Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Developing vaccines to combat hookworm infection and intestinal schistosomiasis

Key Points

  • Hookworm infection and schistosomiasis are two of the most common neglected tropical diseases of humans and among the most important in terms of their global disease burden in developing countries.

  • Global control of each infection currently relies on mass drug administration using donated or low-cost anthelmintic drugs, but high rates of both drug failure (with mebendazole) and post-treatment reinfection necessitate the development of anthelmintic vaccines.

  • A human hookworm vaccine is being developed as a bivalent injectable product combining two recombinant proteins, derived from the gut of the adult stage of the hookworm Necator americanus, that interfere with parasite blood feeding.

  • One of the leading schistosomiasis vaccines under development targets a tetraspanin antigen involved in biogenesis of the tegument of Schistosoma mansoni, the main etiological agent of intestinal schistosomiasis.

  • Both vaccines are being developed for children living in endemic areas of developing countries and could be linked to anthelmintic treatments in a programme of vaccine-linked chemotherapy.

  • Both the hookworm and schistosome antigens may ultimately be combined as a multivalent anthelmintic vaccine.

Abstract

Hookworm infection and schistosomiasis rank among the most important health problems in developing countries. Both cause anaemia and malnutrition, and schistosomiasis also results in substantial intestinal, liver and genitourinary pathology. In sub-Saharan Africa and Brazil, co-infections with the hookworm, Necator americanus, and the intestinal schistosome, Schistosoma mansoni, are common. The development of vaccines for these infections could substantially reduce the global disability associated with these helminthiases. New genomic, proteomic, immunological and X-ray crystallographic data have led to the discovery of several promising candidate vaccine antigens. Here, we describe recent progress in this field and the rationale for vaccine development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global distributions and life cycles of hookworms and schistosomes.
Figure 2: Necator americanus degradation of host blood components and potential vaccine targets.
Figure 3: Schistosoma mansoni tegument.

Similar content being viewed by others

References

  1. Hotez, P. J. et al. Helminth infections: the great neglected tropical diseases. J. Clin. Invest. 118, 1311–1321 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hotez, P. J., Bethony, J. M., Oliveira, S. C., Brindley, P. J. & Loukas, A. Multivalent anthelminthic vaccine to prevent hookworm and schistosomiasis. Expert Rev. Vaccines 7, 745–752 (2008).

    Article  PubMed  Google Scholar 

  3. WHO Expert Committee. Prevention and control of schistosomiasis and soil-transmitted helminthiasis. World Health Organ. Tech. Rep. Ser. 912, 1–57 (2002).

  4. King, C. H., Dickman, K. & Tisch, D. J. Reassessment of the cost of chronic helmintic infection: a meta-analysis of disability-related outcomes in endemic schistosomiasis. Lancet 365, 1561–1569 (2005).

    Article  PubMed  Google Scholar 

  5. Hotez, P. J. et al. Incorporating a rapid-impact package for neglected tropical diseases with programs for HIV/AIDS, tuberculosis, and malaria. PLoS Med. 3, e102 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  6. King, C. H. & Dangerfield-Cha, M. The unacknowledged impact of chronic schistosomiasis. Chronic Illn. 4, 65–79 (2008).

    Article  PubMed  Google Scholar 

  7. Bleakley, H. Disease and development: evidence from hookworm eradication in the American South. Q. J. Econ. 122, 73–117 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hotez, P. J., Fenwick, A., Savioli, L. & Molyneux, D. H. Rescuing the bottom billion through control of neglected tropical diseases. Lancet 373, 1570–1575 (2009).

    Article  PubMed  Google Scholar 

  9. King, C. H. Parasites and poverty: the case of schistosomiasis. Acta Trop. 113, 95–104 (2010).

    Article  PubMed  Google Scholar 

  10. Hotez, P. J. et al. Control of neglected tropical diseases. N. Engl. J. Med. 357, 1018–1027 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Finkelman, F. D. et al. Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunol. Rev. 201, 139–155 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Brooker, S., Bethony, J. & Hotez, P. J. Human hookworm infection in the 21st century. Adv. Parasitol. 58, 197–288 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hotez, P. J. et al. Hookworm infection. N. Engl. J. Med. 351, 799–807 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Hotez, P. J., Bethony, J., Bottazzi, M. E., Brooker, S. & Buss, P. Hookworm: “the great infection of mankind”. PLoS Med. 2, e67 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bethony, J. et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367, 1521–1532 (2006). This paper provides a comprehensive overview of the life cycles, epidemiology, global disease burden, clinical manifestations and immunology of soil-transmitted helminth infections.

    Article  PubMed  Google Scholar 

  16. Gryseels, B., Polman, K., Clerinx, J. & Kestens, L. Human schistosomiasis. Lancet 368, 1106–1118 (2006).

    Article  PubMed  Google Scholar 

  17. Steinmann, P., Keiser, J., Bos, R., Tanner, M. & Utzinger, J. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect. Dis. 6, 411–425 (2006).

    Article  PubMed  Google Scholar 

  18. de Silva, N. R. et al. Soil-transmitted helminth infections: updating the global picture. Trends Parasitol. 19, 547–551 (2003).

    Article  PubMed  Google Scholar 

  19. Hotez, P. J., Bottazzi, M. E., Franco-Paredes, C., Ault, S. K. & Periago, M. R. The neglected tropical diseases of Latin America and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl. Trop. Dis. 2, e300 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hotez, P. J. & Kamath, A. Neglected tropical diseases in sub-Saharan Africa: review of their prevalence, distribution, and disease burden. PLoS Negl. Trop. Dis. 3, e412 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stoll, N. R. This wormy world. J. Parasitol. 33, 1–18 (1947).

    Article  CAS  PubMed  Google Scholar 

  22. Tissenbaum, H. A. et al. A common muscarinic pathway for diapause recovery in the distantly related nematode species Caenorhabditis elegans and Ancylostoma caninum. Proc. Natl Acad. Sci. USA 97, 460–465 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Williamson, A. L. et al. A multi-enzyme cascade of hemoglobin proteolysis in the intestine of blood-feeding hookworms. J. Biol. Chem. 279, 35950–35957 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Ranjit, N. et al. Proteolytic degradation of hemoglobin in the intestine of the human hookworm Necator americanus. J. Infect. Dis. 199, 904–912 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Zhan, B. et al. Biochemical characterization and vaccine potential of a heme-binding glutathione transferase from the adult hookworm Ancylostoma caninum. Infect. Immun. 73, 6903–6911 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhan, B. et al. Molecular cloning, biochemical characterization, and partial protective immunity of the heme-binding glutathione S-transferases from the human hookworm Necator americanus. Infect. Immun. 78, 1552–1563 (2010). This work documents the expression of recombinant GST proteins of N. americanus in P. pastoris , the characterization of these proteins and their effectiveness in preventing infection in a hamster vaccination–challenge model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wilson, M. S. et al. Immunopathology of schistosomiasis. Immunol. Cell Biol. 85, 148–154 (2007). This article discusses how the granulomatous response to S. mansoni and S. japonicum eggs develops in the liver, as well as how regulatory cells and cytokine decoy receptors limit the extent of the immunopathology associated with these infections.

    Article  CAS  PubMed  Google Scholar 

  28. Tolentino, K. & Friedman, J. F. An update on anemia in less developed countries. Am. J. Trop. Med. Hyg. 77, 44–51 (2007).

    Article  PubMed  Google Scholar 

  29. WHO. Iron deficiency anaemia: assessment, prevention and control. A guide for programme managers. (WHO, Geneva, 2001).

  30. Stoltzfus, R. J. Iron deficiency: global prevalence and consequences. Food Nutr. Bull. 24, S99–S103 (2003).

    Article  PubMed  Google Scholar 

  31. Larocque, R., Casapia, M., Gotuzzo, E. & Gyorkos, T. W. Relationship between intensity of soil-transmitted helminth infections and anemia during pregnancy. Am. J. Trop. Med. Hyg. 73, 783–789 (2005).

    Article  PubMed  Google Scholar 

  32. Crompton, D. W. The public health importance of hookworm disease. Parasitology 121, S39–S50 (2000).

    Article  PubMed  Google Scholar 

  33. Food and Agriculture Organization (FAO) & WHO. Human Vitamin and Mineral Requirements: Report of a Joint FAO/WHO Expert Consultation 113–221 (FAO/WHO, Rome, 2002).

  34. Stoltzfus, R. J., Dreyfuss, M. L., Chwaya, H. M. & Albonico, M. Hookworm control as a strategy to prevent iron deficiency. Nutr. Rev. 55, 223–232 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Brooker, S. et al. Age-related changes in hookworm infection, anaemia and iron deficiency in an area of high Necator americanus hookworm transmission in south-eastern Brazil. Trans. R. Soc. Trop. Med. Hyg. 101, 146–154 (2007).

    Article  PubMed  Google Scholar 

  36. Brooker, S. et al. The epidemiology of hookworm infection and its contribution to anaemia among pre-school children on the Kenyan coast. Trans. R. Soc. Trop. Med. Hyg. 93, 240–246 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Sousa-Figueiredo, J. C. et al. A parasitological survey, in rural Zanzibar, of pre-school children and their mothers for urinary schistosomiasis, soil-transmitted helminthiases and malaria, with observations on the prevalence of anaemia. Ann. Trop. Med. Parasitol. 102, 679–692 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Calis, J. C. et al. Severe anemia in Malawian children. N. Engl. J. Med. 358, 888–899 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Nguyen, P. H. et al. Risk factors for anemia in Vietnam. Southeast Asian J. Trop. Med. Public Health 37, 1213–1223 (2006).

    PubMed  Google Scholar 

  40. Dreyfuss, M. L. et al. Hookworms, malaria and vitamin A deficiency contribute to anemia and iron deficiency among pregnant women in the plains of Nepal. J. Nutr. 130, 2527–2536 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Brooker, S., Hotez, P. J. & Bundy, D. A. Hookworm-related anaemia among pregnant women: a systematic review. PLoS Negl. Trop. Dis. 2, e291 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Smith, J. L. & Brooker, S. Impact of hookworm infection and deworming on anaemia in non-pregnant populations: a systematic review. Trop. Med. Int. Health 15, 776–795 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Stephenson, L. The impact of schistosomiasis on human nutrition. Parasitology 107, S107–S123 (1993).

    Article  PubMed  Google Scholar 

  44. Sturrock, R. F. et al. Schistosomiasis mansoni in Kenya: relationship between infection and anaemia in schoolchildren at the community level. Trans. R. Soc. Trop. Med. Hyg. 90, 48–54 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Friedman, J. F. et al. Relationship between Schistosoma japonicum and nutritional status among children and young adults in Leyte, the Philippines. Am. J. Trop. Med. Hyg. 72, 527–533 (2005).

    Article  PubMed  Google Scholar 

  46. Friedman, J. F., Kanzaria, H. K. & McGarvey, S. T. Human schistosomiasis and anemia: the relationship and potential mechanisms. Trends Parasitol. 21, 386–392 (2005). This summarizes the animal and human data about the impact of schistosomiasis on anaemia and discusses four possible mechanisms: extracorporeal blood loss, autoimmune haemolysis and anaemia of inflammation, and splenomegaly with erythrocyte sequestration.

    Article  PubMed  Google Scholar 

  47. Koukounari, A. et al. Morbidity indicators of Schistosoma mansoni: relationship between infection and anemia in Ugandan schoolchildren before and after praziquantel and albendazole chemotherapy. Am. J. Trop. Med. Hyg. 75, 278–286 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Koukounari, A. et al. Schistosoma haematobium infection and morbidity before and after large-scale administration of praziquantel in Burkina Faso. J. Infect. Dis. 196, 659–669 (2007).

    Article  PubMed  Google Scholar 

  49. Koukounari, A. et al. Relationships between anaemia and parasitic infections in Kenyan schoolchildren: a Bayesian hierarchical modelling approach. Int. J. Parasitol. 38, 1663–1671 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tohon, Z. B. et al. Controlling schistosomiasis: significant decrease of anaemia prevalence one year after a single dose of praziquantel in Nigerian schoolchildren. PLoS Negl. Trop. Dis. 2, e241 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Prual, A. et al. Consequences of Schistosoma haematobium infection on the iron status of schoolchildren in Niger. Am. J. Trop. Med. Hyg. 47, 291–297 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Friedman, J. F., Mital, P., Kanzaria, H. K., Olds, G. R. & Kurtis, J. D. Schistosomiasis and pregnancy. Trends Parasitol. 23, 159–164 (2007).

    Article  PubMed  Google Scholar 

  53. Ajanga, A. et al. Schistosoma mansoni in pregnancy and associations with anaemia in northwest Tanzania. Trans. R. Soc. Trop. Med. Hyg. 100, 59–63 (2006).

    Article  PubMed  Google Scholar 

  54. Stephenson, L. S. Helminth parasites, a major factor in malnutrition. World Health Forum 15, 169–172 (1994).

    CAS  PubMed  Google Scholar 

  55. Stephenson, L. S. et al. Relationships of Schistosoma haematobium, hookworm and malarial infections and metrifonate treatment to growth of Kenyan school children. Am. J. Trop. Med. Hyg. 34, 1109–1118 (1985).

    Article  CAS  PubMed  Google Scholar 

  56. Lwambo, N. J., Siza, J. E., Brooker, S., Bundy, D. A. & Guyatt, H. Patterns of concurrent hookworm infection and schistosomiasis in schoolchildren in Tanzania. Trans. R. Soc. Trop. Med. Hyg. 93, 497–502 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Guyatt, H. L., Brooker, S., Kihamia, C. M., Hall, A. & Bundy, D. A. Evaluation of efficacy of school-based anthelmintic treatments against anaemia in children in the United Republic of Tanzania. Bull. World Health Organ. 79, 695–703 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Friis, H. et al. Effects on haemoglobin of multi-micronutrient supplementation and multi-helminth chemotherapy: a randomized, controlled trial in Kenyan school children. Eur. J. Clin. Nutr. 57, 573–579 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Raso, G. et al. An integrated approach for risk profiling and spatial prediction of Schistosoma mansoni–hookworm coinfection. Proc. Natl Acad. Sci. USA 103, 6934–6939 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brito, L. L. et al. Moderate- and low-intensity co-infections by intestinal helminths and Schistosoma mansoni, dietary iron intake, and anemia in Brazilian children. Am. J. Trop. Med. Hyg. 75, 939–944 (2006).

    Article  PubMed  Google Scholar 

  61. Fleming, F. M. et al. Synergistic associations between hookworm and other helminth species in a rural community in Brazil. Trop. Med. Int. Health 11, 56–64 (2006).

    Article  PubMed  Google Scholar 

  62. Ezeamama, A. E. et al. The synergistic effect of concomitant schistosomiasis, hookworm, and trichuris infections on children's anemia burden. PLoS Negl. Trop. Dis. 2, e245 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Brooker, S. et al. Epidemiology of plasmodium-helminth co-infection in Africa: populations at risk, potential impact on anemia, and prospects for combining control. Am. J. Trop. Med. Hyg. 77, 88–98 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Demissie, F., Kebede, A., Shimels, T. & Beyene, P. Assessment of public health implication of malaria-geohelminth co-infection with an emphasis on hookworm-malaria anemia among suspected malaria patients in Asendabo, southwest Ethiopia. Ethiop. Med. J. 47, 153–158 (2009).

    PubMed  Google Scholar 

  65. Kjetland, E. F. et al. Association between genital schistosomiasis and HIV in rural Zimbabwean women. AIDS 20, 593–600 (2006).

    Article  PubMed  Google Scholar 

  66. Chenine, A. L. et al. Acute Schistosoma mansoni infection increases susceptibility to systemic SHIV clade C infection in rhesus macaques after mucosal virus exposure. PLoS Negl. Trop. Dis. 2, e265 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Da'dara, A. A. & Harn, D. A. Elimination of helminth infection restores HIV-1C vaccine-specific T cell responses independent of helminth-induced IL-10. Vaccine 28, 1310–1317 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Bentwich, Z., Teicher, C. L. & Borkow, G. The helminth HIV connection: time to act. AIDS 22, 1611–1614 (2008).

    Article  PubMed  Google Scholar 

  69. Moore, R. D. Anemia and human immunodeficiency virus disease in the era of highly active antiretroviral therapy. Semin. Hematol. 37, 18–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Moraes, L. R., Cancio, J. A. & Cairncross, S. Impact of drainage and sewerage on intestinal nematode infections in poor urban areas in Salvador, Brazil. Trans. R. Soc. Trop. Med. Hyg. 98, 197–204 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Asaolu, S. O. & Ofoezie, I. E. The role of health education and sanitation in the control of helminth infections. Acta Trop. 86, 283–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. WHO. Preventive chemotherapy in human helminthiasis: coordinated use of anthelminthic drugs in control interventions: a manual for health professionals and programme managers. (WHO, Geneva, 2006).

  73. WHO. Soil-transmitted helminthiasis. Progress report on number of children treated with anthelminthic drugs: an update towards the 2010 global target. Wkly Epidemiol. Rec. 82, 237–252 (2008).

  74. Olsen, A. Efficacy and safety of drug combinations in the treatment of schistosomiasis, soil-transmitted helminthiasis, lymphatic filariasis and onchocerciasis. Trans. R. Soc. Trop. Med. Hyg. 101, 747–758 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Hotez, P. J. Mass drug administration and integrated control for the world's high-prevalence neglected tropical diseases. Clin. Pharmacol. Ther. 85, 659–664 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Geary, T. G. et al. Unresolved issues in anthelmintic pharmacology for helminthiases of humans. Int. J. Parasitol. 40, 1–13 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Keiser, J. & Utzinger, J. Efficacy of current drugs against soil-transmitted helminth infections: systematic review and meta-analysis. JAMA 299, 1937–1948 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Albonico, M. et al. Efficacy of mebendazole and levamisole alone or in combination against intestinal nematode infections after repeated targeted mebendazole treatment in Zanzibar. Bull. World Health Organ. 81, 343–352 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Geerts, S. & Gryseels, B. Drug resistance in human helminths: current situation and lessons from livestock. Clin. Microbiol. Rev. 13, 207–222 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Albonico, M. et al. Rate of reinfection with intestinal nematodes after treatment of children with mebendazole or albendazole in a highly endemic area. Trans. R. Soc. Trop. Med. Hyg. 89, 538–541 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Hotez, P. J. & Ferris, M. T. The antipoverty vaccines. Vaccine 24, 5787–5799 (2006).

    Article  PubMed  Google Scholar 

  82. Loukas, A., Bethony, J., Brooker, S. & Hotez, P. Hookworm vaccines: past, present, and future. Lancet Infect. Dis. 6, 733–741 (2006).

    Article  PubMed  Google Scholar 

  83. Bethony, J. M., Loukas, A., Hotez, P. J. & Knox, D. P. Vaccines against blood-feeding nematodes of humans and livestock. Parasitology 133, S63–S79 (2006). A summary of the progress that has been made towards vaccine development using defined larval-stage and adult-stage antigens against hookworms in humans and against H. contortus in livestock, as well as the anticipated impact of the host immune response on vaccine design.

    Article  PubMed  Google Scholar 

  84. Diemert, D. J., Bethony, J. M. & Hotez, P. J. Hookworm vaccines. Clin. Infect. Dis. 46, 282–288 (2008). This article discusses the feasibility of developing a hookworm vaccine on the basis of the previous success of an attenuated larval vaccine against the canine hookworm A. caninum . It also summarizes potential protective mechanisms, the stability of potential candidate antigens and the results of clinical testing of the first human hookworm candidate vaccine antigen, ASP2.

    Article  PubMed  Google Scholar 

  85. Bottazzi, M. E. & Brown, A. S. Model for product development of vaccines against neglected tropical diseases: a vaccine against human hookworm. Expert Rev. Vaccines 7, 1481–1492 (2008).

    Article  PubMed  Google Scholar 

  86. Hotez, P. J. & Brown, A. S. Neglected tropical disease vaccines. Biologicals 37, 160–164 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Miller, T. A. Industrial development and field use of the canine hookworm vaccine. Adv. Parasitol. 16, 333–342 (1978).

    Article  CAS  PubMed  Google Scholar 

  88. Bergquist, R., Utzinger, J. & McManus, D. P. Trick or treat: the role of vaccines in integrated schistosomiasis control. PLoS Negl. Trop. Dis. 2, e244 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Urquhart, G. M. Field experience with the bovine lungworm vaccine. Dev. Biol. Stand. 62, 109–112 (1985).

    CAS  PubMed  Google Scholar 

  90. Meissner, B., Boll., M., Daniel, H. & Baumeister, R. Deletion of the intestinal peptide transporter affects insulin and TOR signaling in Caenorhabditis elegans. J. Biol. Chem. 279, 36739–36745 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Brophy, P. M. & Pritchard, D. I. Metabolism of lipid peroxidation products by the gastro-intestinal nematodes Necator americanus, Ancylostoma ceylanicum and Heligmosomoides polygyrus. Int. J. Parasitol. 22, 1009–1012 (1992).

    Article  CAS  PubMed  Google Scholar 

  92. Zhan, B. et al. Molecular cloning and purification of Ac-TMP, a developmentally regulated putative tissue inhibitor of metalloprotease released in relative abundance by adult Ancylostoma hookworms. Am. J. Trop. Med. Hyg. 66, 238–244 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Deponte, M. & Becker, K. Glutathione S-transferase from malarial parasites: structural and functional aspects. Methods Enzymol. 401, 241–253 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Jani, D. et al. HDP—a novel heme detoxification protein from the malaria parasite. PLoS Pathog. 4, e1000053 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Asojo, O. A. et al. X-ray structures of Na-GST-1 and Na-GST-2 two glutathione s-transferase from the human hookworm Necator americanus. BMC Struct. Biol. 7, 42 (2007). This work describes the crystal structure of the leading hookworm candidate vaccine antigen GST1, revealing it to exist as a homodimer with a cavity in which ligands such as haeme can potentially be bound and thereby detoxified.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. van Rossum, A. J. et al. Binding of hematin by a new class of glutathione transferase from the blood-feeding parasitic nematode Haemonchus contortus. Infect. Immun. 72, 2780–2790 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schuller, D. J. et al. Crystal structure of a new class of glutathione transferase from the model human hookworm nematode Heligmosomoides polygyrus. Proteins 61, 1024–1031 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Xiao, S. et al. The evaluation of recombinant hookworm antigens as vaccines in hamsters (Mesocricetus auratus) challenged with human hookworm, Necator americanus. Exp. Parasitol. 118, 32–40 (2008). This article describes the protective effects of several candidate hookworm vaccine antigens, including N. americanus ASP2, A. caninum APR1 and A. caninum GST1, in hamsters challenged with infective N. americanus larvae following vaccination.

    Article  CAS  PubMed  Google Scholar 

  99. Veerapathran, A., Dakshinamoorthy, G., Gnanasekar, M., Reddy, M. V. & Kalyanasundaram, R. Evaluation of Wuchereria bancrofti GST as a vaccine candidate for lymphatic filariasis. PLoS Negl. Trop. Dis. 3, e457 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pearson, M. S. et al. An enzymatically inactivated hemoglobinase from Necator americanus induces neutralizing antibodies against multiple hookworm species and protects dogs against heterologous hookworm infection. FASEB J. 23, 3007–3019 (2009). This study shows that vaccination of dogs with an N. americanus APR1 in which the catalytic aspartic acid residues are mutagenized results in substantially reduced parasite egg burdens after challenge with infective larvae of A. caninum , and induces antibodies that bind the native enzyme in the parasite gut, neutralizing its enzymatic activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yusibov, V. & Rabindran, S. Recent progress in the development of plant derived vaccines. Expert Rev. Vaccines 7, 1173–1183 (2008).

    Article  PubMed  Google Scholar 

  102. Loukas, A. et al. Vaccination with recombinant aspartic hemoglobinase reduces parasite load and blood loss after hookworm infection in dogs. PLoS Med. 2, e295 (2005). This investigation finds that vaccination of dogs with recombinant A. caninum APR1 results in protection from anaemia, the major clinical manifestation of hookworm, after challenge with infective A. caninum larvae.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pearson, M. S. et al. Neutralizing antibodies to the hookworm hemoglobinase Na-APR-1: implications for a multivalent vaccine against hookworm infection and schistosomiasis. J. Infect. Dis. 201, 1561–1569 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Ranjit, N., Jones, M. K., Stenzel, D. J., Gasser, R. B. & Loukas, A. A survey of the intestinal transcriptomes of the hookworms, Necator americanus and Ancylostoma caninum, using tissues isolated by laser microdissection microscopy. Int. J. Parasitol. 36, 701–710 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Geldhof, P. & Knox, D. The intestinal contortin structure in Haemonchus contortus: An immobilised anticoagulant? Int. J. Parasitol. 38, 1579–1588 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Bethony, J. et al. Antibodies against a secreted protein from hookworm larvae reduce the intensity of hookworm infection in humans and vaccinated laboratory animals. FASEB J. 19, 1743–1745 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Goud, G. N. et al. Expression of the Necator americanus hookworm larval antigen Na-ASP-2 in Pichia pastoris and purification of the recombinant protein for use in human clinical trials. Vaccine 23, 4754–4764 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Fujiwara, R. T. et al. Immunogenicity of the hookworm Na-ASP-2 vaccine candidate: characterization of humoral and cellular responses after vaccination in the Sprague Dawley rat. Hum. Vaccin. 1, 123–128 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Fujiwara, R. T. et al. Vaccination with irradiated Ancylostoma caninum third stage larvae induces a TH2 protective response in dogs. Vaccine 24, 501–509 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. McManus, D. P. & Loukas, A. Current status of vaccines for schistosomiasis. Clin. Microbiol. Rev. 21, 225–242 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. King, C. H., Sturrock, R. F., Kariuki, H. C. & Hamburger, J. Transmission control for schistosomiasis -– why it matters now. Trends Parasitol. 22, 575–582 (2006).

    Article  PubMed  Google Scholar 

  112. Oliveira, S. C., Fonseca, C. T., Cardoso, F. C., Farias, L. P. & Leite, L. C. Recent advances in vaccine research against schistosomiasis in Brazil. Acta Trop. 108, 256–262 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Correa-Oliveira, R., Caldas, I. R. & Gazzinelli, G. Natural versus drug-induced resistance in Schistosoma mansoni infection. Parasitol. Today 16, 397–399 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Capron, A., Riveau, G., Capron, M. & Trottein, F. Schistosomes: the road from host–parasite interactions to vaccines in clinical trials. Trends Parasitol. 21, 143–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Moser, D., Tendler, M., Griffiths, G. & Klinkert, M. Q. A 14-kDa Schistosoma mansoni polypeptide is homologous to a gene family of fatty acid binding proteins. J. Biol. Chem. 266, 8447–8454 (1991).

    CAS  PubMed  Google Scholar 

  116. Tendler, M. & Simpson, A. J. The biotechnology-value chain: development of Sm14 as a schistosomiasis vaccine. Acta Trop. 108, 263–266 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Ramos, C. R. et al. Stability improvement of the fatty acid binding protein Sm14 from S. mansoni by Cys replacement: structural and functional characterization of a vaccine candidate. Biochim. Biophys. Acta 1794, 655–662 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Zhang, W. et al. Sm-p80-based DNA vaccine provides baboons with levels of protection against Schistosoma mansoni infection comparable to those achieved by the irradiated cercarial vaccine. J. Infect. Dis. 201, 1105–1112 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Jiz, M. et al. Pilot-scale production and characterization of paramyosin, a vaccine candidate for schistosomiasis japonica. Infect. Immun. 76, 3164–3169 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Loukas, A., Tran, M. & Pearson, M. S. Schistosome membrane proteins as vaccines. Int. J. Parasitol. 37, 257–263 (2007). This article describes the tetraspanin family of integral membrane proteins that are abundantly represented in the outermost surface of Schistosoma spp., and discusses the evidence from a mouse vaccine model and from human immunoepidemiology studies that indicate the potential of tetraspanins as vaccine candidates.

    Article  CAS  PubMed  Google Scholar 

  121. Braschi, S. & Wilson, R. A. Proteins exposed at the adult schistosome surface revealed by biotinylation. Mol. Cell. Proteomics 5, 347–356 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Tran, M. H. et al. Tetraspanins on the surface of Schistosoma mansoni are protective antigens against schistosomiasis. Nature Med. 12, 835–840 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Cardoso, F. C., Pacifico, R. N., Mortara, R. A. & Oliveira, S. C. Human antibody responses of patients living in endemic areas for schistosomiasis to the tegumental protein Sm29 identified through genomic studies. Clin. Exp. Immunol. 144, 382–391 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cardoso, F. C. et al. Schistosoma mansoni tegument protein Sm29 is able to induce a Th1-type of immune response and protection against parasite infection. PLoS Negl. Trop. Dis. 2, e308 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yuan, C. et al. Schistosoma japonicum: Efficient and rapid purification of the tetraspanin extracellular loop 2, a potential protective antigen against schistosomiasis in mammalian. Exp. Parasitol. 126, 456–461 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Tran, M. H. et al. Suppression of mRNAs encoding tegument tetraspanins from Schistosoma mansoni results in impaired tegument turnover. PLoS Pathog. 6, e1000840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gobert, G. N. et al. Transcriptional changes in Schistosoma mansoni during early schistosomula development and in the presence of erythrocytes. PLoS Negl. Trop. Dis. 4, e600 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fitzpatrick, J. M. et al. Anti-schistosomal intervention targets identified by lifecycle transcriptomic analyses. PLoS Negl. Trop. Dis. 3, e543 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Da'dara, A. A. et al. DNA-based vaccines protect against zoonotic schistosomiasis in water buffalo. Vaccine 26, 3617–3625 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Morel, C. M. et al. Health innovation networks to help developing countries address neglected diseases. Science 309, 401–404 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. WHO. Deworming for Health and Development 27 (WHO, Geneva, 2005).

  132. Maizels, R. M. et al. Helminth parasites – masters of regulation. Immunol. Rev. 201, 89–116 (2004). This paper reviews the immunoregulation induced by helminth infections, which is dominated by the T H 2 phenotype and the selective loss of effector activity against a background of regulatory T cells, T H 2-inducing dendritic cells and alternatively activated macrophages.

    Article  CAS  PubMed  Google Scholar 

  133. Maizels, R. M., Holland, M. J., Falcone, F. H., Zang, X. X. & Yazdanbakhsh, M. Vaccination against helminth parasites - the ultimate challenge for vaccinologists? Immunol. Rev. 171, 125–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Bethony, J. et al. Emerging patterns of hookworm infection: influence of aging on the intensity of Necator infection in Hainan Province, People's Republic of China. Clin. Infect. Dis. 35, 1336–1344 (2002).

    Article  PubMed  Google Scholar 

  135. Andrade, Z. A. Schistosomiasis and liver fibrosis. Parasite Immunol. 31, 656–663 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Erb, K. J. Helminths, allergic disorders and IgE-mediated immune responses: where do we stand? Eur. J. Immunol. 37, 1170–1173 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Cohen, M. S., Hellmann, N., Levy, J. A., DeCock, K. & Lange, J. The spread, treatment, and prevention of HIV-1: evolution of a global pandemic. J. Clin. Invest. 118, 1244–1254 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. WHO. World health report 2004: changing history (WHO, Geneva, 2004).

  139. Greenwood, B. M. et al. Malaria: progress, perils, and prospects for eradication. J. Clin. Invest. 118, 1266–1276 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Rowe, A. K. et al. The burden of malaria mortality among African children in the year 2000. Int. J. Epidemiol. 35, 691–704 (2006).

    Article  PubMed  Google Scholar 

  141. Snow, R. W., Guerra, C. A., Noor, A. M., Myint, H. Y. & Hay, S. I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434, 214–217 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Vercruysse, J., Knox, D. P., Schetters, T. P. & Willadsen, P. Veterinary parasitic vaccines: pitfalls and future directions. Trends Parasitol. 20, 488–492 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Ploeger, H. W. Dictyocaulus viviparus: re-emerging or never been away? Trends Parasitol. 18, 329–332 (2002).

    Article  PubMed  Google Scholar 

  144. McKeand, J. B. Vaccine development and diagnostics of Dictyocaulus viviparus. Parasitology 120, S17–S23 (2000).

    Article  PubMed  Google Scholar 

  145. Steves, F. E., Baker, J. D., Hein, V. D. & Miller, T. A. Efficacy of a hookworm (Ancylostoma caninum) vaccine for dogs. J. Am. Vet. Med. Assoc. 163, 231–235 (1973).

    CAS  PubMed  Google Scholar 

  146. Knox, D. P. et al. The nature and prospects for gut membrane proteins as vaccine candidates for Haemonchus contortus and other ruminant trichostrongyloids. Int. J. Parasitol. 33, 1129–1137 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Lightowlers, M. W. Cestode vaccines: origins, current status and future prospects. Parasitology 133, S27–S42 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Bill & Melinda Gates Foundation, the National Health and Medical Research Council of Australia, and support from M. Hyman, C. Hyman, R. Zuckerberg and the Blavatnik Charitable Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Hotez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Glossary

Cercaria

The free-swimming larval stage of a trematode helminth such as Schistosoma mansoni.

Fibrosis

The formation of fibrous connective tissue that replaces normal organ tissue, usually in response to an insult such as injury or infection.

Ascariasis

A clinical syndrome associated with infection by the intestinal, soil-transmitted nematode helminth Ascaris lumbricoides.

Trichuriasis

A clinical syndrome associated with infection by the intestinal, soil-transmitted nematode helminth Trichuris trichiura.

Benzimidazole

A member of a class of anthelmintic medications (including albendazole and mebendazole) that are active against nematode worms.

Adjuvant

A substance that enhances, accelerates or prolongs antigen-specific immune responses when used in combination with specific vaccine antigens.

Urticaria

A skin rash that is characterized by raised erythematous, pruritic lesions and is most often associated with intradermal mast cell degranulation due to an immediate-type hypersensitivity reaction (known colloquially as 'hives').

Praziquantel

An anthelmintic medication that is active against flatworms, including trematodes (flukes) and tapeworms (cestodes).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hotez, P., Bethony, J., Diemert, D. et al. Developing vaccines to combat hookworm infection and intestinal schistosomiasis. Nat Rev Microbiol 8, 814–826 (2010). https://doi.org/10.1038/nrmicro2438

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro2438

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology