Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanosensitive channels in bacteria: signs of closure?

Key Points

  • Bacterial mechanosensitive (MS) channels are gated by the perturbation of membrane tension, forming non-selective pores of 16–40 Å through which hydrated ions and solutes can flow.

  • MS channels have a key role in the survival of hypoosmotic shock, but might also have other roles during cell-wall remodelling.

  • Using electrophysiology, three principal structural classes of MS channels have been defined in Escherichia coli. Species can have multiple homologues of each class, but not all have demonstrated MS channel activity. The homologues differ in their degree of conservation of the pore-lining helix residues, and their threshold sensitivity to tension might reflect this and be selected to enable them to have specific cellular functions.

  • MscS and MscL homologues are also found in plants, oomycetes, algae and in some fungi. MscS homologues are associated with chloroplast shape and development in Arabidopsis and Chlamydomonas.

  • Crystal structures of the Mycobacterium tuberculosis MscL (MscL-Mt) and the E. coli MscS (MscS-Ec) channels have revealed a homopentamer and a homoheptamer respectively. Structurally the channels are unrelated, as MscS has more complex packing and an extensive cytoplasmic domain that is required for assembly. Both MscL and MscS use a hydrophobic seal to maintain the channel pore in the closed state.

  • The emerging consensus is that the crystal structures represent either closed states or intermediates in the transition from closed to open states. MscS-Ec characteristically exhibits a desensitized, inactivated state and it is possible that the crystal structure is in this conformation rather than in the 'natural' closed state. MscL-Mt is generally accepted to have been crystallized in the closed state.

  • The structural transitions in MscL and MscS gating have been studied using biophysical, genetic and biochemical approaches. Both channels gate by tilting and rotating the helices surrounding the pore, which involves specific conserved residues.

  • Recent molecular analysis of MS channels has focused on the interaction of the channel-protein residues with surrounding membrane lipids. In this Review we define the absence of specific amino acids at the protein–lipid interface that might block mechanogating as central to MS channel function. We term this 'negative space'.

Abstract

Bacterial mechanosensitive channels are activated by increases in tension in the lipid bilayer of the cytoplasmic membrane, where they transiently create large pores in a controlled manner. Mechanosensitive channel research has benefited from advances in electrophysiology, genomics and molecular genetics as well as from the application of biophysical techniques. Most recently, new analytical methods have been used to complement existing knowledge and generate insights into the molecular interactions that take place between mechanosensitive channel proteins and the surrounding membrane lipids. This article reviews the latest developments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physiological function of mechanosensitive channels in bacteria.
Figure 2: Measuring the conductance and pressure sensitivity of MscS and MscL.
Figure 3: Structures of MscL-Mt and MscS-Ec.
Figure 4: Helix packing and proposed gating movement in MscS-Ec.
Figure 5: Defining the interactions that might prevent mechanosensation.

Similar content being viewed by others

References

  1. Levina, N. et al. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18, 1730–1737 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sukharev, S. I., Martinac, B., Arshavsky, V. Y. & Kung, C. Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys. J. 65, 177–183 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sukharev, S. I., Sigurdson, W. J., Kung, C. & Sachs, F. Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J. Gen. Physiol. 113, 525–540 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sukharev, S. Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes. Biophys. J. 83, 290–298 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berrier, C., Coulombe, A., Szabo, I., Zoratti, M. & Ghazi, A. Gadolinium ion inhibits loss of metabolites induced by osmotic shock and large stretch-activated channels in bacteria. Eur. J. Biochem. 206, 559–565 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Schleyer, M., Schmid, R. & Bakker, E. P. Transient, specific and extremely rapid release of osmolytes from growing cells of Escherichia coli K-12 exposed to hypoosmotic shock. Arch. Microbiol. 160, 424–431 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Mitchell, P. & Moyle, J. in Bacterial Anatomy (eds. Spooner, E. & Stocker, B.) 150–180 (Cambridge University Press, Cambridge, 1956).

    Google Scholar 

  8. Imhoff, J. F. Osmoregulation and compatible solutes in eubacteria. FEMS Microbiol. Rev. 39, 57–66 (1986).

    Article  CAS  Google Scholar 

  9. Booth, I. R., Cairney, J., Sutherland, L. & Higgins, C. F. Enteric bacteria and osmotic-stress — an integrated homeostatic system. J. Appl. Bacteriol. 65, S35–S49 (1988).

    Google Scholar 

  10. Holtje, J.-V. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62, 181–203 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stokes, N. R. et al. A role for mechanosensitive channels in survival of stationary phase: regulation of channel expression by RpoS. Proc. Natl Acad. Sci. USA 100, 15959–15964 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arisaka, F., Kanamaru, S., Leiman, P. & Rossmann, M. G. The tail lysozyme complex of bacteriophage T4. Int. J. Biochem. Cell Biol. 35, 16–21 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Quintela, J. C., dePedro, M. A., Zollner, P., Allmaier, G. & Garcia del Portillo, F. Peptidoglycan structure of Salmonella typhimurium growing within cultured mammalian cells. Mol. Microbiol. 23, 693–704 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Booth, I. R. Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49, 359–378 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Britten, R. J. & McClure, F. T. The amino acid pool in Escherichia coli. Microbiol. Mol. Biol. Rev. 26, 292–335 (1962).

    CAS  Google Scholar 

  16. Martinac, B., Buehner, M., Delcour, A. H., Adler, J. & Kung, C. Pressure-sensitive ion channel in Escherichia coli. Proc. Natl Acad. Sci. USA 84, 2297–2301 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sukharev, S. I., Blount, P., Martinac, B., Blattner, F. R. & Kung, C. A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368, 265–268 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Berrier, C., Besnard, M., Ajouz, B., Coulombe, A. & Ghazi, A. Multiple mechanosensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure. J. Membr. Biol. 151, 175–187 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T. & Rees, D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282, 2220–2226 (1998). MscL from M. tuberculosis , the first bacterial mechanosensitive channel protein to be crystallized, is shown to consist of five identical subunits that each contain two TM spans with short cytoplasmic helices at either end and a β-strand periplasmic loop between TM1 and TM2.

    Article  CAS  PubMed  Google Scholar 

  20. Bass, R. B., Strop, P., Barclay, M. & Rees, D. C. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298, 1582–1587 (2002). Determination of the E. coli MscS crystal structure, indicating the greater complexity of this protein over that of MscL. MscS contains seven subunits (each with three TM spans and a large multidomain cytoplasmic sequence), which form a homoheptamer.

    Article  CAS  PubMed  Google Scholar 

  21. Kung, C. A possible unifying principle for mechanosensation. Nature 436, 647–654 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Cruickshank, C. C., Minchin, R. F., Le Dain, A. C. & Martinac, B. Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophys. J. 73, 1925–1931 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, Y., Moe, P. C., Chandrasekaran, S., Booth, I. R. & Blount, P. Ionic regulation of MscK, a mechanosensitive channel from Escherichia coli. EMBO J. 21, 5323–5330 (2002). This work investigates MscK, a member of the MscS family, and demonstrates how this channel is regulated by the external K+ concentration, as well as by membrane tension. However, it also shows that the requirement for K+ is eliminated in the presence of a strong gain-of-function mutation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ajouz, B., Berrier, C., Garrigues, A., Besnard, M. & Ghazi, A. Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells. J. Biol. Chem. 273, 26670–26674 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Berrier, C., Garrigues, A., Richarme, G. & Ghazi, A. Elongation factor Tu and DnaK are transferred from the cytoplasm to the periplasm of Escherichia coli during osmotic downshock presumably via the mechanosensitive channel MscL. J. Bacteriol. 182, 248–251 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ewis, H. E. & Lu, C. D. Osmotic shock: a mechanosensitive channel blocker can prevent release of cytoplasmic but not periplasmic proteins. FEMS Microbiol. Lett. 253, 295–301 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Vazquez-Laslop, N., Lee, H., Hu, R. & Neyfakh, A. A. Molecular sieve mechanism of selective release of cytoplasmic proteins by osmotically shocked Escherichia coli. J. Bacteriol. 183, 2399–2404 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van den Bogaart, G., Krasnikov, V. & Poolman, B. Dual-color fluorescence-burst analysis to probe protein efflux through the mechanosensitive channel MscL. Biophys. J. 92, 1233–1240 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Folgering, J. H., Kuiper, J. M., de Vries, A. H., Engberts, J. B. & Poolman, B. Lipid-mediated light activation of a mechanosensitive channel of large conductance. Langmuir 20, 6985–6987 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Booth, I. R. in Genetic Engineering — Principles and Methods (ed. Setlow, J. K.) 91–112 (Kluwer Academic/Plenum Publishers, New York, 2003).

    Google Scholar 

  31. Li, Y., Wray, R. & Blount, P. Intragenic suppression of gain-of-function mutations in the Escherichia coli mechanosensitive channel, MscL. Mol. Microbiol. 53, 485–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Folgering, J. H., Moe, P. C., Schuurman-Wolters, G. K., Blount, P. & Poolman, B. Lactococcus lactis uses MscL as its principal mechanosensitive channel. J. Biol. Chem. 280, 8784–8792 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Batiza, A. F., Kuo, M. M. C., Yoshimura, K. & Kung, C. Gating the bacterial mechanosensitive channel MscL in vivo. Proc. Natl Acad. Sci. USA 99, 5643–5648 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miller, S., Edwards, M. D., Ozdemir, C. & Booth, I. R. The closed structure of the MscS mechanosensitive channel — cross-linking of single cysteine mutants. J. Biol. Chem. 278, 32246–32250 (2003). Crosslinking of single Cys mutants of MscS revealed, for the first time, how the protein takes on a more compact conformational state than that observed in the crystal structure.

    Article  CAS  PubMed  Google Scholar 

  35. Blount, P., Sukharev, S. I., Schroeder, M. J., Nagle, S. K. & Kung, C. Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli. Proc. Natl Acad. Sci. USA 93, 11652–11657 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Powl, A. M., East, J. M. & Lee, A. G. Heterogeneity in the binding of lipid molecules to the surface of a membrane protein: hot spots for anionic lipids on the mechanosensitive channel of large conductance MscL and effects on conformation. Biochemistry 44, 5873–5883 (2005). Part of a series of work (Refs 65,80 ) investigating the interactions between the MscL protein and the surrounding membrane lipids. This particular study highlights putative lipid-binding sites that have a cluster of three positively charged amino acids on the cytoplasmic side of the membrane.

    Article  CAS  PubMed  Google Scholar 

  37. Schumann, U., Edwards, M. D., Li, C. & Booth, I. R. The conserved carboxy-terminus of the MscS mechanosensitive channel is not essential but increases stability and activity. FEBS Lett. 572, 233–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Miller, S. et al. Domain organization of the MscS mechanosensitive channel of Escherichia coli. EMBO J. 22, 36–46 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Norman, C. et al. Visualisation of the mechanosensitive channel of large conductance in bacteria using confocal microscopy. Eur. Biophys. J. 34, 396–402 (2005).

    Article  PubMed  Google Scholar 

  40. Anishkin, A. & Sukharev, S. Water dynamics and dewetting transition in the small mechanosensitive channel MscS. Biophys. J. 86, 2883–2895 (2004). Although the original interpretation of the MscS-Ec crystal structure proposed an open state, this paper assesses the properties of the MscS pore residues and uses molecular dynamics simulations to suggest that the crystal structure conformation might not be continuously hydrated and therefore represents a closed, or at least a non-conducting, form of the channel.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koprowski, P. & Kubalski, A. C termini of the Escherichia coli mechanosensitive ion channel (MscS) move apart upon the channel opening. J. Biol. Chem. 278, 11237–11245 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Bartlett, J. L., Li, Y. & Blount, P. Mechanosensitive channel gating transitions resolved by functional changes upon pore modification. Biophys. J. 91, 3684–3691 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Beckstein, O. & Sansom, M. S. The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores. Phys. Biol. 1, 42–52 (2004). Molecular dynamics is used to analyse the properties required for the passage of ions through a channel lumen. The hydrophobicity and hydrophilicity of the pore-wall residues influences access to water, which in turn influences the ability of ions to pass through the channel. Flow, therefore, is not determined by ion size alone.

    Article  CAS  PubMed  Google Scholar 

  44. Beckstein, O. & Sansom, M. S. Liquid-vapor oscillations of water in hydrophobic nanopores. Proc. Natl Acad. Sci. USA 100, 7063–7068 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Edwards, M. D. et al. Pivotal role of the glycine-rich TM3 helix in gating the MscS mechanosensitive channel. Nature Struct. Mol. Biol. 12, 113–119 (2005). This paper characterizes a number of mutations that disrupt the conserved Ala–Gly packing arrangement seen between MscS pore-lining helices. The data support a model in which these helices rotate and tilt during gating and depend on a knob versus groove mechanism for residues at the packing interface.

    Article  CAS  Google Scholar 

  46. Filatov, G. & White, M. The role of conserved leucines in the M2 domain of the acetylcholine receptor in channel gating. Mol. Pharmacol. 48, 379–384 (1995).

    CAS  PubMed  Google Scholar 

  47. Ou, X., Blount, P., Hoffman, R. J. & Kung, C. One face of a transmembrane helix is crucial in mechanosensitive channel gating. Proc. Natl Acad. Sci. USA 95, 11471–11475 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Steinbacher, S., Bass, R., Strop, P. & Rees, D. C. Structures of the prokaryotic mechanosensitive channels MscL and MscS. Curr. Top. Membr. 58, 1–24 (2007).

    Article  CAS  Google Scholar 

  49. Vora, T., Corry, B. & Chung, S. H. Brownian dynamics investigation into the conductance state of the MscS channel crystal structure. Biochim. Biophys. Acta. 1758, 730–737 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Kim, S., Chamberlain, A. K. & Bowie, J. U. Membrane channel structure of Helicobacter pylori vacuolating toxin: Role of multiple GXXXG motifs in cylindrical channels. Proc. Natl Acad. Sci. USA 101, 5988–5991 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sotomayor, M. & Schulten, K. Molecular dynamics study of gating in the mechanosensitive channel of small conductance MscS. Biophys. J. 87, 3050–3065 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Koprowski, P. & Kubalski, A. Voltage-independent adaptation of mechanosensitive channels in Escherichia coli protoplasts. J. Membr. Biol. 164, 253–262 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Akitake, B., Anishkin, A. & Sukharev, S. The “dashpot” mechanism of stretch-dependent gating in MscS. J. Gen. Physiol. 125, 143–154 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shapovalov, G. & Lester, H. A. Gating transitions in bacterial ion channels measured at 3 μs resolution. J. Gen. Physiol. 124, 151–161 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Anishkin, A., Chiang, C. S. & Sukharev, S. Gain-of-function mutations reveal expanded intermediate states and a sequential action of two gates in MscL. J. Gen. Physiol. 125, 155–170 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A. & Martinac, B. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418, 942–948 (2002). An analysis of bilayer mechanical properties — hydrophobic mismatch and membrane curvature — and how they influence the opening of MscL channels.

    Article  CAS  PubMed  Google Scholar 

  57. Perozo, E., Kloda, A., Cortes, D. M. & Martinac, B. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nature Struct. Biol. 9, 696–703 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Blount, P., Schroeder, M. J. & Kung, C. Mutations in a bacterial mechanosensitive channel change the cellular response to osmotic stress. J. Biol. Chem. 272, 32150–32157 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Iscla, I., Levin, G., Wray, R., Reynolds, R. & Blount, P. Defining the physical gate of a mechanosensitive channel, MscL, by engineering metal-binding sites. Biophys. J. 87, 3172–3180 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chiang, C. S., Shirinian, L. & Sukharev, S. Capping transmembrane helices of MscL with aromatic residues changes channel response to membrane stretch. Biochemistry 44, 12589–12597 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Chiang, C. S., Anishkin, A. & Sukharev, S. Gating of the large mechanosensitive channel in situ: estimation of the spatial scale of the transition from channel population responses. Biophys. J. 86, 2846–2861 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sukharev, S., Durell, S. R. & Guy, H. R. Structural models of the MscL gating mechanism. Biophys. J. 81, 917–936 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sukharev, S., Betanzos, M., Chiang, C. S. & Guy, H. R. The gating mechanism of the large mechanosensitive channel MscL. Nature 409, 720–724 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Park, K. H., Berrier, C., Martinac, B. & Ghazi, A. Purification and functional reconstitution of N- and C-halves of the MscL channel. Biophys. J. 86, 2129–2136 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Powl, A. M., East, J. M. & Lee, A. G. Lipid–protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL. Biochemistry 42, 14306–14317 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Martinac, B., Adler, J. & Kung, C. Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348, 261–263 (1990).

    Article  CAS  PubMed  Google Scholar 

  67. Nomura, T., Sokabe, M. & Yoshimura, K. Lipid-protein interaction of the MscS mechanosensitive channel examined by scanning mutagenesis. Biophys. J. 91, 2874–2881 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yoshimura, K., Nomura, T. & Sokabe, M. Loss-of-function mutations at the rim of the funnel of mechanosensitive channel MscL. Biophys. J. 86, 2113–2120 (2004). Mutational analysis of MscL residues located towards the periplasmic ends of the TM segments suggests an interaction with lipid headgroups that contributes to the gating mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. von Heijne, G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J. Mol. Biol. 225, 487–494 (1992).

    Article  CAS  PubMed  Google Scholar 

  70. von Heijne, G. Membrane-protein topology. Nature Rev. Mol. Cell. Biol. 7, 909–918 (2006).

    Article  CAS  Google Scholar 

  71. White, S. H. & Wimley, W. C. Membrane protein folding and stability: physical principles. Annu. Rev. Biophys. Biomol. Struct. 28, 319–365 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Jiang, Y. X. et al. X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Okada, K., Moe, P. C. & Blount, P. Functional design of bacterial mechanosensitive channels. Comparisons and contrasts illuminated by random mutagenesis. J. Biol. Chem. 277, 27682–27688 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Palenik, B. et al. Genome sequence of Synechococcus CC9311: insights into adaptation to a coastal environment. Proc. Natl Acad. Sci. USA 103, 13555–13559 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Haswell, E. S. & Meyerowitz, E. M. MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr. Biol. 16, 1–11 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Nakayama, Y., Fujiu, K., Sokabe, M. & Yoshimura, K. Molecular and electrophysiological characterization of a mechanosensitive channel expressed in the chloroplasts of Chlamydomonas. Proc. Natl Acad. Sci. USA 104, 5883–5888 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 (1981).

    Article  CAS  PubMed  Google Scholar 

  78. Delcour, A. H., Martinac, B., Adler, J. & Kung, C. Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys. J. 56, 631–636 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kloda, A. & Martinac, B. Structural and functional differences between two homologous mechanosensitive channels of Methanococcus jannaschii. EMBO J. 20, 1888–1896 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Powl, A. M., Wright, J. N., East, J. M. & Lee, A. G. Identification of the hydrophobic thickness of a membrane protein using fluorescence spectroscopy: studies with the mechanosensitive channel MscL. Biochemistry 44, 5713–5721 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Perozo, E., Kloda, A., Cortes, D. M. & Martinac, B. Site-directed spin-labeling analysis of reconstituted MscL in the closed state. J. Gen. Physiol. 118, 193–206 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Levin, G. & Blount, P. Cysteine scanning of MscL transmembrane domains reveals residues critical for mechanosensitive channel gating. Biophys. J. 86, 2862–2870 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Iscla, I., Levin, G., Wray, R. & Blount, P. Disulfide trapping the mechanosensitive channel MscL into a gating-transition state. Biophys. J. 92, 1224–1232 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Li, C., Edwards, M. D., Hocherl, J., Roth, J. & Booth, I. R. Identification of mutations that alter the gating of the E. coli mechanosensitive channel protein, MscK. Mol. Microbiol. 64, 560–574 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Buurman, E. T., McLaggan, D., Naprstek, J. & Epstein, W. Multiple paths for aberrant transport of K+ in Escherichia coli. J. Bacteriol. 186, 4238–4245 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Booth, I. R. et al. in Methods in Enzymology (eds. Sies, M. & Haeussinger, D.)(Elsevier, 2007).

    Google Scholar 

  87. Beckstein, O. & Sansom, M. S. A hydrophobic gate in an ion channel: the closed state of the nicotinic acetylcholine receptor. Phys. Biol. 3, 147–159 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the generous support of their research collaborators and colleagues, but in particular P. Blount, J. Bowie, J. Naismith, T. Rasmussen, A. Rasmussen, W. Bartlett, C. Kung, B. Martinac, D. Rees, E. Perozo, T. Lee and S. Sukharev. Research on MS channels is supported by The Wellcome Trust (GR077564MA), the Biotechnology and Biological Sciences Research Council (BBSRC), MRC and the University of Aberdeen, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian R. Booth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Arabidopsis thaliana

Escherichia coli

Lactococcus lactis

Mycobacterium tuberculosis

Staphylococcus aureus

FURTHER INFORMATION

Ian R. Booth's homepage

Glossary

Patch clamp

A technique whereby a small glass electrode tip is tightly sealed onto a patch of cell membrane, thereby making it possible to record the flow of current through individual ion channels or pores in the patch.

Conductance

Calculated from the increase in current when a single channel is fully open, under known conditions of applied transmembrane voltage.

Open dwell time

The average time a single channel remains in the fully open state under conditions of constant transmembrane pressure and voltage; this parameter can only be determined statistically based on the analysis of many single openings of channels that occur over several minutes in a patch-clamp recording.

Pressure sensitivity

The pressure required to open channels is most often quoted relative to another channel. For example, the pressure required to open MscL-Ec is often quoted as a ratio by reference to the pressure required to achieve the first openings of MscS-Ec in the same membrane patch. Absolute measures of sensitivity to membrane tension can be achieved only by measuring the curvature of the patch under pressure using video microscopy and by applying Laplace's law, which relates the tension in the bilayer to the transmembrane pressure through the radius of the curvature of the patch.

Protonmotive force

The protonmotive force is created when protons are expelled from the cell during respiratory and photosynthetic electron flow or by the action of an ATPase. The protonmotive force consists of the proton gradient (ΔpH) and a gradient of charge (ΔΨ). Proton (and Na+) ions enter the cell, driven by the protonmotive force, to do useful work such as ATP synthesis, flagellar rotation and membrane transport.

Inactivation

(also known as desensitization). MscS-Ec has been observed to undergo spontaneous loss of channel activity when held under constant pressure; activity can be restored to the majority of channels in a patch by resting the membrane (re-setting the pressure to zero) for a short period before re-imposing pressure.

Electron paramagnetic resonance

Observation of the transitions between spin states of an unpaired electron in a magnetic field.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Booth, I., Edwards, M., Black, S. et al. Mechanosensitive channels in bacteria: signs of closure?. Nat Rev Microbiol 5, 431–440 (2007). https://doi.org/10.1038/nrmicro1659

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro1659

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing