Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Streptolysin S-like virulence factors: the continuing sagA

Key Points

  • The operon that is responsible for the production, processing and export of streptolysin S (SLS), the post-translationally modified cytolytic toxin that causes the β-haemolytic phenotype of group A Streptococcus (GAS; also known as Streptococcus pyogenes), has been identified and characterized.

  • Initial steps have been made towards the elucidation of the structure of SLS.

  • SLS contributes to virulence through soft-tissue damage, its impact on host phagocytes and its role in the translocation of GAS across the epithelial barrier. It also functions as a signalling molecule, and there is speculation that it has a role in iron acquisition.

  • It has become evident that SLS-like toxins are more widespread among streptococci than was previously appreciated; SLS-like toxins are produced by invasive human isolates of β-haemolytic group C and G streptococci, by the zoonotic fish pathogen Streptococcus iniae and by the horse pathogen Streptococcus equi.

  • The SLS-like peptide family has been further extended to beyond the genus Streptococcus following the identification, initially using in silico approaches, of related gene clusters in a number of notorious Gram-positive pathogens, including Listeria monocytogenes, Clostridium botulinum and Staphylococcus aureus.

  • SLS-like peptides belong to a recently defined large class of bioactive natural products known as thiazole/oxazole-modified microcins (TOMMs). TOMMs are characterized by a biosynthetic gene cluster that encodes a small precursor peptide and three adjacent synthetase proteins which serve to introduce thiazole, oxazole and methyloxazole heterocycles onto a ribosomally produced protoxin scaffold.

Abstract

Streptolysin S (SLS) is a potent cytolytic toxin and virulence factor that is produced by nearly all Streptococcus pyogenes strains. Despite a 100-year history of research on this toxin, it has only recently been established that SLS is just one of an extended family of post-translationally modified virulence factors (the SLS-like peptides) that are produced by some streptococci and other Gram-positive pathogens, such as Listeria monocytogenes and Clostridium botulinum. In this Review, we describe the identification, genetics, biochemistry and various functions of SLS. We also discuss the shared features of the virulence-associated SLS-like peptides, as well as their place within the rapidly expanding family of thiazole/oxazole-modified microcins (TOMMs).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the production, processing and export of streptolysin S and microcin B17.
Figure 2: Post-translational modification of the streptolysin S precursor.
Figure 3: Summary of the functions of streptolysin S.
Figure 4: Amino acid sequence and operon structure of selected thiazole/oxazole-modified microcins (TOMMs).

Similar content being viewed by others

References

  1. Lancefield, R. C. A serological differentiation of human and other groups of hemolytic streptococci. J. Exp. Med. 57, 571–595 (1933). The original report of the now-standard classification technique based on specific carbohydrate 'group' antigens that are associated with the β-haemolytic streptococci.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Facklam, R. What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin. Microbiol. Rev. 15, 613–630 (2002). A review covering changes in the nomenclature and taxonomy of the genus Streptococcus , arising from the additional use of genetic comparisons in the classification of the different species.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cunningham, M. W. Pathogenesis of group A streptococcal infections. Clin. Microbiol. Rev. 13, 470–511 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Efstratiou, A. Group A streptococci in the 1990s. J. Antimicrob. Chemother. 45 (Suppl. 1), 3–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Stevens, D. L. The flesh-eating bacterium: what's next? J. Infect. Dis. 179, S366–S374 (1999).

    Article  PubMed  Google Scholar 

  6. O'Loughlin, R. E. et al. The epidemiology of invasive group A streptococcal infection and potential vaccine implications: United States, 2000–2004. Clin. Infect. Dis. 45, 853–862 (2007).

    Article  PubMed  Google Scholar 

  7. Ben-Abraham, R. et al. Invasive group A streptococcal infections in a large tertiary center: epidemiology, characteristics and outcome. Infection 30, 81–85 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. O'Brien, K. L. et al. Epidemiology of invasive group A Streptococcus disease in the United States, 1995–1999. Clin. Infect. Dis. 35, 268–276 (2002).

    Article  PubMed  Google Scholar 

  9. WHO. The current evidence for the burden of group A streptococcal diseases. WHO [online], (2005).

  10. Centor, R. M., Meier, F. A. & Dalton, H. P. Throat cultures and rapid tests for diagnosis of group A streptococcal pharyngitis. Ann. Intern. Med. 105, 892–899 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Brown, J. H. The Use of Blood Agar for the Study of Streptococci. (The Rockefeller Institute for Medical Research, New York, 1919).

    Google Scholar 

  12. Taranta, A., Moody, M. D. Diagnosis of streptococcal pharyngitis and rheumatic fever. Pediatr. Clin. North Am. 18, 125–143 (1971).

    Article  CAS  PubMed  Google Scholar 

  13. Marmorek, A. Le streptocoque et le sérum antistreptococcique. Ann. Inst. Pasteur 9, 593–620 (1895) (in French).

    Google Scholar 

  14. Marmorek, A. L'Unité des streptocoques pathogènes pour l'homme. Ann. Inst. Pasteur 16, 172 (1902) (in French).

    Google Scholar 

  15. Todd, E. W. The differentiation of two distinct serologic varieties of streptolysin, streptolysin O and streptolysin S. J. Pathol. Bacteriol. 47, 423–445 (1938). The paper that established that GAS produces two distinct haemolysins, one designated SLO to indicate its sensitivity to oxygen and another, an oxygen-stable haemolysin, designated SLS because of its high solubility in serum.

    Article  CAS  Google Scholar 

  16. McCormick, J. K., Peterson, M. L. & Schlievert, P. M. in Gram-Positive Pathogens 2nd edn (eds Fischetti, V. A. et al.) 47–58 (American Society for Microbiology Press, Washington DC, 2006).

    Book  Google Scholar 

  17. Halbert, S. P. Streptolysin O. Microb. Toxins 3, 69–98 (1970).

    CAS  Google Scholar 

  18. De Azavedo, J. C., Salim, K. Y. & Bast, D. J. in The Comprehensive Sourcebook of Bacterial Protein Toxins (eds Alouf, J. E. & Popoff, M. R.) 728–736 (Academic Press, San Diego, 2006).

    Book  Google Scholar 

  19. Datta, V. et al. Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection. Mol. Microbiol. 56, 681–695 (2005). Work showing that the sagABCDEFG genes in the sag operon are each required for the expression of functional SLS, and providing support for the designation of SLS as a bacteriocin-like toxin.

    Article  CAS  PubMed  Google Scholar 

  20. Lee, S. W. et al. Discovery of a widely distributed toxin biosynthetic gene cluster. Proc. Natl Acad. Sci. USA 105, 5879–5884 (2008). A study demonstrating that, after modification by in vitro reconstitution, SagA is converted into a cytolysin; this article provides the first molecular-level description of the factor that is responsible for the β-haemolytic phenotype of GAS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alouf, J. E. Streptococcal toxins (streptolysin O, streptolysin S, erythrogenic toxin). Pharmacol. Ther. 11, 661–717 (1980).

    Article  CAS  PubMed  Google Scholar 

  22. Theodore, T. S. & Calandra, G. B. Streptolysin S activation by lipoteichoic acid. Infect. Immun. 33, 326–328 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ginsburg, I. Is streptolysin S of group A streptococci a virulence factor? APMIS 107, 1051–1059 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Keiser, H., Weissmann, G. & Bernheimer, A. W. Studies on lysosomes. IV. Solubilization of enzymes during mitochondrial swelling and disruption of lysosomes by streptolysin S and other hemolytic agents. J. Cell Biol. 22, 101–113 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hryniewicz, W. & Pryjma, J. Effect of streptolysin S on human and mouse T and B lymphocytes. Infect. Immun. 16, 730–733 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bernheimer, A. W. & Schwartz, L. L. Lysosomal disruption by bacterial toxins. J. Bacteriol. 87, 1100–1104 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bernheimer, A. W. & Schwartz, L. L. Effect of staphylococcal and other bacterial toxins on platelets in vitro. J. Pathol. Bacteriol. 89, 209–223 (1965).

    Article  CAS  PubMed  Google Scholar 

  28. Bernheimer, A. W. Disruption of wall-less bacteria by streptococcal and staphylococcal toxins. J. Bacteriol. 91, 1677–1680 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Roggiani, M., Assimacopoulos, A. P. & Schlievert, P. M. in Streptococcal Infections: Clinical Aspects, Microbiology, and Molecular Pathogenesis (eds Stevens, D. L. & Kaplan, E. L.) 57–75 (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  30. Nizet, V. Streptococcal β-hemolysins: genetics and role in disease pathogenesis. Trends Microbiol. 10, 575–580 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Ofek, I., Bergner-Rabinowitz, S. & Ginsburg, I. Oxygen-stable hemolysins of group A streptococci. VIII. Leukotoxic and antiphagocytic effects of streptolysins S and O. Infect. Immun. 6, 459–464 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Carr, A., Sledjeski, D. D., Podbielski, A., Boyle, M. D. & Kreikemeyer, B. Similarities between complement-mediated and streptolysin S-mediated hemolysis. J. Biol. Chem. 276, 41790–41796 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Loridan, C. & Alouf, J. E. Purification of RNA-core induced streptolysin S, and isolation and haemolytic characteristics of the carrier-free toxin. J. Gen. Microbiol. 132, 307–315 (1986).

    CAS  PubMed  Google Scholar 

  34. Borgia, S. M., Betschel, S., Low, D. E. & de Azavedo, J. C. Cloning of a chromosomal region responsible for streptolysin S production in Streptococcus pyogenes. Adv. Exp. Med. Biol. 418, 733–736 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Betschel, S. D., Borgia, S. M., Barg, N. L., Low, D. E. & De Azavedo, J. C. Reduced virulence of group A streptococcal Tn916 mutants that do not produce streptolysin S. Infect. Immun. 66, 1671–1679 (1998). After more than a century of research into the β-haemolytic phenotype of GAS, this study reports the discovery of a potential genetic determinant involved in SLS production: sagA , a gene that encodes a small peptide of 53 amino acids.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nizet, V. et al. Genetic locus for streptolysin S production by group A Streptococcus. Infect. Immun. 68, 4245–4254 (2000). Research characterizing the nine-gene sag operon that is involved in SLS production.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ferretti, J. J. et al. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc. Natl Acad. Sci. USA, 98, 4658–4663 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cotter, P. D., Hill, C. & Ross, R. P. Bacteriocins: developing innate immunity for food. Nature Rev. Microbiol. 3, 777–788 (2005).

