Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Membrane protein architects: the role of the BAM complex in outer membrane protein assembly

Key Points

  • The Gram-negative outer membrane protein (OMP) family includes proteins that are associated with basic physiological functions, virulence and multidrug resistance, and therefore plays a fundamental part in the maintenance of cellular viability.

  • Understanding how these proteins are targeted and folded into this membrane is crucial, as it could offer important medical benefits. Compounds that inhibit key stages of this process would block key stages of OMP biogenesis, thereby inhibiting essential physiological, pathogenic and drug resistance functions, and could prove useful in combating diverse pathogens, including Pseudomonas aeruginosa, Neisseria meningitidis and Salmonella enterica.

  • OMP biogenesis in Gram-negative bacteria has, until recently, remained a largely unknown mechanism. However, over the past 3 years, a complex of proteins has been discovered that is known as the β-barrel assembly machinery (BAM) and is responsible for folding and inserting OMPs into the membrane.

  • Recent advances in our understanding of the molecular basis of OMP biogenesis in Gram-negative bacteria are discussed.

  • Emphasis is placed on analysis of the recently discovered component structures and accessory interactions, in particular with the periplasmic chaperones DegP, Skp and SurA, which are known to interact with OMPs.

  • The mechanisms that the BAM complex might use in the folding and insertion of OMPs into the membrane are also discussed.

Abstract

The folding of transmembrane proteins into the outer membrane presents formidable challenges to Gram-negative bacteria. These proteins must migrate from the cytoplasm, through the inner membrane and into the periplasm, before being recognized by the β-barrel assembly machinery, which mediates efficient insertion of folded β-barrels into the outer membrane. Recent discoveries of component structures and accessory interactions of this complex are yielding insights into how cells fold membrane proteins. Here, we discuss how these structures illuminate the mechanisms responsible for the biogenesis of outer membrane proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of outer membrane protein biogenesis in Escherichia coli.
Figure 2: Structures of the outer membrane protein assembly components.
Figure 3: DegP cage structures.

Similar content being viewed by others

References

  1. Bos, M. P., Robert, V. & Tommassen, J. Biogenesis of the Gram-negative bacterial outer membrane. Annu. Rev. Microbiol. 61, 191–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Breyton, C., Haase, W., Rapoport, T. A., Kuhlbrandt, W. & Collinson, I. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 418, 662–665 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Driessen, A. J. & Nouwen, N. Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 77, 643–667 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Rapoport, T. A. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450, 663–669 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Qi, H. Y., Hyndman, J. B. & Bernstein, H. D. DnaK promotes the selective export of outer membrane protein precursors in SecA-deficient Escherichia coli. J. Biol. Chem. 277, 51077–51083 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Papanikou, E., Karamanou, S. & Economou, A. Bacterial protein secretion through the translocase nanomachine. Nature Rev. Microbiol. 5, 839–851 (2007).

    Article  CAS  Google Scholar 

  8. Sklar, J. G., Wu, T., Kahne, D. & Silhavy, T. J. Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev. 21, 2473–2484 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Onufryk, C., Crouch, M. L., Fang, F. C. & Gross, C. A. Characterization of six lipoproteins in the σE regulon. J. Bacteriol. 187, 4552–4561 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rizzitello, A. E., Harper, J. R. & Silhavy, T. J. Genetic evidence for parallel pathways of chaperone activity in the periplasm of Escherichia coli. J. Bacteriol. 183, 6794–6800 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Werner, J. & Misra, R. YaeT (Omp85) affects the assembly of lipid-dependent and lipid-independent outer membrane proteins of Escherichia coli. Mol. Microbiol. 57, 1450–1459 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Wu, T. et al. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121, 235–245 (2005). First documented evidence that BamA forms a heterooligomeric structure; the BamB–D lipoproteins were identified as accessory components of the complex.

    Article  CAS  PubMed  Google Scholar 

  13. Doerrler, W. T. & Raetz, C. R. Loss of outer membrane proteins without inhibition of lipid export in an Escherichia coli YaeT mutant. J. Biol. Chem. 280, 27679–27687 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Malinverni, J. C. et al. YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol. Microbiol. 61, 151–164 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Collin, S., Guilvout, I., Chami, M. & Pugsley, A. P. YaeT-independent multimerization and outer membrane association of secretin PulD. Mol. Microbiol. 64, 1350–1357 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Guilvout, I. et al. In vitro multimerization and membrane insertion of bacterial outer membrane secretin PulD. J. Mol. Biol. 382, 13–23 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Bolla, J. M., Lazdunski, C. & Pages, J. M. The assembly of the major outer membrane protein OmpF of Escherichia coli depends on lipid synthesis. EMBO J. 7, 3595–3599 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sklar, J. G. et al. Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli. Proc. Natl Acad. Sci. USA 104, 6400–6405 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vuong, P., Bennion, D., Mantei, J., Frost, D. & Misra, R. Analysis of YfgL and YaeT interactions through bioinformatics, mutagenesis, and biochemistry. J. Bacteriol. 190, 1507–1517 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Misra, R. First glimpse of the crystal structure of YaeT's POTRA domains. ACS Chem. Biol. 2, 649–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Gatsos, X. et al. Protein secretion and outer membrane assembly in Alphaproteobacteria. FEMS Microbiol. Rev. 32, 995–1009 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Aoki, S. K. et al. Contact-dependent growth inhibition requires the essential outer membrane protein BamA (YaeT) as the receptor and the inner membrane transport protein AcrB. Mol. Microbiol. 70, 323–340 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Voulhoux, R., Bos, M. P., Geurtsen, J., Mols, M. & Tommassen, J. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299, 262–265 (2003). The authors of this paper described, for the first time, the essential nature of BamA and its role in the biogenesis of membrane proteins.

    Article  CAS  PubMed  Google Scholar 

  24. Genevrois, S., Steeghs, L., Roholl, P., Letesson, J. J. & van der Ley, P. The Omp85 protein of Neisseria meningitidis is required for lipid export to the outer membrane. EMBO J. 22, 1780–1789 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bos, M. P., Tefsen, B., Geurtsen, J. & Tommassen, J. Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. Proc. Natl Acad. Sci. USA 101, 9417–9422 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sanchez-Pulido, L., Devos, D., Genevrois, S., Vicente, M. & Valencia, A. POTRA: a conserved domain in the FtsQ family and a class of β-barrel outer membrane proteins. Trends Biochem. Sci. 28, 523–526 (2003). The POTRA domains were identified in a wide range of proteins through in silico predictions.

    Article  CAS  PubMed  Google Scholar 

  27. Schleiff, E. & Soll, J. Membrane protein insertion: mixing eukaryotic and prokaryotic concepts. EMBO Rep. 6, 1023–1027 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gentle, I. E., Burri, L. & Lithgow, T. Molecular architecture and function of the Omp85 family of proteins. Mol. Microbiol. 58, 1216–1225 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Kim, S. et al. Structure and function of an essential component of the outer membrane protein assembly machine. Science 317, 961–964 (2007). First identification of the crystal structure of POTRA 1–4 from E. coli BamA, which revealed the first structure of a POTRA fold.

    Article  CAS  PubMed  Google Scholar 

  30. Knowles, T. J. et al. Fold and function of polypeptide transport-associated domains responsible for delivering unfolded proteins to membranes. Mol. Microbiol. 68, 1216–1227 (2008). A description of the NMR structures of POTRA 1–2 from E. coli BamA; this study detected interdomain flexibility and evidence for direct binding of nascent barrel proteins.

    Article  CAS  PubMed  Google Scholar 

  31. Gatzeva-Topalova, P. Z., Walton, T. A. & Sousa, M. C. Crystal structure of YaeT: conformational flexibility and substrate recognition. Structure 16, 1873–1881 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Clantin, B. et al. Structure of the membrane protein FhaC: a member of the Omp85–TpsB transporter superfamily. Science 317, 957–961 (2007). This paper documents the crystal structure of FhaC, a two-partner secretion system OMP that is related to BamA. The authors found a tandem POTRA domain fold that was associated with an integral outer membrane barrel domain.

    Article  CAS  PubMed  Google Scholar 

  33. Vanini, M. M., Spisni, A., Sforca, M. L., Pertinhez, T. A. & Benedetti, C. E. The solution structure of the outer membrane lipoprotein OmlA from Xanthomonas axonopodis pv. citri reveals a protein fold implicated in protein–protein interaction. Proteins 71, 2051–2064 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Reynolds, K. A. et al. Structural and computational characterization of the SHV-1 β-lactamase-β-lactamase inhibitor protein interface. J. Biol. Chem. 281, 26745–26753 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Williams, J. C. et al. Structural and thermodynamic characterization of a cytoplasmic dynein light chain-intermediate chain complex. Proc. Natl Acad. Sci. USA 104, 10028–10033 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van den Ent, F. et al. Structural and mutational analysis of the cell division protein FtsQ. Mol. Microbiol. 68, 110–123 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Robert, V. et al. Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Biol. 4, e377 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Struyve, M., Moons, M. & Tommassen, J. Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J. Mol. Biol. 218, 141–148 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Habib, S. J. et al. The N-terminal domain of Tob55 has a receptor-like function in the biogenesis of mitochondrial β-barrel proteins. J. Cell Biol. 176, 77–88 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bos, M. P., Robert, V. & Tommassen, J. Functioning of outer membrane protein assembly factor Omp85 requires a single POTRA domain. EMBO Rep. 8, 1149–1154 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stenberg, F. et al. Protein complexes of the Escherichia coli cell envelope. J. Biol. Chem. 280, 34409–34419 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Surana, N. K. et al. Evidence for conservation of architecture and physical properties of Omp85-like proteins throughout evolution. Proc. Natl Acad. Sci. USA 101, 14497–14502 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, H., Grass, S., Wang, T., Liu, T. & St Geme, J. W. 3rd. Structure of the Haemophilus influenzae HMW1B translocator protein: evidence for a twin pore. J. Bacteriol. 189, 7497–7502 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fussenegger, M., Facius, D., Meier, J. & Meyer, T. F. A novel peptidoglycan-linked lipoprotein (ComL) that functions in natural transformation competence of Neisseria gonorrhoeae. Mol. Microbiol. 19, 1095–1105 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Blatch, G. L. & Lassle, M. The tetratricopeptide repeat: a structural motif mediating protein–protein interactions. Bioessays 21, 932–939 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. D'Andrea, L. D. & Regan, L. TPR proteins: the versatile helix. Trends Biochem. Sci. 28, 655–662 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Chan, N. C., Likic, V. A., Waller, R. F., Mulhern, T. D. & Lithgow, T. The C-terminal TPR domain of Tom70 defines a family of mitochondrial protein import receptors found only in animals and fungi. J. Mol. Biol. 358, 1010–1022 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Wu, Y. & Sha, B. Crystal structure of yeast mitochondrial outer membrane translocon member Tom70p. Nature Struct. Mol. Biol. 13, 589–593 (2006).

    Article  CAS  Google Scholar 

  49. Ruiz, N., Falcone, B., Kahne, D. & Silhavy, T. J. Chemical conditionality: a genetic strategy to probe organelle assembly. Cell 121, 307–317 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Charlson, E. S., Werner, J. N. & Misra, R. Differential effects of yfgL mutation on Escherichia coli outer membrane proteins and lipopolysaccharide. J. Bacteriol. 188, 7186–7194 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rolhion, N., Barnich, N., Claret, L. & Darfeuille-Michaud, A. Strong decrease in invasive ability and outer membrane vesicle release in Crohn's disease-associated adherent-invasive Escherichia coli strain LF82 with the yfgL gene deleted. J. Bacteriol. 187, 2286–2296 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Khairnar, N. P., Kamble, V. A., Mangoli, S. H., Apte, S. K. & Misra, H. S. Involvement of a periplasmic protein kinase in DNA strand break repair and homologous recombination in Escherichia coli. Mol. Microbiol. 65, 294–304 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Ruiz, N., Kahne, D. & Silhavy, T. J. Advances in understanding bacterial outer-membrane biogenesis. Nature Rev. Microbiol. 4, 57–66 (2006).

    Article  Google Scholar 

  54. Lipinska, B., Zylicz, M. & Georgopoulos, C. The HtrA (DegP) protein, essential for Escherichia coli survival at high temperatures, is an endopeptidase. J. Bacteriol. 172, 1791–1797 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Spiess, C., Beil, A. & Ehrmann, M. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97, 339–347 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Behrens, S., Maier, R., de Cock, H., Schmid, F. X. & Gross, C. A. The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J. 20, 285–294 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen, R. & Henning, U. A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. Mol. Microbiol. 19, 1287–1294 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Ureta, A. R., Endres, R. G., Wingreen, N. S. & Silhavy, T. J. Kinetic analysis of the assembly of the outer membrane protein LamB in Escherichia coli mutants each lacking a secretion or targeting factor in a different cellular compartment. J. Bacteriol. 189, 446–454 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Schafer, U., Beck, K. & Muller, M. Skp, a molecular chaperone of Gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J. Biol. Chem. 274, 24567–24574 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Harms, N. et al. The early interaction of the outer membrane protein PhoE with the periplasmic chaperone Skp occurs at the cytoplasmic membrane. J. Biol. Chem. 276, 18804–18811 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Typas, A. et al. High-throughput, quantitative analyses of genetic interactions in E. coli. Nature Methods 5, 781–787 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Arie, J. P., Sassoon, N. & Betton, J. M. Chaperone function of FkpA, a heat shock prolyl isomerase, in the periplasm of Escherichia coli. Mol. Microbiol. 39, 199–210 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Meli, A. C. et al. Channel properties of TpsB transporter FhaC point to two functional domains with a C-terminal protein-conducting pore. J. Biol. Chem. 281, 158–166 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Ertel, F. et al. The evolutionarily related β-barrel polypeptide transporters from Pisum sativum and Nostoc PCC7120 contain two distinct functional domains. J. Biol. Chem. 280, 28281–28289 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Guedin, S. et al. Novel topological features of FhaC, the outer membrane transporter involved in the secretion of the Bordetella pertussis filamentous hemagglutinin. J. Biol. Chem. 275, 30202–30210 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Krojer, T. et al. Interplay of PDZ and protease domain of DegP ensures efficient elimination of misfolded proteins. Proc. Natl Acad. Sci. USA 105, 7702–7707 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Krojer, T. et al. Structural basis for the regulated protease and chaperone function of DegP. Nature 453, 885–890 (2008). This study indicated that DegP can form higher order homooligomers and is capable of interacting with folded outer membrane proteins and with lipid.

    Article  CAS  PubMed  Google Scholar 

  68. Jiang, J. et al. Activation of DegP chaperone-protease via formation of large cage-like oligomers upon binding to substrate proteins. Proc. Natl Acad. Sci. USA 105, 11939–11944 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Krojer, T., Garrido-Franco, M., Huber, R., Ehrmann, M. & Clausen, T. Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416, 455–459 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Huber, D. & Bukau, B. DegP: a protein “death star”. Structure 16, 989–990 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Koronakis, V., Sharff, A., Koronakis, E., Luisi, B. & Hughes, C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405, 914–919 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Kozjak, V. et al. An essential role of Sam50 in the protein sorting and assembly machinery of the mitochondrial outer membrane. J. Biol. Chem. 278, 48520–48523 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Inoue, K. & Potter, D. The chloroplastic protein translocation channel Toc75 and its paralog OEP80 represent two distinct protein families and are targeted to the chloroplastic outer envelope by different mechanisms. Plant J. 39, 354–365 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Henderson, I. R., Navarro-Garcia, F., Desvaux, M., Fernandez, R. C. & Ala'Aldeen, D. Type V protein secretion pathway: the autotransporter story. Microbiol. Mol. Biol. Rev. 68, 692–744 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wiedemann, N. et al. Biogenesis of the protein import channel Tom40 of the mitochondrial outer membrane: intermembrane space components are involved in an early stage of the assembly pathway. J. Biol. Chem. 279, 18188–18194 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Pfanner, N., Wiedemann, N., Meisinger, C. & Lithgow, T. Assembling the mitochondrial outer membrane. Nature Struct. Mol. Biol. 11, 1044–1048 (2004).

    Article  CAS  Google Scholar 

  77. Kutik, S. et al. Dissecting membrane insertion of mitochondrial β-barrel proteins. Cell 132, 1011–1024 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Meisinger, C. et al. The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. Dev. Cell 7, 61–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Meisinger, C. et al. The morphology proteins Mdm12/Mmm1 function in the major β-barrel assembly pathway of mitochondria. EMBO J. 26, 2229–2239 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian R. Henderson.

Related links

Related links

DATABASES

Entrez Genome Project

Bordetella pertussis

Drosophila melanogaster

Neisseria gonorrhoeae

Neisseria meningitidis

Pseudomonas aeruginosa

Salmonella enterica

Streptomyces clavuligeris

Xanthomonas axonopodis pathovar citri

Glossary

Chaperone

A protein that facilitates the proper folding of other proteins.

Amphipathic

A molecule with both polar and non-polar portions in its structure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knowles, T., Scott-Tucker, A., Overduin, M. et al. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nat Rev Microbiol 7, 206–214 (2009). https://doi.org/10.1038/nrmicro2069

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro2069

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing