Key Points
-
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that provokes arthralgia and, potentially, severe complications in humans.
-
A multidisciplinary effort, carried out over the past 5 years, allowed a thoughtful characterization of this mysterious virus.
-
Recently, there was an unexpectedly severe epidemic of CHIKV in countries of the Indian Ocean region. This outbreak seems to have been the result of a striking adaptation of the virus to a new arthropod, Aedes albopictus (the tiger mosquito).
-
Analyses of isolates from this outbreak have resulted in several interesting findings regarding the clinical onset and physiopathology of this virus.
-
Progress has also been made to further our understanding of the interactions of CHIKV with its human host, the cellular tropism of the virus and the mechanisms of triggering the innate immune response.
-
Clinical development has also seen recent advances.
Abstract
Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus responsible for a recent, unexpectedly severe epidemic in countries of the Indian Ocean region. Although many alphaviruses have been well studied, little was known about the biology and pathogenesis of CHIKV at the time of the 2005 outbreak. Over the past 5 years there has been a multidisciplinary effort aimed at deciphering the clinical, physiopathological, immunological and virological features of CHIKV infection. This Review highlights some of the most recent advances in our understanding of the biology of CHIKV and its interactions with the host.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Robinson, M. C. An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952–1953 I. Clinical features. Trans. R. Soc. Trop. Med. Hyg. 49, 28–32 (1955).
Lumsden, W. H. An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952–1953 II. General description and epidemiology. Trans. R. Soc. Trop. Med. Hyg. 49, 33–57 (1955).
Mavalankar, D., Shastri, P., Bandyopadhyay, T., Parmar, J. & Ramani, K. V. Increased mortality rate associated with chikungunya epidemic, Ahmedabad, India. Emerg. Infect. Dis. 14, 412–415 (2008).
Powers, A. M. & Logue, C. H. Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J. Gen. Virol. 88, 2363–2377 (2007).
Simon, F., Tolou, H. & Jeandel, P. Chikungunya, l'épidémie que l'on n'attendait pas. Rev. Med. Interne 27, 437–441 (2006) (in French).
Schuffenecker, I. et al. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med. 3, e263 (2006).
Bonn, D. How did chikungunya reach the Indian Ocean? Lancet Infect. Dis. 6, 543 (2006).
Sergon, K. et al. Seroprevalence of chikungunya virus (CHIKV) infection on Lamu Island, Kenya, October 2004. Am. J. Trop. Med. Hyg. 78, 333–337 (2008).
Kariuki Njenga, M. et al. Tracking epidemic chikungunya virus into the Indian Ocean from East Africa. J. Gen. Virol. 89, 2754–2760 (2008).
Mavalankar, D., Shastri, P. & Raman, P. Chikungunya epidemic in India: a major public-health disaster. Lancet Infect. Dis. 7, 306–307 (2007).
Watson, R. Europe witnesses first local transmission of chikungunya fever in Italy. BMJ 335, 532–533 (2007).
Angelini, P. et al. Chikungunya epidemic outbreak in Emilia-Romagna (Italy) during summer 2007. Parassitologia 50, 97–98 (2008).
Liumbruno, G. M. et al. The chikungunya epidemic in Italy and its repercussion on the blood system. Blood Transfus. 6, 199–210 (2008).
Vazeille, M., Jeannin, C., Martin, E., Schaffner, F. & Failloux, A. B. Chikungunya: a risk for Mediterranean countries? Acta Trop. 105, 200–202 (2008).
Staples, J. E., Breiman, R. F. & Powers, A. M. Chikungunya fever: an epidemiological review of a re-emerging infectious disease. Clin. Infect. Dis. 49, 942–948 (2009).
Pastorino, B. et al. Epidemic resurgence of chikungunya virus in Democratic Republic of the Congo: identification of a new Central African strain. J. Med. Virol. 74, 277–282 (2004).
Laras, K. et al. Tracking the re-emergence of epidemic chikungunya virus in Indonesia. Trans. R. Soc. Trop. Med. Hyg. 99, 128–141 (2005).
Saxena, S., Singh, M., Mishra, N. & Lakshmi, V. Resurgence of chikungunya virus in India: an emerging threat. Euro Surveill. 11, E060810.2 (2006).
[No authors listed.] Outbreak news. Chikungunya, India. Wkly Epidemiol. Rec. 81, 409–410 (2006).
Johnston, R. E. & Peters, C. Alphaviruses associated primarily with fever and polyarthritis (eds Fields, B. N., Knipe, D. M. & Howly, P. M.) (Raven Press, New York, 1996).
Lemant, J. et al. Serious acute chikungunya virus infection requiring intensive care during the Reunion Island outbreak in 2005–2006. Crit. Care Med. 36, 2536–2541 (2008).
Gerardin, P. et al. Multidisciplinary prospective study of mother-to-child chikungunya virus infections on the island of La Réunion. PLoS Med. 5, e60 (2008).
Gerardin, P. et al. Estimating chikungunya prevalence in La Réunion Island outbreak by serosurveys: two methods for two critical times of the epidemic. BMC Infect. Dis. 8, 99 (2008).
Rao, G., Khan, Y. Z. & Chitnis, D. S. Chikungunya infection in neonates. Indian Pediatr. 45, 240–242 (2008).
Robillard, P. Y. et al. Transmission verticale materno-fœtale du virus chikungunya. Dix cas observés sur l'île de la Réunion chez 84 femmes enceintes. Presse Med. 35, 785–788 (2006) (in French).
Renault, P. et al. A major epidemic of chikungunya virus infection on Reunion Island, France, 2005–2006. Am. J. Trop. Med. Hyg. 77, 727–731 (2007).
Robin, S. et al. Neurologic manifestations of pediatric chikungunya infection. J. Child. Neurol. 23, 1028–1035 (2008).
Harley, D., Sleigh, A. & Ritchie, S. Ross River virus transmission, infection, and disease: a cross-disciplinary review. Clin. Microbiol. Rev. 14, 909–932 (2001).
Powers, A. M. et al. Evolutionary relationships and systematics of the alphaviruses. J. Virol. 75, 10118–10131 (2001).
Peters, C. & Dalrymple, J. Alphaviruses (eds Fields, B. N., Knipe, D. M. & Chanok, R. M.) (Raven Press, New York, 1990).
Rulli, N. E. et al. Ross River virus: molecular and cellular aspects of disease pathogenesis. Pharmacol. Ther. 107, 329–342 (2005).
Weaver, S. C. & Reisen, W. K. Present and future arboviral threats. Antiviral Res. 85, 328–345 (2009).
Griffin, D. E. in Fields Virology 5th edn (eds Knipe, D. M. & Howley, P. M.) 1023–1066 (Lippincott Williams & Wilkins, Philadelphia, 2007).
Tandale, B. V. et al. Systemic involvements and fatalities during chikungunya epidemic in India, 2006. J. Clin. Virol. 46, 145–149 (2009).
Paquet, C. et al. Chikungunya outbreak in Reunion: epidemiology and surveillance, 2005 to early January 2006. Euro Surveill. 11, E060202.3 (2006).
Talarmin, F. et al. [Skin and mucosal manifestations of chikungunya virus infection in adults in Reunion Island]. Med. Trop. (Mars) 67, 167–173 (2007) (in French).
Robin, S. et al. Severe bullous skin lesions associated with chikungunya virus infection in small infants. Eur. J. Pediatr. 169, 67–72 (2009).
Couderc, T. et al. A mouse model for chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog. 4, e29 (2008).
Mourya, D. T. & Mishra, A. C. Chikungunya fever. Lancet 368, 186–187 (2006).
Yazdani, R. & Kaushik, V. V. Chikungunya fever. Rheumatology (Oxford) 46, 1214–1215 (2007).
Morrison, J. G. Chikungunya fever. Int. J. Dermatol. 18, 628–629 (1979).
Ng, L. F. et al. IL-1β, IL-6, and RANTES as biomarkers of chikungunya severity. PLoS ONE 4, e4261 (2009).
Chirathaworn, C., Rianthavorn, P., Wuttirattanakowit, N. & Poovorawan, Y. Serum IL-18 and IL-18BP levels in patients with chikungunya virus infection. Viral Immunol. 23, 113–117 (2010).
Eckels, K. H., Harrison, V. R. & Hetrick, F. M. Chikungunya virus vaccine prepared by Tween-ether extraction. Appl. Microbiol. 19, 321–325 (1970).
Morrison, T. E. et al. Characterization of Ross River virus tropism and virus-induced inflammation in a mouse model of viral arthritis and myositis. J. Virol. 80, 737–749 (2006).
Maek, A. N. W. & Silachamroon, U. Presence of autoimmune antibody in chikungunya infection. Case Report. Med. 2009, 840183 (2009).
Glasgow, L. A. Leukocytes and interferon in the host response to viral infections. II. Enhanced interferon response of leukocytes from immune animals. J. Bacteriol. 91, 2185–2191 (1966).
Rinaldo, C. R. Jr, Overall, J. C. Jr & Glasgow, L. A. Viral replication and interferon production in fetal and adult ovine leukocytes and spleen cells. Infect. Immun. 12, 1070–1077 (1975).
Hahon, N. & Zimmerman, W. D. Chikungunya virus infection of cell monolayers by cell-to-cell and extracellular transmission. Appl. Microbiol 19, 389–391 (1970).
Simizu, B., Yamamoto, K., Hashimoto, K. & Ogata, T. Structural proteins of chikungunya virus. J. Virol. 51, 254–258 (1984).
Sourisseau, M. et al. Characterization of reemerging chikungunya virus. PLoS Pathog. 3, e89 (2007).
Ozden, S. et al. Human muscle satellite cells as targets of chikungunya virus infection. PLoS ONE 2, e527 (2007).
Solignat, M., Gay, B., Higgs, S., Briant, L. & Devaux, C. Replication cycle of chikungunya: a re-emerging arbovirus. Virology 393, 183–197 (2009).
Ziegler, S. A., Lu, L., da Rosa, A. P., Xiao, S. Y. & Tesh, R. B. An animal model for studying the pathogenesis of chikungunya virus infection. Am. J. Trop. Med. Hyg. 79, 133–139 (2008).
Levitt, N. H. et al. Development of an attenuated strain of chikungunya virus for use in vaccine production. Vaccine 4, 157–162 (1986).
Akahata, W. et al. A virus-like particle vaccine for epidemic chikungunya virus protects nonhuman primates against infection. Nature Med. 16, 334–338 (2010).
Labadie, K. et al. Chikungunya disease in nonhuman primates leads to long-term viral persistence in macrophages. J. Clin. Invest. 120, 1–13 (2010).
Hoarau, J. J. et al. Persistent chronic inflammation and infection by chikungunya arthritogenic alphavirus in spite of a robust host immune response. J. Immunol. 184, 5914–5927 (2010).
Her, Z. et al. Active infection of human blood monocytes by chikungunya virus triggers an innate immune response. J. Immunol. 184, 5903–5913 (2010).
Schilte, C. et al. Type I IFN controls chikungunya virus via its action on nonhematopoietic cells. J. Exp. Med. 207, 429–442 (2010).
Gardner, C. L. et al. Eastern and Venezuelan equine encephalitis viruses differ in their ability to infect dendritic cells and macrophages: impact of altered cell tropism on pathogenesis. J. Virol. 82, 10634–10646 (2008).
Nishimoto, K. P., Laust, A. K. & Nelson, E. L. A human dendritic cell subset receptive to the Venezuelan equine encephalitis virus-derived replicon particle constitutively expresses IL-32. J. Immunol. 181, 4010–4018 (2008).
Linn, M. L., Aaskov, J. G. & Suhrbier, A. Antibody-dependent enhancement and persistence in macrophages of an arbovirus associated with arthritis. J. Gen. Virol. 77, 407–411 (1996).
Linn, M. L., Mateo, L., Gardner, J. & Suhrbier, A. Alphavirus-specific cytotoxic T lymphocytes recognize a cross-reactive epitope from the capsid protein and can eliminate virus from persistently infected macrophages. J. Virol. 72, 5146–5153 (1998).
Mateo, L. et al. An arthrogenic alphavirus induces monocyte chemoattractant protein-1 and interleukin-8. Intervirology 43, 55–60 (2000).
Lidbury, B. A., Simeonovic, C., Maxwell, G. E., Marshall, I. D. & Hapel, A. J. Macrophage-induced muscle pathology results in morbidity and mortality for Ross River virus-infected mice. J. Infect. Dis. 181, 27–34 (2000).
Strang, B. L. et al. Human immunodeficiency virus type 1 vectors with alphavirus envelope glycoproteins produced from stable packaging cells. J. Virol. 79, 1765–1771 (2005).
Gardner, J. P. et al. Infection of human dendritic cells by a sindbis virus replicon vector is determined by a single amino acid substitution in the E2 glycoprotein. J. Virol. 74, 11849–11857 (2000).
MacDonald, G. H. & Johnston, R. E. Role of dendritic cell targeting in Venezuelan equine encephalitis virus pathogenesis. J. Virol. 74, 914–922 (2000).
Salvador, B., Zhou, Y., Michault, A., Muench, M. O. & Simmons, G. Characterization of chikungunya pseudotyped viruses: Identification of refractory cell lines and demonstration of cellular tropism differences mediated by mutations in E1 glycoprotein. Virology 393, 33–41 (2009).
Fragkoudis, R. et al. The type I interferon system protects mice from Semliki Forest virus by preventing widespread virus dissemination in extraneural tissues, but does not mediate the restricted replication of avirulent virus in central nervous system neurons. J. Gen. Virol. 88, 3373–3384 (2007).
Deuber, S. A. & Pavlovic, J. Virulence of a mouse-adapted Semliki Forest virus strain is associated with reduced susceptibility to interferon. J. Gen. Virol. 88, 1952–1959 (2007).
Ryman, K. D. & Klimstra, W. B. Host responses to alphavirus infection. Immunol. Rev. 225, 27–45 (2008).
Vanlandingham, D. L. et al. Differential infectivities of o'nyong-nyong and chikungunya virus isolates in Anopheles gambiae and Aedes aegypti mosquitoes. Am. J. Trop. Med. Hyg. 72, 616–621 (2005).
Tsetsarkin, K. A., Vanlandingham, D. L., McGee, C. E. & Higgs, S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 3, e201 (2007).
Vazeille, M. et al. Two chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS ONE 2, e1168 (2007).
Diallo, M., Thonnon, J., Traore-Lamizana, M. & Fontenille, D. Vectors of chikungunya virus in Senegal: current data and transmission cycles. Am. J. Trop. Med. Hyg. 60, 281–286 (1999).
Mourya, D. T. & Yadav, P. Vector biology of dengue & chikungunya viruses. Indian J. Med. Res. 124, 475–480 (2006).
van den Hurk, A. F., Hall-Mendelin, S., Pyke, A. T., Smith, G. A. & Mackenzie, J. S. Vector competence of Australian mosquitoes for chikungunya virus. Vector Borne Zoonotic Dis. 30 Oct 2009 (doi: 10.1089/vbz.2009.0106).
Watts, D. M., Burke, D. S., Harrison, B. A., Whitmire, R. E. & Nisalak, A. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am. J. Trop. Med. Hyg. 36, 143–152 (1987).
Alto, B. W. & Juliano, S. A. Precipitation and temperature effects on populations of Aedes albopictus (Diptera: Culicidae): implications for range expansion. J. Med. Entomol. 38, 646–656 (2001).
Alto, B. W. & Juliano, S. A. Temperature effects on the dynamics of Aedes albopictus (Diptera: Culicidae) populations in the laboratory. J. Med. Entomol. 38, 548–556 (2001).
de Lamballerie, X. et al. Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come? Virol. J. 5, 33 (2008).
Gould, E. A. & Higgs, S. Impact of climate change and other factors on emerging arbovirus diseases. Trans. R. Soc. Trop. Med. Hyg. 103, 109–121 (2009).
Pialoux, G., Gauzere, B. A., Jaureguiberry, S. & Strobel, M. Chikungunya, an epidemic arbovirosis. Lancet Infect. Dis. 7, 319–327 (2007).
Hawley, W. A., Reiter, P., Copeland, R. S., Pumpuni, C. B. & Craig, G. B. Jr. Aedes albopictus in North America: probable introduction in used tires from northern Asia. Science 236, 1114–1116 (1987).
Paupy, C., Delatte, H., Bagny, L., Corbel, V. & Fontenille, D. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect. 11, 1177–1185 (2009).
Gibbons, D. L. et al. Visualization of the target-membrane-inserted fusion protein of Semliki Forest virus by combined electron microscopy and crystallography. Cell 114, 573–583 (2003).
Gibbons, D. L. et al. Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. Nature 427, 320–325 (2004).
Kielian, M. & Rey, F. A. Virus membrane-fusion proteins: more than one way to make a hairpin. Nature Rev. Microbiol 4, 67–76 (2006).
Chatterjee, P. K., Eng, C. H. & Kielian, M. Novel mutations that control the sphingolipid and cholesterol dependence of the Semliki Forest virus fusion protein. J. Virol. 76, 12712–12722 (2002).
Vanlandingham, D. L. et al. Development and characterization of a double subgenomic chikungunya virus infectious clone to express heterologous genes in Aedes aegypti mosquitoes. Insect Biochem. Mol. Biol. 35, 1162–1170 (2005).
Tsetsarkin, K. A. et al. Epistatic roles of E2 glycoprotein mutations in adaption of chikungunya virus to Aedes albopictus and Ae. aegypti mosquitoes. PLoS ONE 4, e6835 (2009).
Laurent, P. et al. Development of a sensitive real-time reverse transcriptase PCR assay with an internal control to detect and quantify chikungunya virus. Clin. Chem. 53, 1408–1414 (2007).
Carey, D. E., Myers, R. M., DeRanitz, C. M., Jadhav, M. & Reuben, R. The 1964 chikungunya epidemic at Vellore, South India, including observations on concurrent dengue. Trans. R. Soc. Trop. Med. Hyg. 63, 434–445 (1969).
Brighton, S. W., Prozesky, O. W. & de la Harpe, A. L. Chikungunya virus infection. A retrospective study of 107 cases. S. Afr. Med. J. 63, 313–315 (1983).
Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B Biol. Sci. 147, 258–267 (1957).
Myers, R. M. et al. The 1964 epidemic of dengue-like fever in South India: isolation of chikungunya virus from human sera and from mosquitoes. Indian J. Med. Res. 53, 694–701 (1965).
Gifford, G. E. & Heller, E. Effect of actinomycin D on interferon production by 'active' and 'inactive' chikungunya virus in chick cells. Nature 200, 50–51 (1963).
Glasgow, L. A. Transfer of interferon-producing macrophages: new approach to viral chemotherapy. Science 170, 854–856 (1970).
Levy, H. B., Buckler, C. E. & Baron, S. Effect of interferon on early interferon production. Science 152, 1274–1276 (1966).
O'Neill, L. A. & Bowie, A. G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature Rev. Immunol. 7, 353–364 (2007).
Gilliet, M., Cao, W. & Liu, Y. J. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nature Rev. Immunol. 8, 594–606 (2008).
Pichlmair, A. & Reis e Sousa, C. Innate recognition of viruses. Immunity 27, 370–383 (2007).
McCartney, S. A. & Colonna, M. Viral sensors: diversity in pathogen recognition. Immunol. Rev. 227, 87–94 (2009).
Akira, S. & Takeda, K. Toll-like receptor signalling. Nature Rev. Immunol. 4, 499–511 (2004).
Bieback, K. et al. Hemagglutinin protein of wild-type measles virus activates Toll-like receptor 2 signaling. J. Virol. 76, 8729–8736 (2002).
Compton, T. et al. Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J. Virol. 77, 4588–4596 (2003).
Kurt-Jones, E. A. et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nature Immunol. 1, 398–401 (2000).
Rassa, J. C. & Ross, S. R. Viruses and Toll-like receptors. Microbes Infect. 5, 961–968 (2003).
Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).
Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).
Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 (2006).
Dalod, M. et al. Dendritic cell responses to early murine cytomegalovirus infection: subset functional specialization and differential regulation by interferon α/β. J. Exp. Med. 197, 885–898 (2003).
Schulz, O. et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433, 887–892 (2005).
Muzio, M., Ni, J., Feng, P. & Dixit, V. M. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278, 1612–1615 (1997).
Ichinohe, T., Lee, H. K., Ogura, Y., Flavell, R. & Iwasaki, A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J. Exp. Med. 206, 79–87 (2009).
Allen, I. C. et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30, 556–565 (2009).
Grandvaux, N., tenOever, B. R., Servant, M. J. & Hiscott, J. The interferon antiviral response: from viral invasion to evasion. Curr. Opin. Infect. Dis. 15, 259–267 (2002).
de Veer, M. J. et al. Functional classification of interferon-stimulated genes identified using microarrays. J. Leukoc. Biol. 69, 912–920 (2001).
Ryman, K. D. et al. Sindbis virus translation is inhibited by a PKR/RNase L-independent effector induced by alpha/beta interferon priming of dendritic cells. J. Virol. 79, 1487–1499 (2005).
Lenschow, D. J. et al. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc. Natl Acad. Sci. USA 104, 1371–1376 (2007).
Zhang, Y., Burke, C. W., Ryman, K. D. & Klimstra, W. B. Identification and characterization of interferon-induced proteins that inhibit alphavirus replication. J. Virol. 81, 11246–11255 (2007).
Bick, M. J. et al. Expression of the zinc-finger antiviral protein inhibits alphavirus replication. J. Virol. 77, 11555–11562 (2003).
Antalis, T. M. et al. The serine proteinase inhibitor (serpin) plasminogen activation inhibitor type 2 protects against viral cytopathic effects by constitutive interferon α/β priming. J. Exp. Med. 187, 1799–1811 (1998).
Brehin, A. C. et al. The large form of human 2′, 5′ oligoadenylate synthetase (OAS3) exerts antiviral effect against chikungunya virus. Virology 384, 216–222 (2009).
Frolova, E. I. et al. Roles of nonstructural protein nsP2 and alpha/beta interferons in determining the outcome of Sindbis virus infection. J. Virol. 76, 11254–11264 (2002).
Breakwell, L. et al. Semliki Forest virus nonstructural protein 2 is involved in suppression of the type I interferon response. J. Virol. 81, 8677–8684 (2007).
Couderc, T. et al. Prophylaxis and therapy for chikungunya virus infection. J. Infect. Dis. 200, 516–523 (2009).
Borgherini, G. et al. Outbreak of chikungunya on Reunion Island: early clinical and laboratory features in 157 adult patients. Clin. Infect. Dis. 44, 1401–1407 (2007).
Kamphuis, E., Junt, T., Waibler, Z., Forster, R. & Kalinke, U. Type I interferons directly regulate lymphocyte recirculation and cause transient blood lymphopenia. Blood 108, 3253–3261 (2006).
Harrison, V. R., Eckels, K. H., Bartelloni, P. J. & Hampton, C. Production and evaluation of a formalin-killed chikungunya vaccine. J. Immunol. 107, 643–647 (1971).
McClain, D. J. et al. Immunologic interference from sequential administration of live attenuated alphavirus vaccines. J. Infect. Dis. 177, 634–641 (1998).
Edelman, R. et al. Phase II safety and immunogenicity study of live chikungunya virus vaccine TSI-GSD-218. Am. J. Trop. Med. Hyg. 62, 681–685 (2000).
Marsh, M. & Helenius, A. Virus entry: open sesame. Cell 124, 729–740 (2006).
Chevillon, C., Briant, L., Renaud, F. & Devaux, C. The chikungunya threat: an ecological and evolutionary perspective. Trends Microbiol 16, 80–88 (2008).
Salonen, A., Ahola, T. & Kaariainen, L. Viral RNA replication in association with cellular membranes. Curr. Top. Microbiol. Immunol. 285, 139–173 (2005).
Garmashova, N. et al. The Old World and New World alphaviruses use different virus-specific proteins for induction of transcriptional shutoff. J. Virol. 81, 2472–2484 (2007).
Acknowledgements
We thank members of our laboratories and T. Couderc for critical reading of the manuscript. We also acknowledge the robust collaborations within the Institut Pasteur CHIKV Taskforce, led by F. Rey. Work in our laboratories is supported by grants from the Agence Nationale de Recherche (ANR), the Centre National de la Recherche Scientifique (CNRS), the Centre de Recherche et de Veille sur les Maladies é mergentes dans l'Océan Indien (CRVOI), the Institut National de la Santé et de la Recherche Médicale (INSERM) and the Institut Pasteur.
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Related links
DATABASES
Entrez Genome
Entrez Genome Project
FURTHER INFORMATION
Glossary
- Choroid plexus
-
The site of cerebrospinal fluid production in the adult brain. It is formed by invagination of ependymal cells into the ventricles, which become highly vascularized.
- Prodromal phase
-
A clear deterioration in host function before the active phase of a disease.
- Petechial rash
-
A rash consisting of small (1–2 mm) red or purple spots on the body, the cause of which are minor haemorrhages resulting from disruption of the capillary bed.
- Maculopapular rash
-
A rash consisting of macules (small, flat spots) and papules (raised bumps).
- Muscle satellite cells
-
Stem cells that are localized at the basement membrane surrounding each myofibre and that give rise to regenerated muscle and to more satellite cells.
- Myotube
-
A developing skeletal muscle fibre, formed by the fusion of myoblasts.
- Myositic syndrome
-
A poorly understood clinical musculoskeletal and/or nerve disease that may be of psychosomatic origin.
- Inflammasome
-
A molecular complex of several proteins that, following assembly, cleaves pro-interleukin-1 (pro-IL-1), thereby producing active IL-1.
- Sterilizing immunity
-
An immune response that leads to the complete removal of the pathogen.
- Virus-like particles
-
Particles that are composed of assembled viral proteins and mimic the structure of viruses. They are non-infectious because they do not contain viral genetic material.
Rights and permissions
About this article
Cite this article
Schwartz, O., Albert, M. Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol 8, 491–500 (2010). https://doi.org/10.1038/nrmicro2368
Issue date:
DOI: https://doi.org/10.1038/nrmicro2368
This article is cited by
-
Growth in chikungunya virus-related research in ASEAN and South Asian countries from 1967 to 2022 following disease emergence: a bibliometric and graphical analysis
Globalization and Health (2023)
-
The First Genomic Characterization of the Chikungunya Virus in Saudi Arabia
Journal of Epidemiology and Global Health (2023)
-
A Novel Multiplex RT-PCR for Simultaneous Detection of Malaria, Chikungunya and Dengue Infection (MCD-RT-PCR)
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences (2023)