    Article  CAS  Google Scholar 

  39. Oman, T. J. & van der Donk, W. A. Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nature Chem. Biol. 6, 9–18 (2010).

    Article  CAS  Google Scholar 

  40. Nes, I. F. & Tagg, J. R. Novel lantibiotics and their pre-peptides. Antonie Van Leeuwenhoek 69, 89–97 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Cox, C. R., Coburn, P. S. & Gilmore, M. S. Enterococcal cytolysin: a novel two component peptide system that serves as a bacterial defense against eukaryotic and prokaryotic cells. Curr. Protein Pept. Sci. 6, 77–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. McAuliffe, O., Ross, R. P. & Hill, C. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol. Rev. 25, 285–308 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Jack, R. W., Tagg, J. R. & Ray, B. Bacteriocins of gram-positive bacteria. Microbiol. Rev. 59, 171–200 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yorgey, P., Davagnino, J. & Kolter, R. The maturation pathway of microcin B17, a peptide inhibitor of DNA gyrase. Mol. Microbiol. 9, 897–905 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Li, Y. M., Milne, J. C., Madison, L. L., Kolter, R. & Walsh, C. T. From peptide precursors to oxazole and thiazole-containing peptide antibiotics: microcin B17 synthase. Science 274, 1188–1193 (1996). This investigation determines that the MccB17-asscociated cyclodehydratase, dehydrogenase and docking protein form a complex and act collectively to install thiazoles and oxazoles onto the inactive precursor; the work also highlights the importance of the leader peptide.

    Article  CAS  PubMed  Google Scholar 

  46. Millan, J. L. S., Kolter, R. & Moreno, F. Plasmid genes required for microcin-B17 production. J. Bacteriol. 163, 1016–1020 (1985).

    Google Scholar 

  47. Yorgey, P. et al. Posttranslational modifications in microcin B17 define an additional class of DNA gyrase inhibitor. Proc. Natl Acad. Sci. USA 91, 4519–4523 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Milne, J. C. et al. Cofactor requirements and reconstitution of microcin B17 synthetase: a multienzyme complex that catalyzes the formation of oxazoles and thiazoles in the antibiotic microcin B17. Biochemistry 38, 4768–4781 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Mitchell, D. A. et al. Structural and functional dissection of the heterocyclic peptide cytotoxin streptolysin S. J. Biol. Chem. 284, 13004–13012 (2009). A paper providing the first steps towards the elucidation of the SLS structure, and describing the identification of the requisite features of SagBCD substrate recognition and SagA residues of functional importance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Haft, D. H., Basu, M. K. & Mitchell, D. A. Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family. BMC Biol. 8, 70 (2010). As well as uniting numerous TOMM biosynthesis gene clusters with their cognate substrates, this study defines the TOMM family of natural products.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Gonzalez, D. J. et al. Clostridiolysin S: a post-translationally modified biotoxin from Clostridium botulinum. J. Biol. Chem. 285, 28220–28228 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nakai, K. & Horton, P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24, 34–36 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Sahl, H. G. & Bierbaum, G. Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria. Annu. Rev. Microbiol. 52, 41–79 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Meier, F. A., Centor, R. M., Graham, L. Jr & Dalton, H. P. Clinical and microbiological evidence for endemic pharyngitis among adults due to group C streptococci. Arch. Intern. Med. 150, 825–829 (1990).

    Article  CAS  PubMed  Google Scholar 

  55. Turner, J. C., Hayden, F. G., Lobo, M. C., Ramirez, C. E. & Murren, D. Epidemiologic evidence for Lancefield group C beta-hemolytic streptococci as a cause of exudative pharyngitis in college students. J. Clin. Microbiol. 35, 1–4 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lindbaek, M., Hoiby, E. A., Lermark, G., Steinsholt, I. M. & Hjortdahl, P. Clinical symptoms and signs in sore throat patients with large colony variant β-haemolytic streptococci groups C or G versus group A. Br. J. Gen. Pract. 55, 615–619 (2005).

    PubMed  PubMed Central  Google Scholar 

  57. Humar, D. et al. Streptolysin S and necrotising infections produced by group G Streptococcus. Lancet 359, 124–129 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Hashikawa, S. et al. Characterization of group C and G streptococcal strains that cause streptococcal toxic shock syndrome. J. Clin. Microbiol. 42, 186–192 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McNulty, S. T., Klesius, P. H., Shoemaker, C. A. & Evans, J. J. Streptococcus iniae infection and tissue distribution in hybrid striped bass (Morone chrysops x Morone saxatilis) following inoculation of the gills. Aquaculture 220, 165–173 (2003).

    Article  Google Scholar 

  60. Weinstein, M. R. et al. Invasive infections due to a fish pathogen, Streptococcus iniae. N. Engl. J. Med. 337, 589–594 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Facklam, R., Elliott, J., Shewmaker, L. & Reingold, A. Identification and characterization of sporadic isolates of Streptococcus iniae isolated from humans. J. Clin. Microbiol. 43, 933–937 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fuller, J. D. et al. Identification of a streptolysin S-associated gene cluster and its role in the pathogenesis of Streptococcus iniae disease. Infect. Immun. 70, 5730–5739 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Locke, J. B. et al. Streptococcus iniae β-hemolysin streptolysin S is a virulence factor in fish infection. Dis. Aquat. Organ. 76, 17–26 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Timoney, J. F. The pathogenic equine streptococci. Vet. Res. 35, 397–409 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Flanagan, J. et al. Characterization of the haemolytic activity of Streptococcus equi. Microb. Pathog. 24, 211–221 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Yoshino, M. et al. Nonhemolytic Streptococcus pyogenes isolates that lack large regions of the sag operon mediating streptolysin S production. J. Clin. Microbiol. 48, 635–638 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. James, L. & McFarland, R. B. An epidemic of pharyngitis due to a nonhemolytic group A Streptococcus at Lowry Air Force Base. N. Engl. J. Med. 284, 750–752 (1971).

    Article  CAS  PubMed  Google Scholar 

  68. Turner, D. P. & Gunn, S. L. Fatal case of sepsis caused by a non-haemolytic strain of Streptococcus pyogenes. J. Clin. Pathol. 60, 1057 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bates, C. S., Montanez, G. E., Woods, C. R., Vincent, R. M. & Eichenbaum, Z. Identification and characterization of a Streptococcus pyogenes operon involved in binding of hemoproteins and acquisition of iron. Infect. Immun. 71, 1042–1055 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Eichenbaum, Z., Muller, E., Morse, S. A. & Scott, J. R. Acquisition of iron from host proteins by the group A Streptococcus. Infect. Immun. 64, 5428–5429 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Engleberg, N. C., Heath, A., Vardaman, K. & DiRita, V. J. Contribution of CsrR-regulated virulence factors to the progress and outcome of murine skin infections by Streptococcus pyogenes. Infect. Immun. 72, 623–628 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fontaine, M. C., Lee, J. J. & Kehoe, M. A. Combined contributions of streptolysin O and streptolysin S to virulence of serotype M5 Streptococcus pyogenes strain Manfredo. Infect. Immun. 71, 3857–3865 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sierig, G., Cywes, C., Wessels, M. R. & Ashbaugh, C. D. Cytotoxic effects of streptolysin O and streptolysin S enhance the virulence of poorly encapsulated group A streptococci. Infect. Immun. 71, 446–455 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ofek, I., Zafriri, D., Goldhar, J. & Eisenstein, B. I. Inability of toxin inhibitors to neutralize enhanced toxicity caused by bacteria adherent to tissue culture cells. Infect. Immun. 58, 3737–3742 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Smeesters, P. R., McMillan, D. J. & Sriprakash, K. S. The streptococcal M protein: a highly versatile molecule. Trends Microbiol. 18, 275–282 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Ginsburg, I. Could synergistic interactions among reactive oxygen species, proteinases, membrane-perforating enzymes, hydrolases, microbial hemolysins and cytokines be the main cause of tissue damage in infectious and inflammatory conditions? Med. Hypotheses 51, 337–346 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Kwinn, L. A. & Nizet, V. How group A Streptococcus circumvents host phagocyte defenses. Future Microbiol. 2, 75–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Taylor, F. B. Jr et al. Staging of the baboon response to group A streptococci administered intramuscularly: a descriptive study of the clinical symptoms and clinical chemical response patterns. Clin. Infect. Dis. 29, 167–177 (1999).

    Article  PubMed  Google Scholar 

  79. Miyoshi-Akiyama, T. et al. Cytocidal effect of Streptococcus pyogenes on mouse neutrophils in vivo and the critical role of streptolysin S. J. Infect. Dis. 192, 107–116 (2005).

    Article  PubMed  Google Scholar 

  80. Bakleh, M. et al. Correlation of histopathologic findings with clinical outcome in necrotizing fasciitis. Clin. Infect. Dis. 40, 410–414 (2005).

    Article  PubMed  Google Scholar 

  81. Goldmann, O., Sastalla, I., Wos-Oxley, M., Rohde, M. & Medina, E. Streptococcus pyogenes induces oncosis in macrophages through the activation of an inflammatory programmed cell death pathway. Cell. Microbiol. 11, 138–155 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Wexler, D. E., Chenoweth, D. E. & Cleary, P. P. Mechanism of action of the group A streptococcal C5a inactivator. Proc. Natl Acad. Sci. USA 82, 8144–8148 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sumby, P. et al. A Chemokine-degrading extracellular protease made by group A Streptococcus alters pathogenesis by enhancing evasion of the innate immune response. Infect. Immun. 76, 978–985 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zinkernagel, A. S. et al. The IL-8 protease SpyCEP/ScpC of group A Streptococcus promotes resistance to neutrophil killing. Cell Host Microbe 4, 170–178 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lin, A., Loughman, J. A., Zinselmeyer, B. H., Miller, M. J. & Caparon, M. G. Streptolysin S inhibits neutrophil recruitment during the early stages of Streptococcus pyogenes infection. Infect. Immun. 77, 5190–5201 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Harrington, D. J., Sutcliffe, I. C. & Chanter, N. The molecular basis of Streptococcus equi infection and disease. Microbes Infect. 4, 501–510 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Timoney, J. F. & Kumar, P. Early pathogenesis of equine Streptococcus equi infection (strangles). Equine Vet. J. 40, 637–642 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Bisno, A. L., Brito, M. O. & Collins, C. M. Molecular basis of group A streptococcal virulence. Lancet Infect. Dis. 3, 191–200 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Terao, Y., Kawabata, S., Nakata, M., Nakagawa, I. & Hamada, S. Molecular characterization of a novel fibronectin-binding protein of Streptococcus pyogenes strains isolated from toxic shock-like syndrome patients. J. Biol. Chem. 277, 47428–47435 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Joh, D., Wann, E. R., Kreikemeyer, B., Speziale, P. & Hook, M. Role of fibronectin-binding MSCRAMMs in bacterial adherence and entry into mammalian cells. Matrix Biol. 18, 211–223 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Kawabata, S. et al. Capsular hyaluronic acid of group A streptococci hampers their invasion into human pharyngeal epithelial cells. Microb. Pathog. 27, 71–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Nakagawa, I., Nakata, M., Kawabata, S. & Hamada, S. Cytochrome c-mediated caspase-9 activation triggers apoptosis in Streptococcus pyogenes-infected epithelial cells. Cell. Microbiol. 3, 395–405 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Cywes Bentley, C., Hakansson, A., Christianson, J. & Wessels, M. R. Extracellular group A Streptococcus induces keratinocyte apoptosis by dysregulating calcium signalling. Cell. Microbiol. 7, 945–955 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Klenk, M. et al. Streptococcus pyogenes serotype-dependent and independent changes in infected HEp-2 epithelial cells. ISME J. 1, 678–692 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Cywes, C. & Wessels, M. R. Group A Streptococcus tissue invasion by CD44-mediated cell signalling. Nature 414, 648–652 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Sumitomo, T. et al. Streptolysin S contributes to group A streptococcal translocation across an epithelial barrier. J. Biol. Chem. 286, 2750–2761 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Fuqua, W. C., Winans, S. C. & Greenberg, E. P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176, 269–275 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chaussee, M. S., Phillips, E. R. & Ferretti, J. J. Temporal production of streptococcal erythrogenic toxin B (streptococcal cysteine proteinase) in response to nutrient depletion. Infect. Immun. 65, 1956–1959 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Griffiths, B. B. & McClain, O. The role of iron in the growth and hemolysin (Streptolysin S) production in Streptococcus pyogenes. J. Basic Microbiol. 28, 427–436 (1988).

    Article  CAS  PubMed  Google Scholar 

  100. Surette, M. G., Miller, M. B. & Bassler, B. L. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. Natl Acad. Sci. USA 96, 1639–1644 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lyon, W. R., Madden, J. C., Levin, J. C., Stein, J. L. & Caparon, M. G. Mutation of luxS affects growth and virulence factor expression in Streptococcus pyogenes. Mol. Microbiol. 42, 145–157 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Salim, K. Y., de Azavedo, J. C., Bast, D. J. & Cvitkovitch, D. G. Role for sagA and siaA in quorum sensing and iron regulation in Streptococcus pyogenes. Infect. Immun. 75, 5011–5017 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kleerebezem, M. Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides 25, 1405–1414 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Kihlberg, B. M., Cooney, J., Caparon, M. G., Olsen, A. & Bjorck, L. Biological properties of a Streptococcus pyogenes mutant generated by Tn916 insertion in mga. Microb. Pathog. 19, 299–315 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Federle, M. J., McIver, K. S. & Scott, J. R. A response regulator that represses transcription of several virulence operons in the group A Streptococcus. J. Bacteriol. 181, 3649–3657 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Heath, A., DiRita, V. J., Barg, N. L. & Engleberg, N. C. A two-component regulatory system, CsrR-CsrS, represses expression of three Streptococcus pyogenes virulence factors, hyaluronic acid capsule, streptolysin S, and pyrogenic exotoxin B. Infect. Immun. 67, 5298–5305 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Beckert, S., Kreikemeyer, B. & Podbielski, A. Group A streptococcal rofA gene is involved in the control of several virulence genes and eukaryotic cell attachment and internalization. Infect. Immun. 69, 534–537 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kreikemeyer, B., Boyle, M. D., Buttaro, B. A., Heinemann, M. & Podbielski, A. Group A streptococcal growth phase-associated virulence factor regulation by a novel operon (Fas) with homologies to two-component type regulators requires a small RNA molecule. Mol. Microbiol. 39, 392–406 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Molinari, G. et al. The role played by the group A streptococcal negative regulator Nra on bacterial interactions with epithelial cells. Mol. Microbiol. 40, 99–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Shelburne, S. A. et al. A combination of independent transcriptional regulators shapes bacterial virulence gene expression during infection. PLoS Pathog. 6, (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Li, Z., Sledjeski, D. D., Kreikemeyer, B., Podbielski, A. & Boyle, M. D. Identification of pel, a Streptococcus pyogenes locus that affects both surface and secreted proteins. J. Bacteriol. 181, 6019–6027 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Mangold, M. et al. Synthesis of group A streptococcal virulence factors is controlled by a regulatory RNA molecule. Mol. Microbiol. 53, 1515–1527 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Biswas, I., Germon, P., McDade, K. & Scott, J. R. Generation and surface localization of intact M protein in Streptococcus pyogenes are dependent on sagA. Infect. Immun. 69, 7029–7038 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cotter, P. D. et al. Listeriolysin S, a novel peptide haemolysin associated with a subset of lineage I Listeria monocytogenes. PLoS Pathog. 4 e1000144 (2008). The discovery of LLS, the first non-streptococcal SLS-like peptide to be described. This discovery confirms the existence of an extended family of SLS-like disease-promoting toxins within the TOMM family.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Melby, J. O., Nard, N. J. & Mitchell, D. A. Thiazole/oxazole-modified microcins: ribosomal templates for complex natural products. Curr. Opin. Chem. Biol. 15, 369–378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sudek, S., Haygood, M. G., Youssef, D. T. & Schmidt, E. W. Structure of trichamide, a cyclic peptide from the bloom-forming cyanobacterium Trichodesmium erythraeum, predicted from the genome sequence. Appl. Environ. Microbiol. 72, 4382–4387 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Haft, D. H. A strain-variable bacteriocin in Bacillus anthracis and Bacillus cereus with repeated Cys-Xaa-Xaa motifs. Biol. Direct 4, 1–5 (2009).

    Article  CAS  Google Scholar 

  118. Donia, M. S. et al. Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians. Nature Chem. Biol. 2, 729–735 (2006).

    Article  CAS  Google Scholar 

  119. Li, B. et al. Catalytic promiscuity in the biosynthesis of cyclic peptide secondary metabolites in planktonic marine cyanobacteria. Proc. Natl Acad. Sci. USA 107, 10430–10435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schmidt, E. W. Trading molecules and tracking targets in symbiotic interactions. Nature Chem. Biol. 4, 466–473 (2008).

    Article  CAS  Google Scholar 

  121. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  122. Schmidt, E. W. et al. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc. Natl Acad. Sci. USA 102, 7315–7320 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Onaka, H., Tabata, H., Igarashi, Y., Sato, Y. & Furumai, T. Goadsporin, a chemical substance which promotes secondary metabolism and morphogenesis in streptomycetes. I. Purification and characterization. J. Antibiot. (Tokyo) 54, 1036–1044 (2001).

    Article  CAS  Google Scholar 

  124. McIntosh, J. A., Donia, M. S. & Schmidt, E. W. Ribosomal peptide natural products: bridging the ribosomal and nonribosomal worlds. Nature Prod. Rep. 26, 537–559 (2009).

    Article  CAS  Google Scholar 

  125. Lecuit, M. Human listeriosis and animal models. Microbes Infect. 9, 1216–1225 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Linnen, M. J. et al. Epidemic listeriosis associated with Mexican-style cheese. N. Engl. J. Med. 319, 823–828 (1988).

    Article  Google Scholar 

  127. Wiedmann, M. et al. Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect. Immun. 65, 2707–2716 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Jeffers, G. T. et al. Comparative genetic characterization of Listeria monocytogenes isolates from human and animal listeriosis cases. Microbiology 147, 1095–1104 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Gray, M. J. et al. Listeria monocytogenes isolates from foods and humans form distinct but overlapping populations. Appl. Environ. Microbiol. 70, 5833–5841 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Schnupf, P. & Portnoy, D. A. Listeriolysin O: a phagosome-specific lysin. Microbes Infect. 9, 1176–1187 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Gaillard, J. L., Berche, P. & Sansonetti, P. Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes. Infect. Immun. 52, 50–55 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Clayton, E. M., Hill, C., Cotter, P. D. & Ross, R. P. Real-time PCR assay to differentiate listeriolysin S-positive and -negative strains of Listeria monocytogenes. Appl. Environ. Microbiol. 77, 163–171 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Pei, J. & Grishin, N. V. Type II CAAX prenyl endopeptidases belong to a novel superfamily of putative membrane-bound metalloproteases. Trends Biochem. Sci. 26, 275–277 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Lopez, S., Marco, A. J., Prats, N. & Czuprynski, C. J. Critical role of neutrophils in eliminating Listeria monocytogenes from the central nervous system during experimental murine listeriosis. Infect. Immun. 68, 4789–4791 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fitzgerald, J. R. et al. Characterization of a putative pathogenicity island from bovine Staphylococcus aureus encoding multiple superantigens. J. Bacteriol. 183, 63–70 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Smith, L. A. Botulism and vaccines for its prevention. Vaccine 27 (Suppl. 4), D33–D39 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Judicial Commission of the International Committee on Systematic Bacteriology. Rejection of Clostridium putrificum and conservation of Clostridium botulinum and Clostridium sporogenes – Opinion 69. Int. J. Syst. Bacteriol. 49, 339 (1999).

  138. Sebaihia, M. et al. Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Res. 17, 1082–1092 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Severinov, K., Semenova, E., Kazakov, A., Kazakov, T. & Gelfand, M. S. Low-molecular-weight post-translationally modified microcins. Mol. Microbiol. 65, 1380–1394, (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Morris, R. P. et al. Ribosomally synthesized thiopeptide antibiotics targeting elongation factor Tu. J. Am. Chem. Soc. 131, 5946–5955 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Wang, J. et al. Identification and analysis of the biosynthetic gene cluster encoding the thiopeptide antibiotic cyclothiazomycin in Streptomyces hygroscopicus 10-22. Appl. Environ. Microbiol. 76, 2335–2344 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. McIntosh, J. A. & Schmidt, E. W. Marine molecular machines: heterocyclization in cyanobactin biosynthesis. Chembiochem 11, 1413–1421 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Onaka, H., Nakaho, M., Hayashi, K., Igarashi, Y. & Furumai, T. Cloning and characterization of the goadsporin biosynthetic gene cluster from Streptomyces sp. TP-A0584. Microbiology 151, 3923–3933 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Igarashi, Y. et al. Goadsporin, a chemical substance which promotes secondary metabolism and morphogenesis in streptomycetes. II. Structure determination. J. Antibiot. (Tokyo) 54, 1045–1053 (2001).

    Article  CAS  Google Scholar 

  145. Pestka, S. & Brot, N. Studies on the formation of transfer ribonucleic acid-ribosome complexes. IV. Effect of antibiotics on steps of bacterial protein synthesis: some new ribosomal inhibitors of translocation. J. Biol. Chem. 246, 7715–7722 (1971).

    CAS  PubMed  Google Scholar 

  146. Bagley, M. C., Dale, J. W., Merritt, E. A. & Xiong, X. Thiopeptide antibiotics. Chem. Rev. 105, 685–714 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Hughes, R. A. & Moody, C. J. From amino acids to heteroaromatics—thiopeptide antibiotics, nature's heterocyclic peptides. Angew. Chem. Int. Ed. Engl. 46, 7930–7954 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Williams, A. B. & Jacobs, R. S. A marine natural product, patellamide D, reverses multidrug resistance in a human leukemic cell line. Cancer Lett. 71, 97–102 (1993).

    Article  CAS  PubMed  Google Scholar 

  149. Long, P. F., Dunlap, W. C., Battershill, C. N. & Jaspars, M. Shotgun cloning and heterologous expression of the patellamide gene cluster as a strategy to achieving sustained metabolite production. Chembiochem 6, 1760–1765 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Chen, X. H. et al. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J. Biotechnol. 140, 27–37 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Scholz, R. et al. Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42. J. Bacteriol. 193, 215–224 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Schmidt, E. W. The hidden diversity of ribosomal peptide natural products. BMC Biol. 8, 83 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Dale, J. B., Chiang, E. Y., Hasty, D. L. & Courtney, H. S. Antibodies against a synthetic peptide of SagA neutralize the cytolytic activity of streptolysin S from group A streptococci. Infect. Immun. 70, 2166–2170 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bernheimer, A. W. Formation of a bacterial toxin (streptolysin S) by resting cells. J. Exp. Med. 90, 373–392 (1949).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Koyama, J. Biochemical studies on Streptolysin S'. II. Properties of a polypeptide component and its role in the toxin activity. J. Biochem. 54, 146–151 (1963).

    CAS  PubMed  Google Scholar 

  156. Koyama, J. Biochemical studies on Streptolysin S'. IV. Properties of the oligoribonucleotide portion. J. Biochem. 56, 355–360 (1964).

    Article  CAS  PubMed  Google Scholar 

  157. Koyama, J. & Egami, F. Biochemical studies on streptolysin S' formed in the presence of yeast ribonucleic acid. I. The purification and some properties of the toxin. J. Biochem. 53, 147–154 (1963).

    Article  CAS  PubMed  Google Scholar 

  158. Bernheimer, A. W. Physical behavior of streptolysin S. J. Bacteriol. 93, 2024–2025 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Kelleher, N. L., Hendrickson, C. L. & Walsh, C. T. Posttranslational heterocyclization of cysteine and serine residues in the antibiotic microcin B17: distributivity and directionality. Biochemistry 38, 15623–15630 (1999).

    Article  CAS  PubMed  Google Scholar 

  160. Roy, R. S., Allen, O. & Walsh, C. T. Expressed protein ligation to probe regiospecificity of heterocyclization in the peptide antibiotic microcin B17. Chem. Biol. 6, 789–799 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Related work in the authors' laboratories is supported by the Irish Government under the National Development Plan; by the Irish Research Council for Science Engineering; by Enterprise Ireland; and by Science Foundation Ireland (SFI), through the Alimentary Pharmabiotic Centre (APC) at University College Cork, Ireland, which is supported by the SFI-funded Centre for Science, Engineering and Technology (SFI-CSET) and provided P.D.C., C.H. and R.P.R. with SFI Principal Investigator funding. E.M.M. has received travel-related funding from SFI and the UK Society for General Microbiology. D.A.M. is supported by the Department of Chemistry and the Institute for Genomic Biology (University of Illinois at Urbana-Champaign, USA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul D. Cotter or Colin Hill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Paul D. Cotter's homepage

Colin Hill's homepage

Glossary

Impetigo

An acute and highly contagious infection of the surface layers of the skin, characterized by blisters, pustules and yellowish crusts.

Pharyngitis

Inflammation of the pharynx that can be caused by group A, C and G streptococci; also known as strep throat.

Necrotizing fasciitis

A rare but severe type of soft-tissue infection that can be caused by group A Streptococcus and can destroy the muscles, skin and underlying tissue. It develops when the bacteria enter the body, usually through a minor cut or as a complication of surgery. The mortality rate is high, even with aggressive treatment and powerful antibiotics.

Streptococcal toxic shock syndrome

A rare but extremely severe infection that usually presents in people who have pre-existing skin infections with group A Streptococcus. It has a high mortality rate and is characterized by hypotension and shock. Other symptoms can include kidney impairment, abnormality in blood-clotting ability, acute respiratory distress syndrome, rash and local tissue destruction.

β-haemolysis

A phenotype of complete red blood cell lysis (which appears as yellowing and transparency around and under colonies grown on blood agar medium) that is routinely used as a diagnostic tool for the identification of group A Streptococcus. It is primarily dependent on streptolysin S, with streptolysin O making a minimal contribution.

Streptolysin O

(SLO). A thiol-activated, 57-kDa cytolysin that is produced by group A, C and G streptococci and is inhibited by small amounts of cholesterol. As a result of its oxygen-labile nature, SLO is most often responsible for haemolysis under the surface of blood agar, whereas the oxygen-stable streptolysin S results in a zone of clearing surrounding colonies on the surface of blood agar. SLO is antigenic, resulting in SLO-specific antibodies that are useful for documenting recent exposure to group A Streptococcus.

Heterocyclic compound

A compound that has atoms of at least two different elements within its ring structure or structures. With respect to bioorganic chemistry, heterocycles contain one or more carbon atoms and at least one ring member other than carbon.

Carrier molecules

High-molecular-mass molecules, such as non-ionic detergents, albumin, α-lipoprotein, lipoteichoic acid and the RNase-resistant fraction of yeast RNA (RNA core), that can stabilize the haemolytic activity from a streptolysin S (SLS)-producing growing culture or resting cell suspension. SLS is irreversibly inactivated on separation from the carrier or on destruction of the carrier.

Trypan blue

A vital stain that is usually used to selectively colour dead tissue or cells blue. A defining feature of streptolysin S-like peptides is the fact that they are completely inactivated by trypan blue.

Thiazole/oxazole-modified microcins

(TOMMS). A structurally and functionally diverse family of ribosomally produced peptides with post-translationally installed heterocycles derived from Cys, Ser and Thr residues. These modifications rigidify the precursor peptide to endow biological function on the mature natural product.

Chromosome-walking studies

Studies using a technique to identify and characterize regions of DNA by the sequential isolation of overlapping DNA sequences, starting with a known fragment of DNA.

Bacteriocin

A small ribosomally synthesized, heat-stable peptide that is produced by one bacterium and is active against other, either in the same species (narrow spectrum) or across genera (broad spectrum).

Class I bacteriocins

Antimicrobial peptides that are extensively post-translationally modified in their active form, including the lantibiotic (lanthionine-containing) family of bacteriocins.

Microcin B17

(MccB17). A class I bacteriocin that is produced by strains of Escherichia coli and is active against closely related bacterial species, targeting the essential enzyme DNA gyrase.

Lowry-type

A designation for atypical, completely non-haemolytic group A Streptococcus strains, named after the initial isolation of such a strain (by James and McFarland in 1971) from an outbreak of rheumatic fever at Lowry Air Force Base, Colorado, USA.

Quorum sensing

A mechanism of communication between bacteria that requires the production and secretion of a signalling molecule which, when present at or above a critical threshold concentration, induces changes in gene expression in neighbouring cells.

Myositis

A general term for inflammation of the skeletal muscles.

Paracellular invasion

The translocation of pathogens across an epithelial barrier by passing between the host cells.

Natural combinatorial biosynthesis

The production of a library of related compounds by an organism. In the case of some thiazole/oxazole-modified microcin biosynthesis pathways, a single enzyme complex processes numerous substrates that have a common recognition motif but variable structural carboxyl termini. One striking example is the cyanobactin family of natural products.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molloy, E., Cotter, P., Hill, C. et al. Streptolysin S-like virulence factors: the continuing sagA. Nat Rev Microbiol 9, 670–681 (2011). https://doi.org/10.1038/nrmicro2624

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro2624

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology