Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biology and pathogenesis of chikungunya virus

Key Points

  • Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that provokes arthralgia and, potentially, severe complications in humans.

  • A multidisciplinary effort, carried out over the past 5 years, allowed a thoughtful characterization of this mysterious virus.

  • Recently, there was an unexpectedly severe epidemic of CHIKV in countries of the Indian Ocean region. This outbreak seems to have been the result of a striking adaptation of the virus to a new arthropod, Aedes albopictus (the tiger mosquito).

  • Analyses of isolates from this outbreak have resulted in several interesting findings regarding the clinical onset and physiopathology of this virus.

  • Progress has also been made to further our understanding of the interactions of CHIKV with its human host, the cellular tropism of the virus and the mechanisms of triggering the innate immune response.

  • Clinical development has also seen recent advances.

Abstract

Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus responsible for a recent, unexpectedly severe epidemic in countries of the Indian Ocean region. Although many alphaviruses have been well studied, little was known about the biology and pathogenesis of CHIKV at the time of the 2005 outbreak. Over the past 5 years there has been a multidisciplinary effort aimed at deciphering the clinical, physiopathological, immunological and virological features of CHIKV infection. This Review highlights some of the most recent advances in our understanding of the biology of CHIKV and its interactions with the host.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Worldwide distribution of chikungunya virus.
Figure 2: Dissemination of chikungunya virus in vertebrates.
Figure 3: Chikungunya virus pathogenesis.
Figure 4: Innate immune control of chikungunya virus.

Similar content being viewed by others

References

  1. Robinson, M. C. An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952–1953 I. Clinical features. Trans. R. Soc. Trop. Med. Hyg. 49, 28–32 (1955).

    Article  CAS  PubMed  Google Scholar 

  2. Lumsden, W. H. An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952–1953 II. General description and epidemiology. Trans. R. Soc. Trop. Med. Hyg. 49, 33–57 (1955).

    Article  CAS  PubMed  Google Scholar 

  3. Mavalankar, D., Shastri, P., Bandyopadhyay, T., Parmar, J. & Ramani, K. V. Increased mortality rate associated with chikungunya epidemic, Ahmedabad, India. Emerg. Infect. Dis. 14, 412–415 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Powers, A. M. & Logue, C. H. Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J. Gen. Virol. 88, 2363–2377 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Simon, F., Tolou, H. & Jeandel, P. Chikungunya, l'épidémie que l'on n'attendait pas. Rev. Med. Interne 27, 437–441 (2006) (in French).

    Article  CAS  PubMed  Google Scholar 

  6. Schuffenecker, I. et al. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med. 3, e263 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bonn, D. How did chikungunya reach the Indian Ocean? Lancet Infect. Dis. 6, 543 (2006).

    Article  PubMed  Google Scholar 

  8. Sergon, K. et al. Seroprevalence of chikungunya virus (CHIKV) infection on Lamu Island, Kenya, October 2004. Am. J. Trop. Med. Hyg. 78, 333–337 (2008).

    Article  PubMed  Google Scholar 

  9. Kariuki Njenga, M. et al. Tracking epidemic chikungunya virus into the Indian Ocean from East Africa. J. Gen. Virol. 89, 2754–2760 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mavalankar, D., Shastri, P. & Raman, P. Chikungunya epidemic in India: a major public-health disaster. Lancet Infect. Dis. 7, 306–307 (2007).

    Article  PubMed  Google Scholar 

  11. Watson, R. Europe witnesses first local transmission of chikungunya fever in Italy. BMJ 335, 532–533 (2007).

    PubMed  PubMed Central  Google Scholar 

  12. Angelini, P. et al. Chikungunya epidemic outbreak in Emilia-Romagna (Italy) during summer 2007. Parassitologia 50, 97–98 (2008).

    CAS  PubMed  Google Scholar 

  13. Liumbruno, G. M. et al. The chikungunya epidemic in Italy and its repercussion on the blood system. Blood Transfus. 6, 199–210 (2008).

    PubMed  PubMed Central  Google Scholar 

  14. Vazeille, M., Jeannin, C., Martin, E., Schaffner, F. & Failloux, A. B. Chikungunya: a risk for Mediterranean countries? Acta Trop. 105, 200–202 (2008).

    Article  PubMed  Google Scholar 

  15. Staples, J. E., Breiman, R. F. & Powers, A. M. Chikungunya fever: an epidemiological review of a re-emerging infectious disease. Clin. Infect. Dis. 49, 942–948 (2009).

    Article  PubMed  Google Scholar 

  16. Pastorino, B. et al. Epidemic resurgence of chikungunya virus in Democratic Republic of the Congo: identification of a new Central African strain. J. Med. Virol. 74, 277–282 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Laras, K. et al. Tracking the re-emergence of epidemic chikungunya virus in Indonesia. Trans. R. Soc. Trop. Med. Hyg. 99, 128–141 (2005).

    Article  PubMed  Google Scholar 

  18. Saxena, S., Singh, M., Mishra, N. & Lakshmi, V. Resurgence of chikungunya virus in India: an emerging threat. Euro Surveill. 11, E060810.2 (2006).

  19. [No authors listed.] Outbreak news. Chikungunya, India. Wkly Epidemiol. Rec. 81, 409–410 (2006).

  20. Johnston, R. E. & Peters, C. Alphaviruses associated primarily with fever and polyarthritis (eds Fields, B. N., Knipe, D. M. & Howly, P. M.) (Raven Press, New York, 1996).

    Google Scholar 

  21. Lemant, J. et al. Serious acute chikungunya virus infection requiring intensive care during the Reunion Island outbreak in 2005–2006. Crit. Care Med. 36, 2536–2541 (2008).

    Article  PubMed  Google Scholar 

  22. Gerardin, P. et al. Multidisciplinary prospective study of mother-to-child chikungunya virus infections on the island of La Réunion. PLoS Med. 5, e60 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gerardin, P. et al. Estimating chikungunya prevalence in La Réunion Island outbreak by serosurveys: two methods for two critical times of the epidemic. BMC Infect. Dis. 8, 99 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rao, G., Khan, Y. Z. & Chitnis, D. S. Chikungunya infection in neonates. Indian Pediatr. 45, 240–242 (2008).

    PubMed  Google Scholar 

  25. Robillard, P. Y. et al. Transmission verticale materno-fœtale du virus chikungunya. Dix cas observés sur l'île de la Réunion chez 84 femmes enceintes. Presse Med. 35, 785–788 (2006) (in French).

    Article  PubMed  Google Scholar 

  26. Renault, P. et al. A major epidemic of chikungunya virus infection on Reunion Island, France, 2005–2006. Am. J. Trop. Med. Hyg. 77, 727–731 (2007).

    Article  PubMed  Google Scholar 

  27. Robin, S. et al. Neurologic manifestations of pediatric chikungunya infection. J. Child. Neurol. 23, 1028–1035 (2008).

    Article  PubMed  Google Scholar 

  28. Harley, D., Sleigh, A. & Ritchie, S. Ross River virus transmission, infection, and disease: a cross-disciplinary review. Clin. Microbiol. Rev. 14, 909–932 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Powers, A. M. et al. Evolutionary relationships and systematics of the alphaviruses. J. Virol. 75, 10118–10131 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Peters, C. & Dalrymple, J. Alphaviruses (eds Fields, B. N., Knipe, D. M. & Chanok, R. M.) (Raven Press, New York, 1990).

    Google Scholar 

  31. Rulli, N. E. et al. Ross River virus: molecular and cellular aspects of disease pathogenesis. Pharmacol. Ther. 107, 329–342 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Weaver, S. C. & Reisen, W. K. Present and future arboviral threats. Antiviral Res. 85, 328–345 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Griffin, D. E. in Fields Virology 5th edn (eds Knipe, D. M. & Howley, P. M.) 1023–1066 (Lippincott Williams & Wilkins, Philadelphia, 2007).

    Google Scholar 

  34. Tandale, B. V. et al. Systemic involvements and fatalities during chikungunya epidemic in India, 2006. J. Clin. Virol. 46, 145–149 (2009).

    Article  PubMed  Google Scholar 

  35. Paquet, C. et al. Chikungunya outbreak in Reunion: epidemiology and surveillance, 2005 to early January 2006. Euro Surveill. 11, E060202.3 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Talarmin, F. et al. [Skin and mucosal manifestations of chikungunya virus infection in adults in Reunion Island]. Med. Trop. (Mars) 67, 167–173 (2007) (in French).

    CAS  Google Scholar 

  37. Robin, S. et al. Severe bullous skin lesions associated with chikungunya virus infection in small infants. Eur. J. Pediatr. 169, 67–72 (2009).

    Article  PubMed  Google Scholar 

  38. Couderc, T. et al. A mouse model for chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog. 4, e29 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mourya, D. T. & Mishra, A. C. Chikungunya fever. Lancet 368, 186–187 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Yazdani, R. & Kaushik, V. V. Chikungunya fever. Rheumatology (Oxford) 46, 1214–1215 (2007).

    Article  CAS  Google Scholar 

  41. Morrison, J. G. Chikungunya fever. Int. J. Dermatol. 18, 628–629 (1979).

    Article  CAS  PubMed  Google Scholar 

  42. Ng, L. F. et al. IL-1β, IL-6, and RANTES as biomarkers of chikungunya severity. PLoS ONE 4, e4261 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chirathaworn, C., Rianthavorn, P., Wuttirattanakowit, N. & Poovorawan, Y. Serum IL-18 and IL-18BP levels in patients with chikungunya virus infection. Viral Immunol. 23, 113–117 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Eckels, K. H., Harrison, V. R. & Hetrick, F. M. Chikungunya virus vaccine prepared by Tween-ether extraction. Appl. Microbiol. 19, 321–325 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Morrison, T. E. et al. Characterization of Ross River virus tropism and virus-induced inflammation in a mouse model of viral arthritis and myositis. J. Virol. 80, 737–749 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maek, A. N. W. & Silachamroon, U. Presence of autoimmune antibody in chikungunya infection. Case Report. Med. 2009, 840183 (2009).

    Google Scholar 

  47. Glasgow, L. A. Leukocytes and interferon in the host response to viral infections. II. Enhanced interferon response of leukocytes from immune animals. J. Bacteriol. 91, 2185–2191 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rinaldo, C. R. Jr, Overall, J. C. Jr & Glasgow, L. A. Viral replication and interferon production in fetal and adult ovine leukocytes and spleen cells. Infect. Immun. 12, 1070–1077 (1975).

    PubMed  PubMed Central  Google Scholar 

  49. Hahon, N. & Zimmerman, W. D. Chikungunya virus infection of cell monolayers by cell-to-cell and extracellular transmission. Appl. Microbiol 19, 389–391 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Simizu, B., Yamamoto, K., Hashimoto, K. & Ogata, T. Structural proteins of chikungunya virus. J. Virol. 51, 254–258 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sourisseau, M. et al. Characterization of reemerging chikungunya virus. PLoS Pathog. 3, e89 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ozden, S. et al. Human muscle satellite cells as targets of chikungunya virus infection. PLoS ONE 2, e527 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Solignat, M., Gay, B., Higgs, S., Briant, L. & Devaux, C. Replication cycle of chikungunya: a re-emerging arbovirus. Virology 393, 183–197 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ziegler, S. A., Lu, L., da Rosa, A. P., Xiao, S. Y. & Tesh, R. B. An animal model for studying the pathogenesis of chikungunya virus infection. Am. J. Trop. Med. Hyg. 79, 133–139 (2008).

    Article  PubMed  Google Scholar 

  55. Levitt, N. H. et al. Development of an attenuated strain of chikungunya virus for use in vaccine production. Vaccine 4, 157–162 (1986).

    Article  CAS  PubMed  Google Scholar 

  56. Akahata, W. et al. A virus-like particle vaccine for epidemic chikungunya virus protects nonhuman primates against infection. Nature Med. 16, 334–338 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Labadie, K. et al. Chikungunya disease in nonhuman primates leads to long-term viral persistence in macrophages. J. Clin. Invest. 120, 1–13 (2010).

    Article  CAS  Google Scholar 

  58. Hoarau, J. J. et al. Persistent chronic inflammation and infection by chikungunya arthritogenic alphavirus in spite of a robust host immune response. J. Immunol. 184, 5914–5927 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Her, Z. et al. Active infection of human blood monocytes by chikungunya virus triggers an innate immune response. J. Immunol. 184, 5903–5913 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Schilte, C. et al. Type I IFN controls chikungunya virus via its action on nonhematopoietic cells. J. Exp. Med. 207, 429–442 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gardner, C. L. et al. Eastern and Venezuelan equine encephalitis viruses differ in their ability to infect dendritic cells and macrophages: impact of altered cell tropism on pathogenesis. J. Virol. 82, 10634–10646 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nishimoto, K. P., Laust, A. K. & Nelson, E. L. A human dendritic cell subset receptive to the Venezuelan equine encephalitis virus-derived replicon particle constitutively expresses IL-32. J. Immunol. 181, 4010–4018 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Linn, M. L., Aaskov, J. G. & Suhrbier, A. Antibody-dependent enhancement and persistence in macrophages of an arbovirus associated with arthritis. J. Gen. Virol. 77, 407–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Linn, M. L., Mateo, L., Gardner, J. & Suhrbier, A. Alphavirus-specific cytotoxic T lymphocytes recognize a cross-reactive epitope from the capsid protein and can eliminate virus from persistently infected macrophages. J. Virol. 72, 5146–5153 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Mateo, L. et al. An arthrogenic alphavirus induces monocyte chemoattractant protein-1 and interleukin-8. Intervirology 43, 55–60 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Lidbury, B. A., Simeonovic, C., Maxwell, G. E., Marshall, I. D. & Hapel, A. J. Macrophage-induced muscle pathology results in morbidity and mortality for Ross River virus-infected mice. J. Infect. Dis. 181, 27–34 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Strang, B. L. et al. Human immunodeficiency virus type 1 vectors with alphavirus envelope glycoproteins produced from stable packaging cells. J. Virol. 79, 1765–1771 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gardner, J. P. et al. Infection of human dendritic cells by a sindbis virus replicon vector is determined by a single amino acid substitution in the E2 glycoprotein. J. Virol. 74, 11849–11857 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. MacDonald, G. H. & Johnston, R. E. Role of dendritic cell targeting in Venezuelan equine encephalitis virus pathogenesis. J. Virol. 74, 914–922 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Salvador, B., Zhou, Y., Michault, A., Muench, M. O. & Simmons, G. Characterization of chikungunya pseudotyped viruses: Identification of refractory cell lines and demonstration of cellular tropism differences mediated by mutations in E1 glycoprotein. Virology 393, 33–41 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fragkoudis, R. et al. The type I interferon system protects mice from Semliki Forest virus by preventing widespread virus dissemination in extraneural tissues, but does not mediate the restricted replication of avirulent virus in central nervous system neurons. J. Gen. Virol. 88, 3373–3384 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Deuber, S. A. & Pavlovic, J. Virulence of a mouse-adapted Semliki Forest virus strain is associated with reduced susceptibility to interferon. J. Gen. Virol. 88, 1952–1959 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Ryman, K. D. & Klimstra, W. B. Host responses to alphavirus infection. Immunol. Rev. 225, 27–45 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Vanlandingham, D. L. et al. Differential infectivities of o'nyong-nyong and chikungunya virus isolates in Anopheles gambiae and Aedes aegypti mosquitoes. Am. J. Trop. Med. Hyg. 72, 616–621 (2005).

    Article  PubMed  Google Scholar 

  75. Tsetsarkin, K. A., Vanlandingham, D. L., McGee, C. E. & Higgs, S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 3, e201 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vazeille, M. et al. Two chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS ONE 2, e1168 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Diallo, M., Thonnon, J., Traore-Lamizana, M. & Fontenille, D. Vectors of chikungunya virus in Senegal: current data and transmission cycles. Am. J. Trop. Med. Hyg. 60, 281–286 (1999).

    Article  CAS  Google Scholar 

  78. Mourya, D. T. & Yadav, P. Vector biology of dengue & chikungunya viruses. Indian J. Med. Res. 124, 475–480 (2006).

    CAS  PubMed  Google Scholar 

  79. van den Hurk, A. F., Hall-Mendelin, S., Pyke, A. T., Smith, G. A. & Mackenzie, J. S. Vector competence of Australian mosquitoes for chikungunya virus. Vector Borne Zoonotic Dis. 30 Oct 2009 (doi: 10.1089/vbz.2009.0106).

  80. Watts, D. M., Burke, D. S., Harrison, B. A., Whitmire, R. E. & Nisalak, A. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am. J. Trop. Med. Hyg. 36, 143–152 (1987).

    Article  CAS  PubMed  Google Scholar 

  81. Alto, B. W. & Juliano, S. A. Precipitation and temperature effects on populations of Aedes albopictus (Diptera: Culicidae): implications for range expansion. J. Med. Entomol. 38, 646–656 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Alto, B. W. & Juliano, S. A. Temperature effects on the dynamics of Aedes albopictus (Diptera: Culicidae) populations in the laboratory. J. Med. Entomol. 38, 548–556 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. de Lamballerie, X. et al. Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come? Virol. J. 5, 33 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gould, E. A. & Higgs, S. Impact of climate change and other factors on emerging arbovirus diseases. Trans. R. Soc. Trop. Med. Hyg. 103, 109–121 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Pialoux, G., Gauzere, B. A., Jaureguiberry, S. & Strobel, M. Chikungunya, an epidemic arbovirosis. Lancet Infect. Dis. 7, 319–327 (2007).

    Article  PubMed  Google Scholar 

  86. Hawley, W. A., Reiter, P., Copeland, R. S., Pumpuni, C. B. & Craig, G. B. Jr. Aedes albopictus in North America: probable introduction in used tires from northern Asia. Science 236, 1114–1116 (1987).

    Article  CAS  Google Scholar 

  87. Paupy, C., Delatte, H., Bagny, L., Corbel, V. & Fontenille, D. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect. 11, 1177–1185 (2009).

    Article  CAS  Google Scholar 

  88. Gibbons, D. L. et al. Visualization of the target-membrane-inserted fusion protein of Semliki Forest virus by combined electron microscopy and crystallography. Cell 114, 573–583 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Gibbons, D. L. et al. Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. Nature 427, 320–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Kielian, M. & Rey, F. A. Virus membrane-fusion proteins: more than one way to make a hairpin. Nature Rev. Microbiol 4, 67–76 (2006).

    Article  CAS  Google Scholar 

  91. Chatterjee, P. K., Eng, C. H. & Kielian, M. Novel mutations that control the sphingolipid and cholesterol dependence of the Semliki Forest virus fusion protein. J. Virol. 76, 12712–12722 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vanlandingham, D. L. et al. Development and characterization of a double subgenomic chikungunya virus infectious clone to express heterologous genes in Aedes aegypti mosquitoes. Insect Biochem. Mol. Biol. 35, 1162–1170 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Tsetsarkin, K. A. et al. Epistatic roles of E2 glycoprotein mutations in adaption of chikungunya virus to Aedes albopictus and Ae. aegypti mosquitoes. PLoS ONE 4, e6835 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Laurent, P. et al. Development of a sensitive real-time reverse transcriptase PCR assay with an internal control to detect and quantify chikungunya virus. Clin. Chem. 53, 1408–1414 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Carey, D. E., Myers, R. M., DeRanitz, C. M., Jadhav, M. & Reuben, R. The 1964 chikungunya epidemic at Vellore, South India, including observations on concurrent dengue. Trans. R. Soc. Trop. Med. Hyg. 63, 434–445 (1969).

    Article  CAS  PubMed  Google Scholar 

  96. Brighton, S. W., Prozesky, O. W. & de la Harpe, A. L. Chikungunya virus infection. A retrospective study of 107 cases. S. Afr. Med. J. 63, 313–315 (1983).

    CAS  PubMed  Google Scholar 

  97. Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B Biol. Sci. 147, 258–267 (1957).

    Article  CAS  PubMed  Google Scholar 

  98. Myers, R. M. et al. The 1964 epidemic of dengue-like fever in South India: isolation of chikungunya virus from human sera and from mosquitoes. Indian J. Med. Res. 53, 694–701 (1965).

    CAS  PubMed  Google Scholar 

  99. Gifford, G. E. & Heller, E. Effect of actinomycin D on interferon production by 'active' and 'inactive' chikungunya virus in chick cells. Nature 200, 50–51 (1963).

    Article  CAS  PubMed  Google Scholar 

  100. Glasgow, L. A. Transfer of interferon-producing macrophages: new approach to viral chemotherapy. Science 170, 854–856 (1970).

    Article  CAS  PubMed  Google Scholar 

  101. Levy, H. B., Buckler, C. E. & Baron, S. Effect of interferon on early interferon production. Science 152, 1274–1276 (1966).

    Article  CAS  PubMed  Google Scholar 

  102. O'Neill, L. A. & Bowie, A. G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature Rev. Immunol. 7, 353–364 (2007).

    Article  CAS  Google Scholar 

  103. Gilliet, M., Cao, W. & Liu, Y. J. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nature Rev. Immunol. 8, 594–606 (2008).

    Article  CAS  Google Scholar 

  104. Pichlmair, A. & Reis e Sousa, C. Innate recognition of viruses. Immunity 27, 370–383 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. McCartney, S. A. & Colonna, M. Viral sensors: diversity in pathogen recognition. Immunol. Rev. 227, 87–94 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Akira, S. & Takeda, K. Toll-like receptor signalling. Nature Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  Google Scholar 

  107. Bieback, K. et al. Hemagglutinin protein of wild-type measles virus activates Toll-like receptor 2 signaling. J. Virol. 76, 8729–8736 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Compton, T. et al. Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J. Virol. 77, 4588–4596 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kurt-Jones, E. A. et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nature Immunol. 1, 398–401 (2000).

    Article  CAS  Google Scholar 

  110. Rassa, J. C. & Ross, S. R. Viruses and Toll-like receptors. Microbes Infect. 5, 961–968 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  Google Scholar 

  113. Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 (2006).

    Article  CAS  Google Scholar 

  114. Dalod, M. et al. Dendritic cell responses to early murine cytomegalovirus infection: subset functional specialization and differential regulation by interferon α/β. J. Exp. Med. 197, 885–898 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Schulz, O. et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433, 887–892 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Muzio, M., Ni, J., Feng, P. & Dixit, V. M. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278, 1612–1615 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Ichinohe, T., Lee, H. K., Ogura, Y., Flavell, R. & Iwasaki, A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J. Exp. Med. 206, 79–87 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Allen, I. C. et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30, 556–565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Grandvaux, N., tenOever, B. R., Servant, M. J. & Hiscott, J. The interferon antiviral response: from viral invasion to evasion. Curr. Opin. Infect. Dis. 15, 259–267 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. de Veer, M. J. et al. Functional classification of interferon-stimulated genes identified using microarrays. J. Leukoc. Biol. 69, 912–920 (2001).

    CAS  PubMed  Google Scholar 

  121. Ryman, K. D. et al. Sindbis virus translation is inhibited by a PKR/RNase L-independent effector induced by alpha/beta interferon priming of dendritic cells. J. Virol. 79, 1487–1499 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lenschow, D. J. et al. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc. Natl Acad. Sci. USA 104, 1371–1376 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Zhang, Y., Burke, C. W., Ryman, K. D. & Klimstra, W. B. Identification and characterization of interferon-induced proteins that inhibit alphavirus replication. J. Virol. 81, 11246–11255 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bick, M. J. et al. Expression of the zinc-finger antiviral protein inhibits alphavirus replication. J. Virol. 77, 11555–11562 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Antalis, T. M. et al. The serine proteinase inhibitor (serpin) plasminogen activation inhibitor type 2 protects against viral cytopathic effects by constitutive interferon α/β priming. J. Exp. Med. 187, 1799–1811 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Brehin, A. C. et al. The large form of human 2′, 5′ oligoadenylate synthetase (OAS3) exerts antiviral effect against chikungunya virus. Virology 384, 216–222 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Frolova, E. I. et al. Roles of nonstructural protein nsP2 and alpha/beta interferons in determining the outcome of Sindbis virus infection. J. Virol. 76, 11254–11264 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Breakwell, L. et al. Semliki Forest virus nonstructural protein 2 is involved in suppression of the type I interferon response. J. Virol. 81, 8677–8684 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Couderc, T. et al. Prophylaxis and therapy for chikungunya virus infection. J. Infect. Dis. 200, 516–523 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Borgherini, G. et al. Outbreak of chikungunya on Reunion Island: early clinical and laboratory features in 157 adult patients. Clin. Infect. Dis. 44, 1401–1407 (2007).

    Article  PubMed  Google Scholar 

  131. Kamphuis, E., Junt, T., Waibler, Z., Forster, R. & Kalinke, U. Type I interferons directly regulate lymphocyte recirculation and cause transient blood lymphopenia. Blood 108, 3253–3261 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Harrison, V. R., Eckels, K. H., Bartelloni, P. J. & Hampton, C. Production and evaluation of a formalin-killed chikungunya vaccine. J. Immunol. 107, 643–647 (1971).

    CAS  PubMed  Google Scholar 

  133. McClain, D. J. et al. Immunologic interference from sequential administration of live attenuated alphavirus vaccines. J. Infect. Dis. 177, 634–641 (1998).

    Article  CAS  PubMed  Google Scholar 

  134. Edelman, R. et al. Phase II safety and immunogenicity study of live chikungunya virus vaccine TSI-GSD-218. Am. J. Trop. Med. Hyg. 62, 681–685 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Marsh, M. & Helenius, A. Virus entry: open sesame. Cell 124, 729–740 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Chevillon, C., Briant, L., Renaud, F. & Devaux, C. The chikungunya threat: an ecological and evolutionary perspective. Trends Microbiol 16, 80–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Salonen, A., Ahola, T. & Kaariainen, L. Viral RNA replication in association with cellular membranes. Curr. Top. Microbiol. Immunol. 285, 139–173 (2005).

    CAS  PubMed  Google Scholar 

  138. Garmashova, N. et al. The Old World and New World alphaviruses use different virus-specific proteins for induction of transcriptional shutoff. J. Virol. 81, 2472–2484 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of our laboratories and T. Couderc for critical reading of the manuscript. We also acknowledge the robust collaborations within the Institut Pasteur CHIKV Taskforce, led by F. Rey. Work in our laboratories is supported by grants from the Agence Nationale de Recherche (ANR), the Centre National de la Recherche Scientifique (CNRS), the Centre de Recherche et de Veille sur les Maladies é mergentes dans l'Océan Indien (CRVOI), the Institut National de la Santé et de la Recherche Médicale (INSERM) and the Institut Pasteur.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome

CHIKV

EEEV

RRV

SFV

SINV

VEEV

Entrez Genome Project

Aedes aegypti

Aedes albopictus

FURTHER INFORMATION

Olivier Schwartz's homepage

Matthew L. Albert's homepage

WHO guidelines on the Clinical Management of Chikungunya

Glossary

Choroid plexus

The site of cerebrospinal fluid production in the adult brain. It is formed by invagination of ependymal cells into the ventricles, which become highly vascularized.

Prodromal phase

A clear deterioration in host function before the active phase of a disease.

Petechial rash

A rash consisting of small (1–2 mm) red or purple spots on the body, the cause of which are minor haemorrhages resulting from disruption of the capillary bed.

Maculopapular rash

A rash consisting of macules (small, flat spots) and papules (raised bumps).

Muscle satellite cells

Stem cells that are localized at the basement membrane surrounding each myofibre and that give rise to regenerated muscle and to more satellite cells.

Myotube

A developing skeletal muscle fibre, formed by the fusion of myoblasts.

Myositic syndrome

A poorly understood clinical musculoskeletal and/or nerve disease that may be of psychosomatic origin.

Inflammasome

A molecular complex of several proteins that, following assembly, cleaves pro-interleukin-1 (pro-IL-1), thereby producing active IL-1.

Sterilizing immunity

An immune response that leads to the complete removal of the pathogen.

Virus-like particles

Particles that are composed of assembled viral proteins and mimic the structure of viruses. They are non-infectious because they do not contain viral genetic material.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, O., Albert, M. Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol 8, 491–500 (2010). https://doi.org/10.1038/nrmicro2368

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro2368

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing