scholar 

  82. Borst, P. Molecular genetics of antigenic variation. Immunol. Today 12, A29–A33 (1991).

    CAS  PubMed  Google Scholar 

  83. Connell, T. D., Shaffer, D. & Cannon, J. G. Characterization of the repertoire of hypervariable regions in the Protein II (opa) gene family of Neisseria gonorrhoeae. Mol. Microbiol. 4, 439–449 (1990).

    CAS  PubMed  Google Scholar 

  84. Swanson, J. et al. Gene conversion involving the pilin structural gene correlates with pilus+ in equilibrium with pilus– changes in Neisseria gonorrhoeae. Cell 47, 267–276 (1986).

    CAS  PubMed  Google Scholar 

  85. Bhat, K. S. et al. The opacity proteins of Neisseria gonorrhoeae strain MS11 are encoded by a family of 11 complete genes. Mol. Microbiol. 5, 1889–1901 (1991).

    CAS  PubMed  Google Scholar 

  86. Aho, E. L., Dempsey, J. A., Hobbs, M. M., Klapper, D. G. & Cannon, J. G. Characterization of the opa (class 5) gene family of Neisseria meningitidis. Mol. Microbiol. 5, 1429–1437 (1991).

    CAS  PubMed  Google Scholar 

  87. Vazquez, J. A. et al. Interspecies recombination in nature: a meningococcus that has acquired a gonococcal PIB porin. Mol. Microbiol. 15, 1001–1007 (1995).

    CAS  PubMed  Google Scholar 

  88. Hagblom, P., Segal, E., Billyard, E. & So, M. Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae. Nature 315, 156–158 (1985).

    CAS  PubMed  Google Scholar 

  89. Stern, A., Brown, M., Nickel, P. & Meyer, T. F. Opacity genes in Neisseria gonorrhoeae: control of phase and antigenic variation. Cell 47, 61–71 (1986).

    CAS  PubMed  Google Scholar 

  90. Koomey, M., Gotschlich, E. C., Robbins, K., Bergstrom, S. & Swanson, J. Effects of recA mutations on pilus antigenic variation and phase transitions in Neisseria gonorrhoeae. Genetics 117, 391–398 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang, Q. Y., DeRyckere, D., Lauer, P. & Koomey, M. Gene conversion in Neisseria gonorrhoeae: evidence for its role in pilus antigenic variation. Proc. Natl Acad. Sci. USA 89, 5366–5370 (1992).

    CAS  PubMed  Google Scholar 

  92. Gibbs, C. P. et al. Reassortment of pilin genes in Neisseria gonorrhoeae occurs by two distinct mechanisms. Nature 338, 651–652 (1989).

    CAS  PubMed  Google Scholar 

  93. Perry, A. C., Nicolson, I. J. & Saunders, J. R. Neisseria meningitidis C114 contains silent, truncated pilin genes that are homologous to Neisseria gonorrhoeae pil sequences. J. Bacteriol. 170, 1691–1697 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Swanson, J., Morrison, S., Barrera, O. & Hill, S. Piliation changes in transformation-defective gonococci. J. Exp. Med. 171, 2131–2139 (1990). This paper and reference 91 show the role of gene conversion, and not transformation, in creating pilin variants.

    CAS  PubMed  Google Scholar 

  95. Chen, I. & Dubnau, D. DNA uptake during bacterial transformation. Nature Rev. Microbiol. 2, 241–249 (2004).

    CAS  Google Scholar 

  96. Koomey, M. Competence for natural transformation in Neisseria gonorrhoeae: a model system for studies of horizontal gene transfer. APMIS Suppl. 84, 56–61 (1998).

    CAS  PubMed  Google Scholar 

  97. Fussenegger, M., Rudel, T., Barten, R., Ryll, R. & Meyer, T. F. Transformation competence and type-4 pilus biogenesis in Neisseria gonorrhoeae — a review. Gene 192, 125–134 (1997).

    CAS  PubMed  Google Scholar 

  98. Jyssum, K. & Lie, S. Genetic factors determining competence in transformation of Neisseria meningitidis. 1. A permanent loss of competence. Acta Pathol. Microbiol. Scand. 63, 306–316 (1965). The first demonstration of natural competence for transformation in N. meningitidis.

    CAS  PubMed  Google Scholar 

  99. Sparling, P. F. Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J. Bacteriol. 92, 1364–1371 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Singh, R. N. & Pitale, M. P. Competence and deoxyribonucleic acid uptake in Bacillus subtilis. J. Bacteriol. 95, 864–866 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Havarstein, L. S., Coomaraswamy, G. & Morrison, D. A. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Natl Acad. Sci. USA 92, 11140–11144 (1995).

    CAS  PubMed  Google Scholar 

  102. MacFadyen, L. P. et al. Competence development by Haemophilus influenzae is regulated by the availability of nucleic acid precursors. Mol. Microbiol. 40, 700–707 (2001).

    CAS  PubMed  Google Scholar 

  103. Graves, J. F., Biswas, G. D. & Sparling, P. F. Sequence-specific DNA uptake in transformation of Neisseria gonorrhoeae. J. Bacteriol. 152, 1071–1077 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Biswas, G. D., Sox, T., Blackman, E. & Sparling, P. F. Factors affecting genetic transformation of Neisseria gonorrhoeae. J. Bacteriol. 129, 983–992 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Tonjum, T. & Koomey, M. The pilus colonization factor of pathogenic neisserial species: organelle biogenesis and structure/function relationships — a review. Gene 192, 155–163 (1997).

    CAS  PubMed  Google Scholar 

  106. Collins, R. F. et al. Interaction with type IV pili induces structural changes in the bacterial outer membrane secretin PilQ. J. Biol. Chem. 280, 18923–18930 (2005).

    CAS  PubMed  Google Scholar 

  107. Wolfgang, M., van Putten, J. P., Hayes, S. F. & Koomey, M. The comP locus of Neisseria gonorrhoeae encodes a type IV prepilin that is dispensable for pilus biogenesis but essential for natural transformation. Mol. Microbiol. 31, 1345–1357 (1999).

    CAS  PubMed  Google Scholar 

  108. Aas, F. E., Lovold, C. & Koomey, M. An inhibitor of DNA binding and uptake events dictates the proficiency of genetic transformation in Neisseria gonorrhoeae: mechanism of action and links to Type IV pilus expression. Mol. Microbiol. 46, 1441–1450 (2002).

    CAS  PubMed  Google Scholar 

  109. Kroll, J. S., Wilks, K. E., Farrant, J. L. & Langford, P. R. Natural genetic exchange between Haemophilus and Neisseria: intergeneric transfer of chromosomal genes between major human pathogens. Proc. Natl Acad. Sci. USA 95, 12381–12385 (1998).

    CAS  PubMed  Google Scholar 

  110. Spratt, B. G., Bowler, L. D., Zhang, Q. Y., Zhou, J. & Smith, J. M. Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J. Mol. Evol. 34, 115–125 (1992). Highlights the importance of DNA transformation in the spread of antibiotic resistance from commensal to pathogenic Neisseria.

    CAS  PubMed  Google Scholar 

  111. Sniegowski, P. D., Gerrish, P. J. & Lenski, R. E. Evolution of high mutation rates in experimental populations of E. coli. Nature 387, 703–705 (1997).

    CAS  PubMed  Google Scholar 

  112. Matic, I. et al. Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science 277, 1833–1834 (1997).

    CAS  PubMed  Google Scholar 

  113. LeClerc, J. E., Li, B., Payne, W. L. & Cebula, T. A. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274, 1208–1211 (1996).

    CAS  PubMed  Google Scholar 

  114. Bjorkholm, B. et al. Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori. Proc. Natl Acad. Sci. USA 98, 14607–14612 (2001).

    CAS  PubMed  Google Scholar 

  115. Oliver, A., Canton, R., Campo, P., Baquero, F. & Blazquez, J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288, 1251–1254 (2000). The identification of a high proportion of mutators in P. aeruginosa isolates from cystic fibrosis patients indicates a link between high mutation rates in vivo and the evolution of antibiotic resistance.

    CAS  PubMed  Google Scholar 

  116. Rad, M. E. et al. Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing family. Emerg. Infect. Dis. 9, 838–845 (2003).

    CAS  PubMed Central  Google Scholar 

  117. Giraud, A. et al. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291, 2606–2608 (2001).

    CAS  PubMed  Google Scholar 

  118. Notley-McRobb, L., Seeto, S. & Ferenci, T. Enrichment and elimination of mutY mutators in Escherichia coli populations. Genetics 162, 1055–1062 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Harris, S. L. et al. Isolation and characterization of mutants with lesions affecting pellicle formation and erythrocyte agglutination by type 1 piliated Escherichia coli. J. Bacteriol. 172, 6411–6418 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Matic, I., Taddei, F. & Radman, M. Survival versus maintenance of genetic stability: a conflict of priorities during stress. Res. Microbiol. 155, 337–341 (2004).

    CAS  PubMed  Google Scholar 

  121. Rosenberg, S. M. & Hastings, P. J. Microbiology and evolution. Modulating mutation rates in the wild. Science 300, 1382–1383 (2003).

    CAS  PubMed  Google Scholar 

  122. Wright, B. E. Stress-directed adaptive mutations and evolution. Mol. Microbiol. 52, 643–650 (2004).

    CAS  PubMed  Google Scholar 

  123. Blaisdell, J. O., Hatahet, Z. & Wallace, S. S. A novel role for Escherichia coli endonuclease VIII in prevention of spontaneous G→T transversions. J. Bacteriol. 181, 6396–6402 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Lu, A. L. & Fawcett, W. P. Characterization of the recombinant MutY homolog, an adenine DNA glycosylase, from yeast Schizosaccharomyces pombe. J. Biol. Chem. 273, 25098–25105 (1998).

    CAS  PubMed  Google Scholar 

  125. Prudhomme, M., Mejean, V., Martin, B. & Claverys, J. P. Mismatch repair genes of Streptococcus pneumoniae: HexA confers a mutator phenotype in Escherichia coli by negative complementation. J. Bacteriol. 173, 7196–7203 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Biswas, I. et al. Disruption of the helix-u-turn-helix motif of MutS protein: loss of subunit dimerization, mismatch binding and ATP hydrolysis. J. Mol. Biol. 305, 805–816 (2001).

    CAS  PubMed  Google Scholar 

  127. Tonjum, T., Havarstein, L. S., Koomey, M. & Seeberg, E. Transformation and DNA repair: linkage by DNA recombination. Trends Microbiol. 12, 1–4 (2004).

    CAS  PubMed  Google Scholar 

  128. Segal, E., Hagblom, P., Seifert, H. S. & So, M. Antigenic variation of gonococcal pilus involves assembly of separated silent gene segments. Proc. Natl Acad. Sci. USA 83, 2177–2181 (1986).

    CAS  PubMed  Google Scholar 

  129. Jonsson, A. B., Nyberg, G. & Normark, S. Phase variation of gonococcal pili by frameshift mutation in pilC, a novel gene for pilus assembly. EMBO J. 10, 477–488 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Stern, A. & Meyer, T. F. Common mechanism controlling phase and antigenic variation in pathogenic Neisseriae. Mol. Microbiol. 1, 5–12 (1987).

    CAS  PubMed  Google Scholar 

  131. van der Ende, A. et al. Variable expression of class 1 outer membrane protein in Neisseria meningitidis is caused by variation in the spacing between the −10 and −35 regions of the promoter. J. Bacteriol. 177, 2475–2480 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Lewis, L. A. et al. Phase variation of HpuAB and HmbR, two distinct haemoglobin receptors of Neisseria meningitidis DNM2. Mol. Microbiol. 32, 977–989 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We deeply appreciate the discussions with the late Erling Seeberg on mechanisms of DNA repair. We thank O.H. Ambur and I. Alseth for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tone Tønjum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Bacillus subtilis

Escherichia coli

Haemophilus influenzae

Helicobacter pylori

Mycobacterium tuberculosis

Neisseria gonorrhoeae

Neisseria meningitidis

Pseudomonas aeruginosa

Salmonella enterica serovar typhimurium

Streptococcus pneumoniae

FURTHER INFORMATION

Tone Tønjum's research homepages

Tone Tønjum's research homepages

Neisseria gonorrhoeae strain FA 1090 genome

Neisseria meningitidis serogroup C strain FAM18 genome

Glossary

Meningitis

Inflammation of the membranes (meninges) surrounding the brain.

Salpingitis

Inflammation of the fallopian tubes.

Recombination

The process by which parts, or all, of DNA molecules from two separate sources are exchanged or brought together into a single unit.

Oxidative burst

The release of reactive oxygen species by specialized immune cells of humans.

DNA uptake sequences

(DUS). Small repeated sequences that are required for DNA binding or uptake in natural transformation in members of the genus Neisseria.

Excision repair

A process for repairing altered bases, mismatches or small loops in DNA, in which a single-stranded section containing the aberrant structure is removed and the resulting gap is filled by DNA replication that is templated from the complementary strand.

Base excision repair

(BER). The excision and repair of bases that have been altered by small chemical modifications.

Mismatch repair

(MMR). An excision-repair pathway that identifies and corrects mispaired bases and 1–3-nucleotide loops.

Nucleotide excision repair

(NER). The replacement of DNA bases that are altered by large chemical additions or crosslinks through the excision of a short, single-stranded segment containing the damage.

Recombinational repair

A repair process that uses recombination enzymes to remove a DNA lesion and repair the patch by strand exchange.

DNA glycosylase

An enzyme involved in base excision repair that hydrolyses the N-glycosylic bond to release the altered base from the sugar–phosphate backbone, leaving an abasic site.

8oxoG system

A DNA-repair system dedicated to the removal of the oxidized form of guanine, 8oxoG. Composed of a triplet of enzymes — MutY, MutM (Fpg) and MutT.

Mutator

A bacterial strain showing an elevated mutation rate.

Phase variation

A molecular mechanism leading to a switching of the gene expression state, for example, on–off expression. Mediated by tandem repeats within the promoter region or the open reading frame.

SOS response

An inducible response allowing bacteria to circumvent the presence of abundant DNA damage by activating several DNA-repair genes as well as translesion DNA polymerases that are under the control of the LexA protein.

Antigenic variation

A molecular mechanism leading to a change in the antigenic expression state of surface components so that pre-existing host antibodies no longer recognize the component (immune evasion).

σ factor

A subunit of the RNA polymerase that dictates which promoters are being transcribed.

Two-component regulatory systems

System that responds to an environmental stimulus and regulates gene expression accordingly. Composed of a histidine-kinase sensor, usually situated in the outer membrane, that phosphorylates a response regulator in the cytoplasm which in turn activates transcription from selected promoters.

Global regulatory component

A component with a 'genome-wide' regulatory function.

Regulatory response elements

Elements that respond to a change in the environment and subsequently regulate gene expression, for example, σfactors, two-component regulatory systems and specific or global regulatory proteins.

Insertion sequences

A mobile stretch of DNA that can insertionally disrupt, and thereby inactivate, genes.

Natural transformation

Binding and uptake of free DNA, which is subsequently integrated into the genome by recombination.

Correia elements

Small insertion elements of 100–150 bp that are flanked by long terminal repeats.

Neisserial intergenic mosaic elements

(NIMEs). Repeat units of 50–150 bp, each flanked by 20-bp inverted repeats.

Homopolymeric tract

Several identical copies of single, di- tri- or tetranucleotides.

Gene conversion

A non-reciprocal transfer of genetic information.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidsen, T., Tønjum, T. Meningococcal genome dynamics. Nat Rev Microbiol 4, 11–22 (2006). https://doi.org/10.1038/nrmicro1324

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro1324

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing