Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The versatility and adaptation of bacteria from the genus Stenotrophomonas

Key Points

  • Stenotrophomonas spp. are found throughout the environment, particularly in close association with plants.

  • Currently, the genus comprises eight validly described species: Stenotrophomonas maltophilia, Stenotrophomonas nitritireducens, Stenotrophomonas rhizophila, Stenotrophomonas acidaminiphila, Stenotrophomonas chelatiphaga, Stenotrophomonas koreensis, Stenotrophomonas terrae and Stenotrophomonas humi.

  • Stenotrophomonas spp. have an important ecological role in the nitrogen and sulphur cycles and several Stenotrophomonas spp. can engage in beneficial interactions with plants, promoting growth and protecting plants from attack.

  • These bacteria can degrade many xenobiotic compounds and so have the potential to be agents for bioremediation.

  • S. maltophilia is the only species of Stenotrophomonas that is known to cause human disease and is a cause of bacteraemia, septicaemia and severe lung infections in patients with cystic fibrosis.

  • S. maltophilia has also been shown to possess a cell–cell signalling system that is mediated by a diffusible signal factor and is involved in modulating the production of extracellular protease, biofilm behaviour and virulence.

  • Determination of the genome sequences of clinical and endophytic S. maltophilia strains has formed the basis for functional genomic analyses to test the contribution of specific functions to the tenacity of these bacteria in colonization, their broad resistance to antibiotics and their ability to enter into close associations with plants and humans.

Abstract

The genus Stenotrophomonas comprises at least eight species. These bacteria are found throughout the environment, particularly in close association with plants. Strains of the most predominant species, Stenotrophomonas maltophilia, have an extraordinary range of activities that include beneficial effects for plant growth and health, the breakdown of natural and man-made pollutants that are central to bioremediation and phytoremediation strategies and the production of biomolecules of economic value, as well as detrimental effects, such as multidrug resistance, in human pathogenic strains. Here, we discuss the versatility of the bacteria in the genus Stenotrophomonas and the insight that comparative genomic analysis of clinical and endophytic isolates of S. maltophilia has brought to our understanding of the adaptation of this genus to various niches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biotechnological uses of Stenotrophomonas spp.
Figure 2: Phylogenetic analysis of the eight validly described Stenotrophomonas species and related taxa.
Figure 3: Root and endosphere colonization by Stenotrophomonas rhizophila.
Figure 4: Genome maps of Stenotrophomonas maltophilia R551-3 and K279a.
Figure 5: Comparison of gene content and organization in the genomes of Stenotrophomonas maltophilia R551-3 and K279a.

Similar content being viewed by others

References

  1. Palleroni, N. J. & Bradbury, J. F. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings. et al. 1983. Int. J. Syst. Bacteriol. 43, 606–609 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Swings, J., Devos, P., Vandenmooter, M. & Deley, J. Transfer of Pseudomonas maltophilia Hugh 1981 to the genus Xanthomonas maltophilia (Hugh 1981) comb. nov. Int. J. Syst. Bacteriol. 33, 409–413 (1983).

    Article  Google Scholar 

  3. Berg, G., Roskot, N. & Smalla, K. Genotypic and phenotypic relationships between clinical and environmental isolates of Stenotrophomas maltophilia. J. Clin. Microbiol. 37, 3594–3600 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chatelut, M., Dournes, J. L., Chabanon, G. & Marty, N. Epidemiologic typing of Stenotrophomonas (Xanthomonas) maltophilia by PCR. J. Clin. Microbiol. 33, 912–914 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Coenye, T., Vanlaere, E., Falsen, E. & Vandamme, P. Stenotrophomonas africana Drancourt. et al. 1997 is a later synonym of Stenotrophomonas maltophilia (Hugh 1981) Palleroni and Bradbury 1993. Int. J. Syst. Evol. Microbiol. 54, 1235–1237 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Hauben, L., Vauterin, L., Moore, E. R. B., Hoste, B. & Swings, J. Genomic diversity of the genus Stenotrophomonas. Int. J. Syst. Bacteriol. 49, 1749–1760 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Minkwitz, A. & Berg, G. Comparison of antifungal activities and 16S ribosomal DNA sequences of clinical and environmental isolates of Stenotrophomonas maltophilia. J. Clin. Microbiol. 39, 139–145 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nesme, X., Vaneechoutte, M., Orso, S., Hoste, B. & Swings, J. Diversity and genetic relatedness within genera Xanthomonas and Stenotrophomonas using restriction-endonuclease site differences of PCR-amplified 16S ribosomal-RNA gene. Syst. Appl. Microbiol. 18, 127–135 (1995). Highlights the complexity of the Stenotrophomonas species and details useful methods to discern them from other xanthomonads.

    Article  CAS  Google Scholar 

  9. Finkmann, W., Altendorf, K., Stackebrandt, E. & Lipski, A. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 50, 273–282 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Wolf, A., Fritze, A., Hagemann, M. & Berg, G. Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties. Int. J. Syst. Evol. Microbiol. 52, 1937–1944 (2002). Defines the plant-associated species S. rhizophila.

    CAS  PubMed  Google Scholar 

  11. Assih, E. A. et al. Stenotrophomonas acidaminiphila sp. nov., a strictly aerobic bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor. Int. J. Syst. Evol. Microbiol. 52, 559–568 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Yang, H. C., Im, W. T., Kang, M. S., Shin, D. Y. & Lee, S. T. Stenotrophomonas koreensis sp. nov., isolated from compost in South Korea. Int. J. Syst. Evol. Microbiol. 56, 81–84 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Kaparullina, E., Doronina, N., Chistyakova, T. & Trotsenko, Y. Stenotrophomonas chelatiphaga sp. nov., a new aerobic EDTA-degrading bacterium. Syst. Appl. Microbiol. 32, 157–162 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Heylen, K., Vanparys, B., Peirsegaele, F., Lebbe, L. & De Vos, P. Stenotrophomonas terrae sp. nov. and Stenotrophomonas humi sp. nov., two nitrate-reducing bacteria isolated from soil. Int. J. Syst. Evol. Microbiol. 57, 2056–2061 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Yoon, J. H., Kang, S. J., Oh, H. W. & Oh, T. K. Stenotrophomonas dokdonensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 56, 1363–1367 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, D. S. et al. Pseudoxanthomonas sacceonensis sp. nov., isolated from BTEX-contaminated soil in Korea, transfer of Stenotrophomonas dokdonensis Yoon et al. 2006 to the genus Pseudoxanthomonas as Pseudoxanthomonas dakdonensis comb. nov. and emended description of the genus Pseudoxanthomonas. Int. J. Syst. Evol. Microbiol. 58, 2235–2240 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Berg, G., Egamberdieva, D., Lugtenberg, B. & Hagemann, M. in Symbiosis and Stress (eds Seckbach, J. & Grube, M.) (in the press).

  18. Denton, M. & Kerr, K. G. Microbiological and clinical aspects of infection associated with Stenotrophomonas maltophilia. Clin. Microbiol. Rev. 11, 57–80 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Banerjee, M. & Yesmin, L. Sulfur-oxidizing plant growth promoting rhizobacteria for enhanced canola performance. US Patent 07491535 (2002).

  20. Ikemoto, S., Suzuki, K., Kaneko, T. & Komagata, K. Characterization of strains of Pseudomonas maltophilia which do not require methionine. Int. J. Syst. Bacteriol. 30, 437–447 (1980).

    Article  CAS  Google Scholar 

  21. Park, M. et al. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol. Res. 160, 127–133 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Lockhart, S. R. et al. Antimicrobial resistance among Gram-negative bacilli causing infections in intensive care unit patients in the United States between 1993 and 2004. J. Clin. Microbiol. 45, 3352–3359 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Berg, G., Marten, P. & Ballin, G. Stenotrophomonas maltophilia in the rhizosphere of oilseed rape — occurrence, characterization and interaction with phytopathogenic fungi. Microbiol. Res. 151, 19–27 (1996).

    Article  CAS  Google Scholar 

  24. Juhnke, M. E. & Desjardin, E. Selective medium for isolation of Xanthomonas maltophilia from soil and rhizosphere environments. Appl. Environ. Microbiol. 55, 747–750 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mahaffee, W. F. & Kloepper, J. W. Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus L.). Microb. Ecol. 34, 210–223 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Berg, G. et al. Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl. Environ. Microbiol. 68, 3328–3338 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schwieger, F. & Tebbe, C. C. Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album) — linking of 16S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria. Appl. Environ. Microbiol. 66, 3556–3565 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chelius, M. K. & Triplett, E. W. Immunolocalization of dinitrogenase reductase produced by Klebsiella pneumoniae in association with Zea mays L. Appl. Environ. Microbiol. 66, 783–787 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mehnaz, S. et al. Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can. J. Microbiol. 47, 110–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Germida, J. J. & Siciliano, S. D. Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol. Fertil. Soils 33, 410–415 (2001).

    Article  Google Scholar 

  31. Sturz, A. V., Matheson, B. G., Arsenault, W., Kimpinski, J. & Christie, B. R. Weeds as a source of plant growth promoting rhizobacteria in agricultural soils. Can. J. Microbiol. 47, 1013–1024 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Taghavi, S. et al. Mechanisms underlying the beneficial effects of endophytic bacteria on growth and development of poplar. Appl. Environ. Microbiol. 75, 748–757 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. de Oliveira-Garcia, D. et al. Fimbriae and adherence of Stenotrophomonas maltophilia to epithelial cells and to abiotic surfaces. Cell. Microbiol. 5, 625–636 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Elvers, K. T., Leeming, K. & Lappin-Scott, H. M. Binary culture biofilm formation by Stenotrophomonas maltophilia and Fusarium oxysporum. J. Ind. Microbiol. Biotechnol. 26, 178–183 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Huang, T. P., Somers, E. B. & Wong, A. C. L. Differential biofilm formation and motility associated with lipopolysaccharide/exopolysaccharide-coupled biosynthetic genes in Stenotrophomonas maltophilia. J. Bacteriol. 188, 3116–3120 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schreiber, L. et al. Plant–microbe interactions: identification of epiphytic bacteria and their ability to alter leaf surface permeability. New Phytol. 166, 589–594 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Riederer, M. & Schonherr, J. Effects of surfactants on water permeability of isolated plant cuticles and on the composition of their cuticular waxes. Pesticide Sci. 29, 85–94 (1990).

    Article  CAS  Google Scholar 

  38. Miller, K. J. & Wood, J. M. Osmoadaptation by rhizosphere bacteria. Annu. Rev. Microbiol. 50, 101–136 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Hagemann, M. et al. The plant-associated bacterium Stenotrophomonas rhizophila expresses a new enzyme for the synthesis of the compatible solute glucosylglycerol. J. Bacteriol. 190, 5898–5906 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roder, A., Hoffmann, E., Hagemann, M. & Berg, G. Synthesis of the compatible solutes glucosylglycerol and trehalose by salt-stressed cells of Stenotrophomonas strains. FEMS Microbiol. Lett. 243, 219–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Elbein, A. D., Pan, Y. T., Pastuszak, I. & Carroll, D. New insights on trehalose: a multifunctional molecule. Glycobiology 13, 17R–27R (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Avonce, N., Mendoza-Vargas, A., Morett, E. & Iturriaga, G. Insights on the evolution of trehalose biosynthesis. BMC Evol. Biol. 6, 109 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Heruth, D. P., Pond, F. R., Dilts, J. A. & Quackenbush, R. L. Characterization of genetic determinants for R-body synthesis and assembly in Caedibacter taeniospiralis 47 and 116. J. Bacteriol. 176, 3559–3567 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Binks, P. R., Nicklin, S. & Bruce, N. C. Degradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) by Stenotrophomonas maltophilia PB1. Appl. Environ. Microbiol. 61, 1318–1322 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, J. F., Zheng, Y. G., Liu, Z. Q. & Shen, Y. C. Preparation of 3-ketovalidoxylamine A C-N lyase substrate: N-p-nitrophenyl-3-ketovalidamine by Stenotrophomonas maltrophilia CCTCC M 204024. Appl. Microbiol. Biotechnol. 73, 1275–1281 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Juhasz, A. L., Stanley, G. A. & Britz, M. L. Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003. Lett. Appl. Microbiol. 30, 396–401 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Dungan, R. S., Yates, S. R. & Frankenberger, W. T. Transformations of selenate and selenite by Stenotrophomonas maltophilia isolated from a seleniferous agricultural drainage pond sediment. Environ. Microbiol. 5, 287–295 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Lee, E. Y., Jun, Y. S., Cho, K. S. & Ryu, H. W. Degradation characteristics of toluene, benzene, ethylbenzene, and xylene by Stenotrophomonas maltophilia T3-c. J. Air Waste Manage. Assoc. 52, 400–406 (2002).

    Article  CAS  Google Scholar 

  49. Suckstorff, I. & Berg, G. Evidence for dose-dependent effects on plant growth by Stenotrophomonas strains from different origins. J. Appl. Microbiol. 95, 656–663 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Liba, C. M. et al. Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. J. Appl. Microbiol. 101, 1076–1086 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Alonso, A., Sanchez, P. & Martinez, J. L. Stenotrophomonas maltophilia D457R contains a cluster of genes from Gram-positive bacteria involved in antibiotic and heavy metal resistance. Antimicrob. Agents Chemother. 44, 1778–1782 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pages, D. et al. Heavy metal tolerance in Stenotrophomonas maltophilia. PLoS One 3, e1539 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Berg, G., Knaape, C., Ballin, G. & Seidel, D. Biological control of Verticillium dahliae Kleb. by natural occurring rhizosphere bacteria. Arch. Phytopathol. Plant Protection 29, 249–262 (1994).

    Article  Google Scholar 

  54. Dunne, C., Moenne-Loccoz, Y., de Bruijn, F. J. & O'Gara, F. Overproduction of an inducible extracellular serine protease improves biological control of Pythium ultimum by Stenotrophomonas maltophilia strain W81. Microbiology 146, 2069–2078 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Elad, Y., Chet, I. & Baker, R. Increased growth-response of plants induced by rhizobacteria antagonistic to soilborne pathogenic fungi. Plant Soil 98, 325–330 (1987).

    Article  Google Scholar 

  56. Giesler, L. J. & Yuen, G. Y. Evaluation of Stenotrophomonas maltophilia strain C3 for biocontrol of brown patch disease. Crop Prot. 17, 509–513 (1998).

    Article  Google Scholar 

  57. Kobayashi, D. Y., Guglielmoni, M. & Clarke, B. B. Isolation of the chitinolytic bacteria Xanthomonas maltophilia and Serratia marcescens as biological control agents for summer patch disease of turfgrass. Soil Biol. Biochem. 27, 1479–1487 (1995).

    Article  CAS  Google Scholar 

  58. Kwok, O. C. H., Fahy, P. C., Hoitink, H. A. J. & Kuter, G. A. Interactions between bacteria and Trichoderma hamatum in suppression of rhizoctonia damping-off in bark compost media. Phytopathology 77, 1206–1212 (1987).

    Article  Google Scholar 

  59. Messiha, N. A. S. et al. Stenotrophomonas maltophilia: a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. Eur. J. Plant Pathol. 118, 211–225 (2007). Describes the first example of the release of S. maltophilia for disease control.

    Article  Google Scholar 

  60. Nakayama, T., Homma, Y., Hashidoko, Y., Mizutani, J. & Tahara, S. Possible role of xanthobaccins produced by Stenotrophomonas sp strain SB-K88 in suppression of sugar beet damping-off disease. Appl. Environ. Microbiol. 65, 4334–4339 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, Z. & Yuen, G. Y. Biological control of Bipolaris sorakiniana on tall fescue by Stenotrophomonas maltophilia strain C3. Phytopathology 89, 817–822 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Jakobi, M. et al. Maltophilin: a new antifungal compound produced by Stenotrophomonas maltophilia R3089. J. Antibiotics 49, 1101–1104 (1996).

    Article  CAS  Google Scholar 

  63. Kai, M., Effmert, U., Berg, G. & Piechulla, B. Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch. Microbiol. 187, 351–360 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Stotzky, G. & Schenck, S. Volatile organic compounds and microorganisms. Crit. Rev. Microbiol. 4, 333–382 (1976).

    Article  CAS  Google Scholar 

  65. Wheatley, R. E. The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81, 357–364 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Debette, J. Isolation and characterization of an extracellular proteinase produced by a soil strain of Xanthomonas maltophilia. Curr. Microbiol. 22, 85–90 (1991).

    Article  CAS  Google Scholar 

  67. Galai, S., Limam, F. & Marzouki, M. N. A new Stenotrophomonas maltophilia strain producing laccase. Use in decolorization of synthetics dyes. Appl. Biochem. Biotechnol. 17 Oct 2008 (doi: 10.1007/s12010-008-8369-y).

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, Z. & Yuen, G. Y. Effects of culture fluids and preinduction of chitinase production on biocontrol of Bipolaris leaf spot by Stenotrophomonas maltophilia C3. Biol. Control 18, 277–286 (2000).

    Article  Google Scholar 

  69. Zhang, Z., Yuen, G. Y., Sarath, G. & Penheiter, A. R. Chitinases from the plant disease biocontrol agent, Stenotrophomonas maltophilia C3. Phytopathology 91, 204–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, Z. G. & Yuen, G. Y. The role of chitinase production by Stenotrophomonas maltophilia strain C3 in biological control of Bipolaris sorokiniana. Phytopathology 90, 384–389 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Mastretta, C. et al. Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnol. Genetic Eng. Rev. 23, 175–207 (2006).

    Article  CAS  Google Scholar 

  72. Kobayashi, D. Y., Reedy, R. M., Bick, J. & Oudemans, P. V. Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Appl. Environ. Microbiol. 68, 1047–1054 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jurkevitch, E., Hadar, Y. & Chen, Y. Differential siderophore utilization and iron uptake by soil and rhizosphere bacteria. Appl. Environ. Microbiol. 58, 119–124 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ardon, O. et al. Iron uptake in Ustilago maydis: studies with fluorescent ferrichrome analogues. Microbiology 143, 3625–3631 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Blanvillain, S. et al. Plant carbohydrate scavenging through Tonb-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS ONE 2, e224 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cao, Z. J. et al. Characterization of a novel Stenotrophomonas isolate with high keratinase activity and purification of the enzyme. J. Ind. Microbiol. Biotechnol. 36, 181–188 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Siegert, P. et al. Medium/means containing proteases from Stenotrophomonas maltophilia. Patent DE 102007033104 20070713 (2007).

  78. Humphris, S. N., Wheatley, R. E. & Bruce, A. The effects of specific volatile organic compounds produced by Trichoderma spp. on the growth of wood decay basidiomycetes. Holzforschung 55, 233–237 (2001).

    Article  CAS  Google Scholar 

  79. Berg, G., Eberl, L. & Hartmann, A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ. Microbiol. 7, 1673–1685 (2005). An insightful review that describes the rhizosphere as a reservoir for opportunistic pathogenic bacteria.

    Article  CAS  PubMed  Google Scholar 

  80. Crossman, L. C. et al. The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol. 9, R74 (2008). The first published genome sequence of a Stenotrophomonas species, the clinical isolate S. maltophilia K279a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Guilhabert, M. R. & Kirkpatrick, B. C. Identification of Xylella fastidiosa antivirulence genes: hemagglutinin adhesins contribute to X. fastidiosa biofilm maturation and colonization and attenuate virulence. Mol. Plant Microbe Interact. 18, 856–868 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Colombi, D. et al. Haemagglutination induced by Bordetella pertussis filamentous haemagglutinin adhesin (FHA) is inhibited by antibodies produced against FHA(430–873) fragment expressed in Lactobacillus casei. Curr. Microbiol. 53, 462–466 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. McKay, G. A., Woods, D. E., MacDonald, K. L. & Poole, K. Role of phosphoglucomutase of Stenotrophomonas maltophilia in lipopolysaccharide biosynthesis, virulence, and antibiotic resistance. Infect. Immun. 71, 3068–3075 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rahmati-Bahram, A., Magee, J. T. & Jackson, S. K. Temperature-dependent aminoglycoside resistance in Stenotrophomonas (Xanthomonas) maltophilia; alterations in protein and lipopolysaccharide with growth temperature. J. Antimicrob. Chemother. 37, 665–676 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Patil, P. B., Bogdanove, A. J. & Sonti, R. V. The role of horizontal transfer in the evolution of a highly variable lipopolysaccharide biosynthesis locus in xanthomonads that infect rice, citrus and crucifers. BMC Evol. Biol. 7, 243 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Winn, A. M. & Wilkinson, S. G. Structure of the O16 antigen of Stenotrophomonas maltophilia. Carbohydrate Res. 330, 279–283 (2001).

    Article  CAS  Google Scholar 

  87. da Silva, A. C. R. et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417, 459–463 (2002).

    Article  PubMed  Google Scholar 

  88. Hagemann, M., Hasse, D. & Berg, G. Detection of a phage genome carrying a zonula occludens like toxin gene (zot) in clinical isolates of Stenotrophomonas maltophilia. Arch. Microbiol. 185, 449–458 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Gould, V. C. & Avison, M. B. SmeDEF-mediated antimicrobial drug resistance in Stenotrophomonas maltophilia clinical isolates having defined phylogenetic relationships. J. Antimicrob. Chemother. 57, 1070–1076 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Roscetto, E. et al. PCR-based rapid genotyping of Stenotrophomonas maltophilia isolates. BMC Microbiol. 8, 202 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Valdezate, S. et al. High genetic diversity among Stenotrophomonas maltophilia strains despite their originating at a single hospital. J. Clin. Microbiol. 42, 693–699 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Gulcan, H., Kuzucu, C. & Durmaz, R. Nosocomial Stenotrophomonas maltophilia cross-infection: three cases in newborns. Am. J. Infect. Control 32, 365–368 (2004).

    Article  PubMed  Google Scholar 

  93. Park, Y. S. et al. Pseudooutbreak of Stenotrophomonas maltophilia bacteremia in a general ward. Am. J. Infect. Control 36, 29–32 (2008).

    Article  PubMed  Google Scholar 

  94. Sakhnini, E., Weissmann, A. & Oren, I. Fulminant Stenotrophomonas maltophilia soft tissue infection in immunocompromised patients: an outbreak transmitted via tap water. Am. J. Med. Sci. 323, 269–272 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Squier, C., Yu, V. L. & Stout, J. E. Waterborne nosocomial infections. Curr. Infect. Dis. Rep. 2, 490–496 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Gould, V. C., Okazaki, A. & Avison, M. B. β-Lactam resistance and b-lactamase expression in clinical Stenotrophomonas maltophilia isolates having defined phylogenetic relationships. J. Antimicrob. Chemother. 57, 199–203 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Paez, J. I. G. & Costa, S. F. Risk factors associated with mortality of infections caused by Stenotrophomonas maltophilia: a systematic review. J. Hosp. Infect. 70, 101–108 (2008).

    Article  PubMed  Google Scholar 

  98. Ansari, S. R. et al. Risk factors for infections with multidrug-resistant Stenotrophomonas maltophilia in patients with cancer. Cancer 109, 2615–2622 (2007).

    Article  PubMed  Google Scholar 

  99. Cheong, H. S. et al. Risk factors for mortality and clinical implications of catheter-related infections in patients with bacteraemia caused by Stenotrophomonas maltophilia. Int. J. Antimicrob. Agents 32, 538–540 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Hanes, S. D. et al. Risk factors for late-onset nosocomial pneumonia caused by Stenotrophomonas maltophilia in critically ill trauma patients. Clin. Infect. Dis. 35, 228–235 (2002).

    Article  PubMed  Google Scholar 

  101. Figueiredo, P. M. S. et al. Cytotoxic activity of clinical Stenotrophomonas maltophilia. Lett. Appl. Microbiol. 43, 443–449 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Fouhy, Y. et al. Diffusible signal factor-dependent cell–cell signaling and virulence in the nosocomial pathogen Stenotrophomonas maltophilia. J. Bacteriol. 189, 4964–4968 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Waters, V. J. et al. Immunostimulatory properties of the emerging pathogen Stenotrophomonas maltophilia. Infect. Immun. 75, 1698–1703 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kwa, A. L. H. et al. The impact of multidrug resistance on the outcomes of critically ill patients with Gram-negative bacterial pneumonia. Diagnostic Microbiol. Infect. Dis. 58, 99–104 (2007).

    Article  CAS  Google Scholar 

  105. Pathmanathan, A. & Waterer, G. W. Significance of positive Stenotrophomonas maltophilia culture in acute respiratory tract infection. Eur. Resp. J. 25, 911–914 (2005).

    Article  CAS  Google Scholar 

  106. Weber, D. J. et al. Microbiology of ventilator-associated pneumonia compared with that of hospital-acquired pneumonia. Infect. Control Hosp. Epidemiol. 28, 825–831 (2007).

    Article  PubMed  Google Scholar 

  107. Aisenberg, G. et al. Stenotrophomonas maltophilia pneumonia in cancer patients without traditional risk factors for infection, 1997–2004. Eur. J. Clin. Microbiol. Infect. Dis. 26, 13–20 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Steinkamp, G. et al. Prospective evaluation of emerging bacteria in cystic fibrosis. J. Cystic Fibrosis 4, 41–48 (2005).

    Article  CAS  Google Scholar 

  109. Goss, C. H., Mayer-Hamblett, N., Aitken, M. L., Rubenfeld, G. D. & Ramsey, B. W. Association between Stenotrophomonas maltophilia and lung function in cystic fibrosis. Thorax 59, 955–959 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Senol, E., DesJardin, J., Stark, P. C., Barefoot, L. & Snydman, D. R. Attributable mortality of Stenotrophomonas maltophilia bacteremia. Clin. Infect. Dis. 34, 1653–1656 (2002).

    Article  PubMed  Google Scholar 

  111. Boktour, M. et al. Central venous catheter and Stenotrophomonas maltophilia bacteremia in cancer patients. Cancer 106, 1967–1973 (2006).

    Article  PubMed  Google Scholar 

  112. Friedman, N. D., Korman, T. M., Fairley, C. K., Franklin, J. C. & Spelman, D. W. Bacteraemia due to Stenotrophomonas maltophilia: an analysis of 45 episodes. J. Infect. 45, 47–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Lai, C. H. et al. Central venous catheter-related Stenotrophomonas maltophilia bacteraemia and associated relapsing bacteraemia in haematology and oncology patients. Clin. Microbiol. Infect. 12, 986–991 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Avison, M. B. et al. Differential regulation of L1 and L2 b-lactamase expression in Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 49, 387–389 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Lambert, T., Ploy, M. C., Denis, F. & Courvalin, P. Characterization of the chromosomal aac(6′)-Iz gene of Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 43, 2366–2371 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Okazaki, A. & Avison, M. B. Aph(3′)-IIc, an aminoglycoside resistance determinant from Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 51, 359–360 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Alonso, A. & Martinez, J. L. Cloning and characterization of SmeDEF, a novel multidrug efflux pump from Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 44, 3079–3086 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Alonso, A. & Martinez, J. L. Expression of multidrug efflux pump SmeDEF by clinical isolates of Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 45, 1879–1881 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang, L., Li, X. Z. & Poole, K. SmeDEF multidrug efflux pump contributes to intrinsic multidrug resistance in Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 45, 3497–3503 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Falagas, M. E., Valkimadi, P. E., Huang, Y. T., Matthaiou, D. K. & Hsueh, P. R. Therapeutic options for Stenotrophomonas maltophilia infections beyond co-trimoxazole: a systematic review. J. Antimicrob. Chemother. 62, 889–894 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Livermore, D. M. et al. Non-susceptibility trends among Pseudomonas aeruginosa and other non-fermentative Gram-negative bacteria from bacteraemias in the UK and Ireland, 2001–06. J. Antimicrob. Chemother. 62, II55–II63 (2008).

    CAS  PubMed  Google Scholar 

  122. Barbolla, R. et al. Class 1 integrons increase trimethoprim-sulfamethoxazole MICs against epidemiologically unrelated Stenotrophomonas maltophilia isolates. Antimicrob. Agents Chemother. 48, 666–669 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Toleman, M. A., Bennett, P. M., Bennett, D. M. C., Jones, R. N. & Walsh, T. R. Global emergence of trimethoprim/sulfamethoxazole resistance in Stenotrophomonas maltophilia mediated by acquisition of sul genes. Emerg. Infect. Dis. 13, 559–565 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lawson, D. H. & Paice, B. J. Adverse reactions to trimethoprim-sulfamethoxazole. Rev. Infect. Dis. 4, 429–433 (1982).

    Article  CAS  PubMed  Google Scholar 

  125. Nicodemo, A. C. & Paez, J. I. G. Antimicrobial therapy for Stenotrophomonas maltophilia infections. Eur. J. Clin. Microbiol. Infect. Dis. 26, 229–237 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Ford, P. J. & Avison, M. B. Evolutionary mapping of the SHV b-lactamase and evidence for two separate IS26-dependent bla(SHV) mobilization events from the Klebsiella pneumoniae chromosome. J. Antimicrob. Chemother. 54, 69–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Poirel, L., Lartigue, M. F., Decousser, J. W. & Nordmann, P. ISEcp1B-mediated transposition of bla(CTX-M) in Escherichia coli. Antimicrob. Agents Chemother. 49, 447–450 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sanchez, M. B., Hernandez, A., Rodriguez-Martinez, J. M., Martinez-Martinez, L. & Martinez, J. L. Predictive analysis of transmissible quinolone resistance indicates Stenotrophomonas maltophilia as a potential source of a novel family of Qnr determinants. BMC Microbiol. 8, 148 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Al Naiemi, N., Duim, B. & Bart, A. A CTX-M extended-spectrum b-lactamase in Pseudomonas aeruginosa and Stenotrophomonas maltophilia. J. Med. Microbiol. 55, 1607–1608 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Avison, M. B., von Heldreich, C. J., Higgins, C. S., Bennett, P. M. & Walsh, T. R. A TEM-2 b-lactamase encoded on an active Tn1-like transposon in the genome of a clinical isolate of Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 46, 879–884 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. De Gelder, L., Williams, J. J., Ponciano, J. M., Sota, M. & Top, E. M. Adaptive plasmid evolution results in host-range expansion of a broad-host-range plasmid. Genetics 178, 2179–2190 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kataoka, D. et al. The indirect pathogenicity of Stenotrophomonas maltophilia. Int. J. Antimicrob. Agents 22, 601–606 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Huang, T. P. & Wong, A. C. L. A cyclic AMP receptor protein-regulated cell–cell communication system mediates expression of a FecA homologue in Stenotrophomonas maltophilia. Appl. Environ. Microbiol. 73, 5034–5040 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang, L. H. et al. A bacterial cell–cell communication signal with cross-kingdom structural analogues. Mol. Microbiol. 51, 903–912 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Veselova, M. et al. Production of N-acylhomoserine lactone signal molecules by Gram-negative soil-borne and plant-associated bacteria. Folia Microbiologica 48, 794–798 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Zhu, H., Thuruthyil, S. J. & Willcox, M. D. P. Production of N-acyl homoserine lactones by Gram-negative bacteria isolated from contact lens wearers. Clin. Exp. Ophthalmol. 29, 150–152 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Ryan, R. P. & Dow, J. M. Diffusible signals and interspecies communication in bacteria. Microbiology 154, 1845–1858 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Ryan, R. P. et al. Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Mol. Microbiol. 68, 75–86 (2008). Reports signalling between S. maltophilia and P. aeruginosa , another bacterial species occupying the same niches, and discusses the consequences for bacterial behaviour.

    Article  CAS  PubMed  Google Scholar 

  139. Liu, Z., Yang, C. & Qiao, C. L. Biodegradation of p-nitrophenol and 4-chlorophenol by Stenotrophomonas sp. FEMS Microbiol. Lett. 277, 150–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Chen, T., Dai, Y. J., Ding, J. F., Yuan, S. & Ni, J. P. N-demethylation of neonicotinoid insecticide acetamiprid by bacterium Stenotrophomonas maltophilia CGMCC 1.1788. Biodegradation 19, 651–658 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Soares, A., Guieysse, B., Delgado, O. & Mattiasson, B. Aerobic biodegradation of nonylphenol by cold-adapted bacteria. Biotechnol. Lett. 25, 731–738 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Tachibana, S., Kuba, N., Kawai, F., Duine, J. A. & Yasuda, M. Involvement of a quinoprotein (PQQ-containing) alcohol dehydrogenase in the degradation of polypropylene glycols by the bacterium Stenotrophomonas maltophilia. FEMS Microbiol. Lett. 218, 345–349 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Cao, F., Ren, Y. & Hua, W. Cyclomaltoheptaose mixed esters of anti-inflammatory drugs and short-chain fatty acids and study of their enzymatic hydrolysis in vitro. Carbohydrate Res. 344, 526–530 (2009).

    Article  CAS  Google Scholar 

  144. Smejkal, C. W., Seymour, F. A., Burton, S. K. & Lappin-Scott, H. M. Characterisation of bacterial cultures enriched on the chlorophenoxyalkanoic acid herbicides 4-(2,4-dichlorophenoxy) butyric acid and 4-(4-chloro-2-methylphenoxy) butyric acid. J. Ind. Microbiol. Biotechnol. 30, 561–567 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Merroun, M. L. & Selenska-Pobell, S. Bacterial interactions with uranium: an environmental perspective. J. Contaminant Hydrology 102, 285–295 (2008).

    Article  CAS  Google Scholar 

  146. Song, H. P., Li, X. G., Sun, J. S., Xu, S. M. & Han, X. Application of a magnetotactic bacterium, Stenotrophomonas sp to the removal of Au(III) from contaminated wastewater with a magnetic separator. Chemosphere 72, 616–621 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Morel, M. A. et al. Cellular and biochemical response to Cr(VI) in Stenotrophomonas sp. FEMS Microbiol. Lett. 291, 162–168 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Yu, L., Liu, Y. & Wang, J. Identification of novel denitrifying bacteria Stenotrophomonas sp. ZZ15 and Oceanimonas sp. YC13 and application for removal of nitrate from industrial wastewater. Biodegradation 20, 391–400 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Dean, M. et al. Characterization of cholylglycine hydrolase from a bile-adapted strain of Xanthomonas maltophilia and its application for quantitative hydrolysis of conjugated bile salts. Appl. Environ. Microbiol. 68, 3126–3128 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pedrini, P. et al. Xanthomonas maltophilia CBS 897.97 as a source of new 7b- and 7a-hydroxysteroid dehydrogenases and cholylglycine hydrolase: improved biotransformations of bile acids. Steroids 71, 189–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Nakajima, Y. et al. Dipeptidyl aminopeptidase IV from Stenotrophomonas maltophilia exhibits activity against a substrate containing a 4-hydroxyproline residue. J. Bacteriol. 190, 7819–7829 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Choi, S.-K. et al. Designing selective, high affinity ligands of 5-HT1D receptor by covalent dimerization of 5-HT1F ligands derived from 4-fluoro-N-[3-(1-methyl-4-piperidinyl)-1H-indol-5-yl]benzamide. J. Medicinal Chem. 51, 3609–3616 (2008).

    Article  CAS  Google Scholar 

  153. Ping, Z. et al. Enhancement of leaching copper by electro-oxidation from metal powders of waste printed circuit board. J. Hazard. Mater. 166, 746–750 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Xue, Y.-P. & Zheng, Y.-G. Production of valienamine using a two-step process with Stenotrophomonas maltophilia. J. Biotechnol. 136, S367–S368 (2008).

    Article  Google Scholar 

  155. Dal Bello, G. M., Monaco, C. I. & Simon, M. R. Biological control of seedling blight of wheat caused by Fusarium graminearum with beneficial rhizosphere microorganisms. World J. Microbiol. Biotechnol. 18, 627–636 (2002).

    Article  Google Scholar 

  156. Sullivan, R. F., Holtman, M. A., Zylstra, G. J., White, J. F. & Kobayashi, D. Y. Taxonomic positioning of two biological control agents for plant diseases as Lysobacter enzymogenes based on phylogenetic analysis of 16S rDNA, fatty acid composition and phenotypic characteristics. J. Appl. Microbiol. 94, 1079–1086 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G.B. thanks C. Zachow, M. Hagemann, B. Lugtenberg and D. Egamberdieyeva; her research was supported by the Deutsche Forschungsgemeinschaft, the Austrian Science Foundation FWF and by the INTAS project 04-82-6969. Research by S.M., S.T. and D.v.d.L. was supported by the US Department of Energy, Office of Science, BER, project number KP1102010 under contract DE-AC02-98CH10886, by Laboratory Directed Research and Development funds (LDRD05-063 and LDRD09-005) and by Royalty Funds at the Brookhaven National Laboratory under contract with the US Department of Energy. M.B.A.'s work on S. maltophilia has been funded by the Wellcome Trust and the British Society for Antimicrobial Chemotherapy. R.P.R. and J.M.D. are indebted to Y. McCarthy for helpful discussions. R.P.R. and J.M.D. were supported in part by grants awarded by the Science Foundation of Ireland (SFI 03/IN3/B373 and 07/IN.1/B955 to J.M.D.). Sequencing of S. maltophilia R551-3 was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract number DE-AC02-05CH11231, by Lawrence Livermore National Laboratory under contract number DE-AC52-07NA27344 and by Los Alamos National Laboratory under contract number DE-AC02-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Ryan.

Supplementary information

Supplementary information S1 (movie) | Root and endosphere colonization by Stenotrophomonas

Volume renderings of confocal laser scanning micrographs of DsRed–labeled Stenotrophomonas rhizophila DSM 14405T cells in the rhizosphere of tomato plants. a: colonization of 1–week–old tomato roots by S. rhizophila DSM 14405T Equipment and settings: Tomato seeds cv. Avicenna were incubated into an over night culture of DsRed–labeled S. rhizophila DSM 14405T for 12 h at room temperature, washed three times with sterile water and dried out. Treated seeds were placed into germination pouches (Mega International, MN, United States) added with 30 ml sterile tap water. The germination pouches were placed upright into a frame and incubated at 20°C and 60% humidity with 16 h light and 8 h dark for one week. Roots were removed from the pouches and directly analyzed under the microscope. The 8 bit images were acquired by a Leica TSC SP equipped with objectives PL FLUOTAR 25.0×0.75 OIL and HCX PL APO 63.0×1.32 OIL UV plus a digital zoom–factor of 1.96. DsRed protein was excited by a He-Ne laser (543 nm) and the detection–range was 574–673 nm, Excitation Beam Splitter TD 488/543/633. Panel a resolution and pixel size (60 sections): 400 × 400 × 100.9 μm (X, Y and Z, respectively) and 0.39 × 0.39 × 1.71 μm (X, Y and Z dimension, respectively); panel d resolution and pixel size (50 sections): 80.84 × 80.84 × 36.90 μm (X, Y and Z, respectively) and 0.09 × 0.09 × 0.75 μm (X, Y and Z dimension, respectively). The confocal stacks were imported in ImageJ (Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/) and the brightness/contrast was equally adjusted in all optical slices. Image Surfer (Feng et al. 2007, J. Neurosci. 27: 12757–12760) was then used to visualize the stacks using the "volume rendering" method. The TIFF images were imported in Coral Draw X4 to be assembled, converted in CMYK color code and to add the text. (MOV 4478 kb)

41579_2009_BFnrmicro2163_MOESM2_ESM.pdf

Supplementary information S2 (table) | Region present in S. maltophilia K279a but absent from the R551-3 genome* (PDF 337 kb)

41579_2009_BFnrmicro2163_MOESM3_ESM.pdf

Supplementary information S3 (table) | Regions from the S. maltophilia R551-3 genome that are absent from the K279a genome* (PDF 365 kb)

41579_2009_BFnrmicro2163_MOESM4_ESM.pdf

Supplementary information S4 (table) | Putative and known heavy metal and antimicrobial drug resistance genes in the S. maltophilia K279a and R551-3 genome sequences (PDF 274 kb)

41579_2009_BFnrmicro2163_MOESM5_ESM.pdf

Supplementary information S5 (figure) | Comparison of the lipopolysaccharide biosynthesis gene cluster bordered by the etfA and metB genes found in the plant pathogens Xanthomonas campestris pv. campestris and Xanthomonas axonopodis pv. citri with similar regions found in the poplar endophyte S. maltophilia R551-3 and the opportunistic pathogen S. maltophilia (PDF 310 kb)

Related links

Related links

DATABASES

Entrez Genome Project

Bordetella pertussis

Caenorhabditis elegans

Escherichia coli

Klebsiella pneumoniae

Medicago sativa

Pseudomonas aeruginosa

Rhizoctonia solani

Shewanella denitrificans

Solanum tuberosum

Stenotrophomonas maltophilia K279a

Stenotrophomonas maltophilia R551-3

Triticum astivum

Vibrio cholerae

Xanthomonas axonopodis

Xanthomonas campestris

Xylella fastidiosa

Zea mays

FURTHER INFORMATION

MaGe

Stenotrophomonas maltophilia K279a genome

Stenotrophomonas maltophilia 5513 genome

Glossary

Intraspecific heterogeneity

The quality of being diverse within a single species.

Rhizosphere

The zone around roots that is influenced by the plant and is a region of high microbial activity.

Endophytic

A microorganism that lives within a plant for at least part of its life cycle without causing apparent disease.

Epiphytic

Describes a bacterium that grows on or attaches to the surface of a living plant.

Phyllosphere

The micro-environment on the leaf surface of a plant.

Compatible solute

An organic compound that acts as a cytoplasmic solute to regulate water content for bacterial cells growing in environments of high osmolarity.

R body

A bacterial inclusion consisting of long proteinaceous ribbons rolled up inside the bacterial cell.

Phenolic compound

A chemical compound that is characterized by the presence of a hydroxyl group attached to a six-membered aromatic ring; many plants produce phenolic compounds.

Xenobiotic

A chemical that is only man-made, and otherwise is not found in the environment.

Biocontrol

The control of harmful pests and pathogens through the use of microorganisms.

Siderophore

A small organic molecule that is produced by bacteria to sequester iron.

Biotope

The natural environment of a microorganism.

Riboswitch

A conformational switch in RNA molecules that is induced by small metabolites and leads to a switch in gene regulatory function.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryan, R., Monchy, S., Cardinale, M. et al. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7, 514–525 (2009). https://doi.org/10.1038/nrmicro2163

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro2163

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing