Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanisms of Escherichia coli pathogenicity

A Corrigendum to this article was published on 24 December 2012

This article has been updated

Key Points

  • Major advances have been made in our understanding of the molecular mechanisms that are used by pathogenic Escherichia coli to cause disease. In this Review, we focus on these advancements for six diarrhoeagenic and two extraintestinal pathovars.

  • Pathogenic E. coli are diverse in their gene sets. Many virulence factors are maintained on a virulence plasmid and were acquired through horizontal gene transfer. Others were integrated into the chromosome by bacteriophages or transposable elements. Although the gain of traits is important in the evolution of a pathogen, the loss of certain genes was necessary for enteroinvasive E. coli (including Shigella) to become fully pathogenic.

  • We are beginning to dissect the interactions between E. coli virulence factors and host cell components. Several effector proteins that are secreted by the type III secretion system of enteropathogenic, enterohaemorrhagic and enteroinvasive E. coli have been shown to hijack and manipulate host cell processes for the benefit of the bacterium.

  • Other pathovars, such as enterotoxigenic E. coli, elaborate toxins that cause disease, whereas the attachment of enteroaggregative and diffusely adherent E. coli stimulates cellular signalling events that stimulate inflammation.

  • The extraintestinal isolates have remarkable lifestyles. Uropathogenic E. coli can invade the underlying bladder cells and form quiescent reservoirs, which are possibly the source of recurrent infections. Neonatal meningitis E. coli has been shown to be highly resistant to host immune responses and can cross the blood–brain barrier to cause disease.

Abstract

Escherichia coli is a remarkable and diverse organism. This normally harmless commensal needs only to acquire a combination of mobile genetic elements to become a highly adapted pathogen capable of causing a range of diseases, from gastroenteritis to extraintestinal infections of the urinary tract, bloodstream and central nervous system. The worldwide burden of these diseases is staggering, with hundreds of millions of people affected annually. Eight E. coli pathovars have been well characterized, and each uses a large arsenal of virulence factors to subvert host cellular functions to potentiate its virulence. In this Review, we focus on the recent advances in our understanding of the different pathogenic mechanisms that are used by various E. coli pathovars and how they cause disease in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sites of pathogenic Escherichia coli colonization.
Figure 2: Pathogenic mechanisms of enteropathogenic and enterohaemorrhagic Escherichia coli.
Figure 3: Pathogenic mechanisms of Shigella (enteroinvasive Escherichia coli).
Figure 4: Pathogenic mechanisms of enterotoxigenic, enteroagreggative and diffusely adherent Escherichia coli.
Figure 5: Pathogenic mechanisms of extraintestinal Escherichia coli.

Similar content being viewed by others

Change history

  • 24 December 2012

    On page 31 of this article, in the third paragraph of the section 'Enterotoxic Escherichia coli', the sentence “This leads to increased intracellular levels of cyclic GMP and activates the cystic fibrosis transmembrane conductance regulator (CFTR), resulting in impaired absorption of Na+ and H2O efflux into the lumen63.” should have read “This leads to increased intracellular levels of cyclic GMP, resulting in impaired Na+ absorption, as well as activation of the cystic fibrosis transmembrane conductance regulator (CFTR)63.” The authors apologize to the readers for any misunderstanding caused.

References

  1. Kaper, J. B., Nataro, J. P. & Mobley, H. L. Pathogenic Escherichia coli. Nature Rev. Microbiol. 2, 123–140 (2004).

    Article  CAS  Google Scholar 

  2. Bhavsar, A. P., Guttman, J. A. & Finlay, B. B. Manipulation of host-cell pathways by bacterial pathogens. Nature 449, 827–834 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Shames, S. R., Auweter, S. D. & Finlay, B. B. Co-evolution and exploitation of host cell signaling pathways by bacterial pathogens. Int. J. Biochem. Cell Biol. 41, 380–389 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Asadulghani, M. et al. The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog. 5, e1000408 (2009). A look at the 18 prophages in EHEC O157:H7 str. Sakai and their ability to circularize, replicate, package into phage particles and infect other cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wirth, T. et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol. Microbiol. 60, 1136–1151 (2006). An interesting model of how a commensal species obtains virulence traits and evolves into a pathogen.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ogura, Y. et al. Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. Proc. Natl Acad. Sci. USA 106, 17939–17944 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rasko, D. A. et al. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J. Bacteriol. 190, 6881–6893 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Touchon, M. et al. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet. 5, e1000344 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lloyd, A. L., Rasko, D. A. & Mobley, H. L. T. Defining genomic islands and uropathogen-specific genes in uropathogenic Escherichia coli. J. Bacteriol. 189, 3532–3546 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Iguchi, A. et al. Complete genome sequence and comparative genome analysis of enteropathogenic Escherichia coli O127:H6 strain E2348/69. J. Bacteriol. 191, 347–354 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Maurelli, A. T. Black holes, antivirulence genes, and gene inactivation in the evolution of bacterial pathogens. FEMS Microbiol. Lett. 267, 1–8 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. McDaniel, T. K., Jarvis, K. G., Donnenberg, M. S. & Kaper, J. B. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc. Natl Acad. Sci. USA 92, 1664–1668 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deng, W. et al. Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc. Natl Acad. Sci. USA 101, 3597–3602 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hyland, R. M. et al. The bundlin pilin protein of enteropathogenic Escherichia coli is an N-acetyllactosamine-specific lectin. Cell. Microbiol. 10, 177–187 (2008).

    CAS  PubMed  Google Scholar 

  15. Saldaña, Z. et al. The Escherichia coli common pilus and the bundle-forming pilus act in concert during the formation of localized adherence by enteropathogenic E. coli. J. Bacteriol. 191, 3451–3461 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Swimm, A. I. & Kalman, D. Cytosolic extract induces Tir translocation and pedestals in EPEC-infected red blood cells. PLoS Pathog. 4, e4 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kenny, B. et al. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91, 511–520 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Swimm, A. et al. Enteropathogenic Escherichia coli use redundant tyrosine kinases to form actin pedestals. Mol. Biol. Cell 15, 3520–3529 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Phillips, N., Hayward, R. D. & Koronakis, V. Phosphorylation of the enteropathogenic E. coli receptor by the Src-family kinase c-Fyn triggers actin pedestal formation. Nature Cell Biol. 6, 618–625 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Bommarius, B. et al. Enteropathogenic Escherichia coli Tir is an SH2/3 ligand that recruits and activates tyrosine kinases required for pedestal formation. Mol. Microbiol. 63, 1748–1768 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Gruenheid, S. et al. Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nature Cell Biol. 3, 856–859 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Kalman, D. et al. Enteropathogenic E. coli acts through WASP and Arp2/3 complex to form actin pedestals. Nature Cell Biol. 1, 389–391 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Schüller, S. et al. Tir phosphorylation and Nck/N-WASP recruitment by enteropathogenic and enterohaemorrhagic Escherichia coli during ex vivo colonization of human intestinal mucosa is different to cell culture models. Cell. Microbiol. 9, 1352–1364 (2007).

    Article  PubMed  CAS  Google Scholar 

  24. Alto, N. M. et al. Identification of a bacterial type III effector family with G protein mimicry functions. Cell 124, 133–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Huang, Z. et al. Structural insights into host GTPase isoform selection by a family of bacterial GEF mimics. Nature Struct. Mol. Biol. 16, 853–860 (2009). This work finds that Map, which was originally suggested to be a Rho GTPase mimic, may actually act as a guanine-nucleotide exchange factor to activate CDC42. This activity is also demonstrated for the Shigella effectors IpgB1 and IpgB2.

    Article  CAS  Google Scholar 

  26. Ma, C. et al. Citrobacter rodentium infection causes both mitochondrial dysfunction and intestinal epithelial barrier disruption in vivo: role of mitochondrial associated protein (Map). Cell. Microbiol. 8, 1669–1686 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Nougayrède, J. & Donnenberg, M. S. Enteropathogenic Escherichia coli EspF is targeted to mitochondria and is required to initiate the mitochondrial death pathway. Cell. Microbiol. 6, 1097–1111 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. Quitard, S., Dean, P., Maresca, M. & Kenny, B. The enteropathogenic Escherichia coli EspF effector molecule inhibits PI-3 kinase-mediated uptake independently of mitochondrial targeting. Cell. Microbiol. 8, 972–981 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Guttman, J. A. et al. Attaching and effacing pathogen-induced tight junction disruption in vivo. Cell. Microbiol. 8, 634–645 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Alto, N. M. et al. The type III effector EspF coordinates membrane trafficking by the spatiotemporal activation of two eukaryotic signaling pathways. J. Cell Biol. 178, 1265–1278 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Iizumi, Y. et al. The enteropathogenic E. coli effector EspB facilitates microvillus effacing and antiphagocytosis by inhibiting myosin function. Cell Host Microbe 2, 383–392 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Kim, J. et al. The bacterial virulence factor NleA inhibits cellular protein secretion by disrupting mammalian COPII function. Cell Host Microbe 2, 160–171 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Thanabalasuriar, A. et al. The bacterial virulence factor NleA is required for the disruption of intestinal tight junctions by enteropathogenic Escherichia coli. Cell. Microbiol. 27 Apr 2009 (doi:10.1111/j.1462-5822.2009.01376.x).

    Article  CAS  PubMed  Google Scholar 

  34. Marchès, O. et al. EspJ of enteropathogenic and enterohaemorrhagic Escherichia coli inhibits opsono-phagocytosis. Cell. Microbiol. 10, 1104–1115 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Samba-Louaka, A. et al. Bacterial cyclomodulin Cif blocks the host cell cycle by stabilizing the cyclin-dependent kinase inhibitors p21 and p27. Cell. Microbiol. 10, 2496–2508 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Samba-Louaka, A., Nougayrède, J., Watrin, C., Oswald, E. & Taieb, F. The enteropathogenic E. coli effector Cif induces delayed apoptosis in epithelial cells. Infect. Immun. 77, 5471–5477 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dean, P. & Kenny, B. The effector repertoire of enteropathogenic E. coli: ganging up on the host cell. Curr. Opin. Microbiol. 12, 101–109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nataro, J. P. & Kaper, J. B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11, 142–201 (1998). A thorough review on the pathogenesis, diagnosis and epidemiology of diarrhoeagenic E. coli.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Toshima, H. et al. Enhancement of Shiga toxin production in enterohemorrhagic Escherichia coli serotype O157:H7 by DNase colicins. Appl. Environ. Microbiol. 73, 7582–7588 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schüller, S., Heuschkel, R., Torrente, F., Kaper, J. B. & Phillips, A. D. Shiga toxin binding in normal and inflamed human intestinal mucosa. Microbes Infect. 9, 35–39 (2007).

    Article  PubMed  CAS  Google Scholar 

  41. Pruimboom-Brees, I. M. et al. Cattle lack vascular receptors for Escherichia coli O157:H7 Shiga toxins. Proc. Natl Acad. Sci. USA 97, 10325–10329 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Römer, W. et al. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450, 670–675 (2007).

    Article  PubMed  CAS  Google Scholar 

  43. Kurmanova, A. et al. Structural requirements for furin-induced cleavage and activation of Shiga toxin. Biochem. Biophys. Res. Commun. 357, 144–149 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Malyukova, I. et al. Macropinocytosis in Shiga toxin 1 uptake by human intestinal epithelial cells and transcellular transcytosis. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G78–92 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Schüller, S., Frankel, G. & Phillips, A. D. Interaction of Shiga toxin from Escherichia coli with human intestinal epithelial cell lines and explants: Stx2 induces epithelial damage in organ culture. Cell. Microbiol. 6, 289–301 (2004).

    Article  PubMed  Google Scholar 

  46. Gobert, A. P. et al. Shiga toxin produced by enterohemorrhagic Escherichia coli inhibits PI3K/NF-κB signaling pathway in globotriaosylceramide-3-negative human intestinal epithelial cells. J. Immunol. 178, 8168–8174 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Low, A. S. et al. Analysis of fimbrial gene clusters and their expression in enterohaemorrhagic Escherichia coli O157:H7. Environ. Microbiol. 8, 1033–1047 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Xicohtencatl-Cortes, J. et al. The type 4 pili of enterohemorrhagic Escherichia coli O157:H7 are multipurpose structures with pathogenic attributes. J. Bacteriol. 191, 411–421 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Erdem, A. L., Avelino, F., Xicohtencatl-Cortes, J. & Girón, J. A. Host protein binding and adhesive properties of H6 and H7 flagella of attaching and effacing Escherichia coli. J. Bacteriol. 189, 7426–7435 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rendón, M. A. et al. Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proc. Natl Acad. Sci. USA 104, 10637–10642 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Robinson, C. M., Sinclair, J. F., Smith, M. J. & O'Brien, A. D. Shiga toxin of enterohemorrhagic Escherichia coli type O157:H7 promotes intestinal colonization. Proc. Natl Acad. Sci. USA 103, 9667–9672 (2006). Shiga toxin is shown to increase the expression of host nucleolin, thereby providing more receptors for intimin attachment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tobe, T. et al. An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc. Natl Acad. Sci. USA 103, 14941–14946 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. DeVinney, R. et al. Enterohemorrhagic Escherichia coli O157:H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infect. Immun. 67, 2389–2398 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Campellone, K. G., Robbins, D. & Leong, J. M. EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev. Cell 7, 217–228 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Garmendia, J. et al. TccP is an enterohaemorrhagic Escherichia coli O157:H7 type III effector protein that couples Tir to the actin-cytoskeleton. Cell. Microbiol. 6, 1167–1183 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Weiss, S. M. et al. IRSp53 links the enterohemorrhagic E. coli effectors Tir and EspFU for actin pedestal formation. Cell Host Microbe 5, 244–258 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Vingadassalom, D. et al. Insulin receptor tyrosine kinase substrate links the E. coli O157:H7 actin assembly effectors Tir and EspF(U) during pedestal formation. Proc. Natl Acad. Sci. USA 106, 6754–6759 (2009). Along with reference 56, this study identified IRTKS as the link between Tir, TccP and pedestal formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cheng, H., Skehan, B. M., Campellone, K. G., Leong, J. M. & Rosen, M. K. Structural mechanism of WASP activation by the enterohaemorrhagic E. coli effector EspFU . Nature 454, 1009–1013 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sallee, N. A. et al. The pathogen protein EspF(U) hijacks actin polymerization using mimicry and multivalency. Nature 454, 1005–1008 (2008). Along with reference 58, this article provides a mechanism of how TccP activates N-WASP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sal-Man, N., Biemans-Oldehinkel, E. & Finlay, B. B. Structural microengineers: pathogenic Escherichia coli redesigns the actin cytoskeleton in host cells. Structure 17, 15–19 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Frankel, G. & Phillips, A. D. Attaching effacing Escherichia coli and paradigms of Tir-triggered actin polymerization: getting off the pedestal. Cell. Microbiol. 10, 549–556 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Hughes, D. T. & Sperandio, V. Inter-kingdom signalling: communication between bacteria and their hosts. Nature Rev. Microbiol. 6, 111–120 (2008).

    Article  CAS  Google Scholar 

  63. Turner, S. M., Scott-Tucker, A., Cooper, L. M. & Henderson, I. R. Weapons of mass destruction: virulence factors of the global killer enterotoxigenic Escherichia coli. FEMS Microbiol. Lett. 263, 10–20 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Jansson, L., Tobias, J., Lebens, M., Svennerholm, A. & Teneberg, S. The major subunit, CfaB, of colonization factor antigen i from enterotoxigenic Escherichia coli is a glycosphingolipid binding protein. Infect. Immun. 74, 3488–3497 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jansson, L. et al. Sulfatide recognition by colonization factor antigen CS6 from enterotoxigenic Escherichia coli. PLoS ONE. 4, e4487 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Roy, K. et al. Enterotoxigenic Escherichia coli EtpA mediates adhesion between flagella and host cells. Nature. 457, 594–598 (2009). EtpA, which is transiently found at the tip of flagella, is found to mediate adhesion to host cells.

    Article  CAS  PubMed  Google Scholar 

  67. Dorsey, F. C., Fischer, J. F. & Fleckenstein, J. M. Directed delivery of heat-labile enterotoxin by enterotoxigenic Escherichia coli. Cell. Microbiol. 8, 1516–1527 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Johnson, A. M., Kaushik, R. S., Francis, D. H., Fleckenstein, J. M. & Hardwidge, P. R. Heat-labile enterotoxin promotes Escherichia coli adherence to intestinal epithelial cells. J. Bacteriol. 191, 178–186 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Kesty, N. C., Mason, K. M., Reedy, M., Miller, S. E. & Kuehn, M. J. Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J. 23, 4538–4549 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chakraborty, K. et al. Bacterial exotoxins downregulate cathelicidin (hCAP-18/LL-37) and human beta-defensin 1 (HBD-1) expression in the intestinal epithelial cells. Cell. Microbiol. 10, 2520–2537 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Ogawa, M., Handa, Y., Ashida, H., Suzuki, M. & Sasakawa, C. The versatility of Shigella effectors. Nature Rev. Microbiol. 6, 11–16 (2008).

    Article  CAS  Google Scholar 

  72. Schroeder, G. N. & Hilbi, H. Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin. Microbiol. Rev. 21, 134–156 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mounier, J. et al. The IpaC carboxyterminal effector domain mediates Src-dependent actin polymerization during Shigella invasion of epithelial cells. PLoS Pathog. 5, e1000271 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Handa, Y. et al. Shigella IpgB1 promotes bacterial entry through the ELMO-Dock180 machinery. Nature Cell Biol. 9, 121–128 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Iwai, H. et al. A bacterial effector targets Mad2L2, an APC inhibitor, to modulate host cell cycling. Cell 130, 611–623 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Kim, M. et al. Bacteria hijack integrin-linked kinase to stabilize focal adhesions and block cell detachment. Nature 459, 578–582 (2009). This investigation demonstrates that the OspE–ILK interaction stabilizes focal adhesions, preventing the detachment of infected epithelial cells.

    Article  CAS  PubMed  Google Scholar 

  77. Pendaries, C. et al. PtdIns5P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection. EMBO J. 25, 1024–1034 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim, D. W. et al. The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitin-conjugating enzymes. Proc. Natl Acad. Sci. USA 102, 14046–14051 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Arbibe, L. et al. An injected bacterial effector targets chromatin access for transcription factor NF-κB to alter transcription of host genes involved in immune responses. Nature Immunol. 8, 47–56 (2007).

    Article  CAS  Google Scholar 

  80. Okuda, J. et al. Shigella effector IpaH9.8 binds to a splicing factor U2AF35 to modulate host immune responses. Biochem. Biophys. Res. Commun. 333, 531–539 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Zurawski, D. V., Mumy, K. L., Faherty, C. S., McCormick, B. A. & Maurelli, A. T. Shigella flexneri type III secretion system effectors OspB and OspF target the nucleus to downregulate the host inflammatory response via interactions with retinoblastoma protein. Mol. Microbiol. 71, 350–368 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Egile, C. et al. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J. Cell. Biol. 146, 1319–1332 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yoshida, S. et al. Microtubule-severing activity of Shigella is pivotal for intercellular spreading. Science 314, 985–989 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Ogawa, M. et al. Escape of intracellular Shigella from autophagy. Science 307, 727–731 (2005). This paper shows that IcsB binds and sequesters VirG from recognition by the host cell autophagy machinery.

    Article  CAS  PubMed  Google Scholar 

  85. Steiner, T. S., Nataro, J. P., Poteet-Smith, C. E., Smith, J. A. & Guerrant, R. L. Enteroaggregative Escherichia coli expresses a novel flagellin that causes IL-8 release from intestinal epithelial cells. J. Clin. Invest. 105, 1769–1777 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Harrington, S. M., Strauman, M. C., Abe, C. M. & Nataro, J. P. Aggregative adherence fimbriae contribute to the inflammatory response of epithelial cells infected with enteroaggregative Escherichia coli. Cell. Microbiol. 7, 1565–1578 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Harrington, S. M., Dudley, E. G. & Nataro, J. P. Pathogenesis of enteroaggregative Escherichia coli infection. FEMS Microbiol. Lett. 254, 12–18 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Boisen, N., Struve, C., Scheutz, F., Krogfelt, K. A. & Nataro, J. P. New adhesin of enteroaggregative Escherichia coli related to the Afa/Dr/AAF family. Infect. Immun. 76, 3281–3292 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Farfan, M. J., Inman, K. G. & Nataro, J. P. The major pilin subunit of the AAF/II fimbriae from enteroaggregative Escherichia coli mediates binding to extracellular matrix proteins. Infect. Immun. 76, 4378–4384 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Velarde, J. J. et al. Solution structure of the novel dispersin protein of enteroaggregative Escherichia coli. Mol. Microbiol. 66, 1123–1135 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Sheikh, J., Hicks, S., Dall'Agnol, M., Phillips, A. D. & Nataro, J. P. Roles for Fis and YafK in biofilm formation by enteroaggregative Escherichia coli. Mol. Microbiol. 41, 983–997 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Gutiérrez-Jiménez, J., Arciniega, I. & Navarro- García, F. The serine protease motif of Pic mediates a dose-dependent mucolytic activity after binding to sugar constituents of the mucin substrate. Microb. Pathog. 45, 115–123 (2008).

    Article  PubMed  CAS  Google Scholar 

  93. Aschtgen, M., Bernard, C. S., De Bentzmann, S., Lloubès, R. & Cascales, E. SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J. Bacteriol. 190, 7523–7531 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Navarro- García, F., Canizalez-Roman, A., Burlingame, K. E., Teter, K. & Vidal, J. E. Pet, a non-AB toxin, is transported and translocated into epithelial cells by a retrograde trafficking pathway. Infect. Immun. 75, 2101–2109 (2007).

    Article  CAS  Google Scholar 

  95. Navarro-Garcia, F., Canizalez-Roman, A., Vidal, J. E. & Salazar, M. I. Intoxication of epithelial cells by plasmid-encoded toxin requires clathrin-mediated endocytosis. Microbiology 153, 2828–2838 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Servin, A. L. Pathogenesis of Afa/Dr diffusely adhering Escherichia coli. Clin. Microbiol. Rev. 18, 264–292 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bétis, F. et al. Afa/Dr diffusely adhering Escherichia coli infection in T84 cell monolayers induces increased neutrophil transepithelial migration, which in turn promotes cytokine-dependent upregulation of decay-accelerating factor (CD55), the receptor for Afa/Dr adhesins. Infect. Immun. 71, 1774–1783 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Brest, P. et al. Increased rate of apoptosis and diminished phagocytic ability of human neutrophils infected with Afa/Dr diffusely adhering Escherichia coli strains. Infect. Immun. 72, 5741–5749 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Berger, C. N., Billker, O., Meyer, T. F., Servin, A. L. & Kansau, I. Differential recognition of members of the carcinoembryonic antigen family by Afa/Dr adhesins of diffusely adhering Escherichia coli (Afa/Dr DAEC). Mol. Microbiol. 52, 963–983 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Korotkova, N. et al. Binding of Dr adhesins of Escherichia coli to carcinoembryonic antigen triggers receptor dissociation. Mol. Microbiol. 67, 420–434 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Guignot, J., Hudault, S., Kansau, I., Chau, I. & Servin, A. L. Human decay-accelerating factor and CEACAM receptor-mediated internalization and intracellular lifestyle of Afa/Dr diffusely adhering Escherichia coli in epithelial cells. Infect. Immun. 77, 517–531 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Guignot, J., Chaplais, C., Coconnier-Polter, M. & Servin, A. L. The secreted autotransporter toxin, Sat, functions as a virulence factor in Afa/Dr diffusely adhering Escherichia coli by promoting lesions in tight junction of polarized epithelial cells. Cell. Microbiol. 9, 204–221 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Alteri, C. J., Smith, S. N. & Mobley, H. L. T. Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog. 5, e1000448 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Wiles, T. J., Kulesus, R. R. & Mulvey, M. A. Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp. Mol. Pathol. 85, 11–19 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Thumbikat, P. et al. Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog. 5, e1000415 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Eto, D. S., Jones, T. A., Sundsbak, J. L. & Mulvey, M. A. Integrin-mediated host cell invasion by type 1–piliated uropathogenic Escherichia coli. PLoS Pathog. 3, e100 (2007). This investigation identifies α3 and β1 integrins as receptors for FimH-mediated UPEC invasion.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Dhakal, B. K. & Mulvey, M. A. Uropathogenic Escherichia coli invades host cells via an HDAC6-modulated microtubule-dependent pathway. J. Biol. Chem. 284, 446–454 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Anderson, G. G. et al. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301, 105–107 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Justice, S. S. et al. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc. Natl Acad. Sci. USA 101, 1333–1338 (2004). This study shows that UPEC goes through four distinct developmental stages during IBC formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Justice, S. S., Hunstad, D. A., Seed, P. C. & Hultgren, S. J. Filamentation by Escherichia coli subverts innate defenses during urinary tract infection. Proc. Natl Acad. Sci. USA 103, 19884–19899 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wiles, T. J., Dhakal, B. K., Eto, D. S. & Mulvey, M. A. Inactivation of host Akt/protein kinase B signaling by bacterial pore-forming toxins. Mol. Biol. Cell. 19, 1427–1438 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Eto, D. S., Sundsbak, J. L. & Mulvey, M. A. Actin-gated intracellular growth and resurgence of uropathogenic Escherichia coli. Cell. Microbiol. 8, 704–717 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Mulvey, M. A., Schilling, J. D. & Hultgren, S. J. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect. Immun. 69, 4572–4579 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mysorekar, I. U., Isaacson-Schmid, M., Walker, J. N., Mills, J. C. & Hultgren, S. J. Bone morphogenetic protein 4 signaling regulates epithelial renewal in the urinary tract in response to uropathogenic infection. Cell Host Microbe 5, 463–475 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mysorekar, I. U. & Hultgren, S. J. Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc. Natl Acad. Sci. USA 103, 14170–14175 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lane, M. C., Simms, A. N. & Mobley, H. L. T. Complex interplay between type 1 fimbrial expression and flagellum-mediated motility of uropathogenic Escherichia coli. J. Bacteriol. 189, 5523–5533 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lane, M. C., Alteri, C. J., Smith, S. N. & Mobley, H. L. T. Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc. Natl Acad. Sci. USA 104, 16669–16674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Simms, A. N. & Mobley, H. L. T. PapX, a P fimbrial operon-encoded inhibitor of motility in uropathogenic Escherichia coli. Infect. Immun. 76, 4833–4841 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lindberg, S. et al. Regulatory interactions among adhesin gene systems of uropathogenic Escherichia coli. Infect. Immun. 76, 771–780 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Wooster, D. G., Maruvada, R., Blom, A. M. & Prasadarao, N. V. Logarithmic phase Escherichia coli K1 efficiently avoids serum killing by promoting C4bp-mediated C3b and C4b degradation. Immunology 117, 482–493 (2006). OmpA is shown to bind C4b-binding protein (C4bp), which ultimately prevents the membrane attack complex from forming.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sukumaran, S. K., Selvaraj, S. K. & Prasadarao, N. V. Inhibition of apoptosis by Escherichia coli K1 is accompanied by increased expression of BclXL and blockade of mitochondrial cytochrome c release in macrophages. Infect. Immun. 72, 6012–6022 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Selvaraj, S. K. & Prasadarao, N. V. Escherichia coli K1 inhibits proinflammatory cytokine induction in monocytes by preventing NF-κB activation. J. Leukoc. Biol. 78, 544–554 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Mittal, R. & Prasadarao, N. V. Outer membrane protein A expression in Escherichia coli K1 is required to prevent the maturation of myeloid dendritic cells and the induction of IL-10 and TGF-β. J. Immunol. 181, 2672–2682 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Deszo, E. L., Steenbergen, S. M., Freedberg, D. I. & Vimr, E. R. Escherichia coli K1 polysialic acid O-acetyltransferase gene, neuO, and the mechanism of capsule form variation involving a mobile contingency locus. Proc. Natl Acad. Sci. USA 102, 5564–5569 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Khan, N. A., Kim, Y., Shin, S. & Kim, K. S. FimH-mediated Escherichia coli K1 invasion of human brain microvascular endothelial cells. Cell. Microbiol. 9, 169–178 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Prasadarao, N. V. Identification of Escherichia coli outer membrane protein A receptor on human brain microvascular endothelial cells. Infect. Immun. 70, 4556–4563 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kim, K. S. Mechanisms of microbial traversal of the blood–brain barrier. Nature Rev. Microbiol. 6, 625–634 (2008).

    Article  CAS  Google Scholar 

  128. Kim, K. J., Chung, J. W. & Kim, K. S. 67-kDa laminin receptor promotes internalization of cytotoxic necrotizing factor 1-expressing Escherichia coli K1 into human brain microvascular endothelial cells. J. Biol. Chem. 280, 1360–1368 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Essler, M. et al. Cytotoxic necrotizing factor 1 of Escherichia coli stimulates Rho/Rho-kinase-dependent myosin light-chain phosphorylation without inactivating myosin light-chain phosphatase in endothelial cells. Infect. Immun. 71, 5188–5193 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Maruvada, R., Argon, Y. & Prasadarao, N. V. Escherichia coli interaction with human brain microvascular endothelial cells induces signal transducer and activator of transcription 3 association with the C-terminal domain of Ec-gp96, the outer membrane protein A receptor for invasion. Cell. Microbiol. 10, 2326–2338 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kim, K. J., Elliott, S. J., Di Cello, F., Stins, M. F. & Kim, K. S. The K1 capsule modulates trafficking of E. coli-containing vacuoles and enhances intracellular bacterial survival in human brain microvascular endothelial cells. Cell. Microbiol. 5, 245–252 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Carneiro, L. A. M. et al. Shigella induces mitochondrial dysfunction and cell death in nonmyleoid cells. Cell Host Microbe 5, 123–136 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 119–129 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. de Sablet, T. et al. Human microbiota-secreted factors inhibit shiga toxin synthesis by enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 77, 783–790 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Barnich, N. et al. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J. Clin. Invest. 117, 1566–1574 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Carvalho, F. A. et al. Crohn's disease adherent-invasive Escherichia coli colonize and induce strong gut inflammation in transgenic mice expressing human CEACAM. J. Exp. Med. 206, 2179–2189 (2009). This work shows that there is persistence of AIEC and inflammation in the gut of transgenic mice expressing human CEACAMs, resulting in colitis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lapaquette, P., Glasser, A., Huett, A., Xavier, R. J. & Darfeuille-Michaud, A. Crohn's disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell. Microbiol. 11 Sep 2009 (doi:10.1111/j.1462-5822.2009.01381.x)

    Article  CAS  PubMed  Google Scholar 

  138. Rolhion, N. & Darfeuille-Michaud, A. Adherent-invasive Escherichia coli in inflammatory bowel disease. Inflamm. Bowel. Dis. 13, 1277–1283 (2007).

    Article  PubMed  Google Scholar 

  139. Dean, P., Maresca, M., Schüller, S., Phillips, A. D. & Kenny, B. Potent diarrheagenic mechanism mediated by the cooperative action of three enteropathogenic Escherichia coli-injected effector proteins. Proc. Natl Acad. Sci. USA 103, 1876–1881 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hodges, K., Alto, N. M., Ramaswamy, K., Dudeja, P. K. & Hecht, G. The enteropathogenic Escherichia coli effector protein EspF decreases sodium hydrogen exchanger 3 activity. Cell. Microbiol. 10, 1735–1745 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Matsuzawa, T., Kuwae, A., Yoshida, S., Sasakawa, C. & Abe, A. Enteropathogenic Escherichia coli activates the RhoA signaling pathway via the stimulation of GEF H1. EMBO J. 23, 3570–3582 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gill, R. K. et al. Mechanism underlying inhibition of intestinal apical Cl/OH exchange following infection with enteropathogenic E. coli. J. Clin. Invest. 117, 428–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Guttman, J. A. et al. Aquaporins contribute to diarrhoea caused by attaching and effacing bacterial pathogens. Cell. Microbiol. 9, 131–141 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Esmaili, A. et al. Enteropathogenic E. coli infection inhibits intestinal serotonin transporter (SERT) function and expression. Gastroenterology 10 Sep 2009 (doi:10.1053/j.gastro.2009.09.002).

    Article  CAS  PubMed  Google Scholar 

  145. Guttman, J. A. et al. Gap junction hemichannels contribute to the generation of diarrhea during infectious enteric disease. Gut 14 Oct 2009 (doi:10.1136/gut.2008.170464).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Finlay laboratory for discussion and critical reading of the manuscript. We also apologize to those authors whose works were not cited owing to space constraints. Work in B.B.F.'s laboratory is supported by grants from the Canadian Institutes of Health Research (CIHR), the Howard Hughes Medical Institute (HHMI), the Foundation for the National Institutes of Health, the Canadian Crohn's and Colitis Foundation and Genome Canada. M.A.C. is supported by a Canadian Association of Gastroenterology/CIHR/Ferring Pharmaceuticals fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Brett Finlay.

Supplementary information

Related links

Related links

DATABASES

Entrez Genome Project

EPEC

Escherichia coli

UPEC str. CFT073

FURTHER INFORMATION

B. Brett Finlay's homepage

Glossary

Prophage

The latent form of a temperate bacteriophage, in which its genome is integrated into the bacterial chromosome without disrupting the bacterial cell.

Core genome

The pool of genes that is shared by all strains of a bacterial species.

Pan-genome

All of the genes that are found in the genomes of a given species.

Enterocyte

An epithelial cell that is found in the small intestine and colon.

Filopodium

A thin, transient actin protrusion that extends out from the cell surface and is formed by the elongation of bundled actin filaments.

Opsonophagocytosis

Increased uptake of bacteria by host cells owing to antibody or complement binding to the bacteria.

Haemolytic uraemic syndrome

A disease that primarily affects infants and children and is characterized by the loss and destruction of red blood cells, sometimes leading to kidney failure.

SOS response

The bacterial response to DNA damage that is regulated by the LexA and recombinase A proteins and involves the expression of a network of >40 genes.

Macropinocytosis

A form of regulated, actin-dependent endocytosis that involves the formation of large endocytic vesicles after the closure of cell surface membrane ruffles.

Microfold cell

A specialized epithelial cell that delivers antigens by transepithelial vesicular transport from the gut lumen directly to intraepithelial lymphocytes and subepithelial lymphoid tissues.

Inflammasome

A large multiprotein complex that stimulates caspase-1-dependent release of proinflammatory cytokines.

Pleocytosis

The presence of a higher number of cells than normal in the cerebrospinal fluid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croxen, M., Finlay, B. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 8, 26–38 (2010). https://doi.org/10.1038/nrmicro2265

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro2265

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing