Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Conventional and unconventional mechanisms for capping viral mRNA

Key Points

  • mRNAs are protected at their 5′ ends by a cap structure consisting of an N7-methylated GTP molecule linked to the first transcribed nucleotide by a 5′–5′ triphosphate bond.

  • The cap structure is essential for RNA splicing, export and stability, and allows the ribosomal complex to recognize mRNAs and ensure their efficient translation.

  • Uncapped RNA molecules are degraded in cytoplasmic granular compartments called processing bodies and may be detected as 'non-self' by the host cell, triggering antiviral innate immune responses through the production of interferons.

  • Conventional RNA capping (that is, of mRNAs from the host cell and from DNA viruses) requires hydrolysis of the 5′ γ-phosphate of RNA by an RNA triphosphatase, transfer of a GMP molecule onto the 5′-end of RNA by a guanylyltransferase, and methylation of this guanosine by an (guanine-N7)-methyltransferase. Subsequent methylations on the first and second transcribed nucleotides by (nucleoside-2′-O)-methyltransferases form cap-1 and cap-2 structures.

  • Viruses have evolved highly diverse capping mechanisms to acquire cap structures using their own or cellular capping machineries, or by stealing cap structures from cellular mRNAs.

  • Virally encoded RNA-capping machineries are diverse in terms of their genetic components, protein domain organization, enzyme structures, and reaction mechanisms and pathways, making viral RNA capping an attractive target for antiviral-drug design.

Abstract

In the eukaryotic cell, capping of mRNA 5′ ends is an essential structural modification that allows efficient mRNA translation, directs pre-mRNA splicing and mRNA export from the nucleus, limits mRNA degradation by cellular 5′–3′ exonucleases and allows recognition of foreign RNAs (including viral transcripts) as 'non-self'. However, viruses have evolved mechanisms to protect their RNA 5′ ends with either a covalently attached peptide or a cap moiety (7-methyl-Gppp, in which p is a phosphate group) that is indistinguishable from cellular mRNA cap structures. Viral RNA caps can be stolen from cellular mRNAs or synthesized using either a host- or virus-encoded capping apparatus, and these capping assemblies exhibit a wide diversity in organization, structure and mechanism. Here, we review the strategies used by viruses of eukaryotic cells to produce functional mRNA 5′-caps and escape innate immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNA cap structure and canonical capping mechanisms.
Figure 2: RNA 5′ ends in the mammalian-virus world.
Figure 3: Unconventional capping pathways.
Figure 4: Structural constituents of viral capping machineries, folds and mechanisms.
Figure 5: Unconventional capping machineries. Endonucleases and cap-binding PB2.
Figure 6: Sensing of viral RNA by the innate immune system.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Shatkin, A. Capping of eucaryotic mRNAs. Cell 9, 645 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Darnell, J. E. Jr . Transcription units for mRNA production in eukaryotic cells and their DNA viruses. Prog. Nucleic Acid Res. Mol. Biol. 22, 327–353 (1979).

    Article  CAS  PubMed  Google Scholar 

  3. Filipowicz, W. et al. A protein binding the methylated 5′-terminal sequence, m7GpppN, of eukaryotic messenger RNA. Proc. Natl Acad. Sci. USA 73, 1559–1563 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schibler, U. & Perry, R. P. The 5′-termini of heterogeneous nuclear RNA: a comparison among molecules of different sizes and ages. Nucleic Acids Res. 4, 4133–4149 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu, H. & Kiledjian, M. Decapping the message: a beginning or an end. Biochem. Soc. Trans. 34, 35–38 (2006).

    Article  PubMed  Google Scholar 

  6. Nallagatla, S. R., Toroney, R. & Bevilacqua, P. C. A brilliant disguise for self RNA: 5′-end and internal modifications of primary transcripts suppress elements of innate immunity. RNA Biol. 5, 140–144 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Rehwinkel, J. et al. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140, 397–408 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Furuichi, Y. & Shatkin, A. J. Viral and cellular mRNA capping: past and prospects. Adv. Vir. Res. 55, 135–184 (2000). A historical and chronological perspective on the discovery of RNA capping and the structure of the RNA cap.

    Article  CAS  Google Scholar 

  9. Furuichi, Y., Muthukrishnan, S. & Shatkin, A. J. 5′-Terminal m-7G(5′)ppp(5′)Gmp in vivo: identification in reovirus genome RNA. Proc. Natl Acad. Sci. USA 72, 742–745 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shatkin, A. J. Methylated messenger RNA synthesis in vitro by purified reovirus. Proc. Natl Acad. Sci. USA 71, 3204–3207 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wei, C. M. & Moss, B. Methylated nucleotides block 5′-terminus of vaccinia virus messenger RNA. Proc. Natl Acad. Sci. USA 72, 318–322 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shatkin, A. J. & Both, G. W. Reovirus mRNA: transcription translation. Cell 7, 305–313 (1976).

    Article  CAS  PubMed  Google Scholar 

  13. Furuichi, Y., Morgan, M., Muthukrishnan, S. & Shatkin, A. J. Reovirus messenger RNA contains a methylated, blocked 5′-terminal structure: m7G(5′)ppp(5′)GmpCp-. Proc. Natl Acad. Sci. USA 72, 362–366 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Muthukrishnan, S., Both, G. W., Furuichi, Y. & Shatkin, A. J. 5′-Terminal 7-methylguanosine in eukaryotic mRNA is required for translation. Nature 255, 33–37 (1975).

    Article  CAS  PubMed  Google Scholar 

  15. Marcotrigiano, J., Gingras, A. C., Sonenberg, N. & Burley, S. K. Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89, 951–961 (1987).

    Article  Google Scholar 

  16. Perry, K. L., Watkins, K. P. & Agabian, N. Trypanosome mRNAs have unusual “cap 4” structures acquired by addition of a spliced leader. Proc. Natl Acad. Sci. USA 84, 8190–8194 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Beelman, C. A. & Parker, R. Degradation of mRNA in eukaryotes. Cell 81, 179–183 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Houseley, J. & Tollervey, D. The many pathways of RNA degradation. Cell 136, 763–776 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Otsuka, Y., Kedersha, N. L. & Schoenberg, D. R. Identification of a cytoplasmic complex that adds a cap onto 5′-monophosphate RNA. Mol. Cell. Biol. 29, 2155–2167 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schoenberg, D. R. & Maquat, L. E. Re-capping the message. Trends Biochem. Sci. 34, 435–442 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goodfellow, I. et al. Calicivirus translation initiation requires an interaction between VPg and eIF4E. EMBO Rep. 6, 968–972 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ambros, V., Pettersson, R. F. & Baltimore, D. An enzymatic activity in uninfected cells that cleaves the linkage between poliovirion RNA and the 5′ terminal protein. Cell 15, 1439–1446 (1978).

    Article  CAS  PubMed  Google Scholar 

  23. Ambros, V. & Baltimore, D. Purification and properties of a HeLa cell enzyme able to remove the 5′-terminal protein from poliovirus RNA. J. Biol. Chem. 255, 6739–6744 (1980).

    CAS  PubMed  Google Scholar 

  24. Cong, P. & Shuman, S. Mutational analysis of mRNA capping enzyme identifies amino acids involved in GTP binding, enzyme-guanylate formation, and GMP transfer to RNA. Mol. Cell. Biol. 15, 6222–6231 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. De la Peña, M., Kyrieleis, O. J. P. & Cusack, S. Structural insights into the mechanism and evolution of the vaccinia virus mRNA cap N7 methyl-transferase. EMBO J. 26, 4913–4925 (2007). Work showing activation of the MTase domain of D1 in complex with the D12 subunit at atomic resolution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mao, X. & Shuman, S. Intrinsic RNA (guanine-7) methyltransferase activity of the vaccinia virus capping enzyme D1 subunit is stimulated by the D12 subunit. Identification of amino acid residues in the D1 protein required for subunit association and methyl group transfer. J. Biol. Chem. 269, 24472–24479 (1994). The discovery and molecular basis of the activation of a viral MTase by a protein cofactor.

    CAS  PubMed  Google Scholar 

  27. Schnierle, B. S., Gershon, P. D. & Moss, B. Cap-specific mRNA (nucleoside-O2′-)-methyltransferase and poly(A) polymerase stimulatory activities of vaccinia virus are mediated by a single protein. Proc. Natl Acad. Sci. USA 89, 2897–2901 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Benarroch, D. et al. The RNA helicase, nucleotide 5′-triphosphatase, and RNA 5′-triphosphatase activities of Dengue virus protein NS3 are Mg2+-dependent and require a functional Walker B motif in the helicase catalytic core. Virology 328, 208–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Myette, J. R. & Niles, E. G. Characterization of the vaccinia virus RNA 5′-triphosphatase and nucleotide triphosphate phosphohydrolase activities demonstrate that both activities are carried out at the same active site. J. Biol. Chem. 271, 11945–11952 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Vasquez-Del Carpio, R., Gonzalez-Nilo, F. D., Riadi, G., Taraporewala, Z. F. & Patton, J. T. Histidine triad-like motif of the rotavirus NSP2 octamer mediates both RTPase and NTPase activities. J. Mol. Biol. 362, 539–554 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jayaram, H., Taraporewala, Z., Patton, J. T. & Prasad, B. V. V. Rotavirus protein involved in genome replication and packaging exhibits a HIT-like fold. Nature 417, 311–315 (2002). The first crystal structure of an RTPase with a HIT-like fold.

    Article  CAS  PubMed  Google Scholar 

  32. Taraporewala, Z., Chen, D. & Patton, J. T. Multimers formed by the rotavirus nonstructural protein NSP2 bind to RNA and have nucleoside triphosphatase activity. J. Virol. 73, 9934–9943 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Taraporewala, Z. F. & Patton, J. T. Identification and characterization of the helix-destabilizing activity of rotavirus nonstructural protein NSP2. J. Virol. 75, 4519–4527 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Benarroch, D., Smith, P. & Shuman, S. Characterization of a trifunctional mimivirus mRNA capping enzyme and crystal structure of the RNA triphosphatase domain. Structure 16, 501–512 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Gu, M. & Lima, C. D. Processing the message: structural insights into capping and decapping mRNA. Curr. Opin. Struc. Biol. 15, 99–106 (2005).

    Article  CAS  Google Scholar 

  36. Lima, C. D., Wang, L. K. & Shuman, S. Structure and mechanism of yeast RNA triphosphatase: an essential component of the mRNA capping apparatus. Cell 99, 533–543 (1999). The first crystal structure of an RTPase involved in RNA capping.

    Article  CAS  PubMed  Google Scholar 

  37. Shuman, S. Structure, mechanism, and evolution of the mRNA capping apparatus. Prog. Nucleic Acid Res. Mol. Biol. 66, 1–40 (2001).

    CAS  PubMed  Google Scholar 

  38. Lehman, K., Schwer, B., Ho, C. K., Rouzankina, I. & Shuman, S. A conserved domain of yeast RNA triphosphatase flanking the catalytic core regulates self-association and interaction with the guanylyltransferase component of the mRNA capping apparatus. J. Biol. Chem. 274, 22668–22678 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Gorbalenya, A. E. & Koonin, E. V. One more conserved sequence motif in helicases. Nucleic Acids Res. 16, 7734 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gorbalenya, A. E. & Koonin, E. V. Viral proteins containing the purine NTP-binding sequence pattern. Nucleic Acids Res. 17, 8413–8440 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P. & Blinov, V. M. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 17, 4713–4730 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Luo, D. et al. Insights into RNA unwinding and ATP hydrolysis by the flavivirus NS3 protein. EMBO J. 27, 3209–3219 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gu, M. & Rice, C. M. Three conformational snapshots of the hepatitis C virus NS3 helicase reveal a ratchet translocation mechanism. Proc. Natl Acad. Sci. USA 107, 521–528 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Lescar, J. et al. Towards the design of antiviral inhibitors against flaviviruses: the case for the multifunctional NS3 protein from Dengue virus as a target. Antiviral Res. 80, 94–101 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Luo, D. et al. Flexibility between the protease and helicase domains of the dengue virus NS3 protein conferred by the linker region and its functional implications. J Biol. Chem. 285, 18817–18827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Luo, D. et al. Crystal structure of the NS3 protease-helicase from dengue virus. J. Virol. 82, 173–183 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Sampath, A. et al. Structure-based mutational analysis of the NS3 helicase from dengue virus. J. Virol. 80, 6686–6690 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Balistreri, G., Caldentey, J., Kääriäinen, L. & Ahola, T. Enzymatic defects of the nsP2 proteins of Semliki Forest virus temperature-sensitive mutants. J Virol. 81, 2849–2860 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Changela, A., Ho, C. K., Martins, A., Shuman, S. & Mondragón, A. Structure and mechanism of the RNA triphosphatase component of mammalian mRNA capping enzyme. EMBO J. 20, 2575–2586 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takagi, T., Moore, C. R., Diehn, F. & Buratowski, S. An RNA 5′-triphosphatase related to the protein tyrosine phosphatases. Cell 89, 867–873 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Shuman, S. & Lima, C. D. The polynucleotide ligase and RNA capping enzyme superfamily of covalent nucleotidyltransferases. Curr. Opin. Struct. Biol. 14, 757–764 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, S. P., Deng, L., Ho, C. K. & Shuman, S. Phylogeny of mRNA capping enzymes. Proc. Natl Acad. Sci. USA 94, 9573–9578 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cong, P. & Shuman, S. Covalent catalysis in nucleotidyl transfer. A KTDG motif essential for enzyme-GMP complex formation by mRNA capping enzyme is conserved at the active sites of RNA and DNA ligases. J. Biol. Chem. 268, 7256–7260 (1993).

    CAS  PubMed  Google Scholar 

  54. Niles, E. G. & Christen, L. Identification of the vaccinia virus mRNA guanyltransferase active site lysine. J. Biol. Chem. 268, 24986–24989 (1993).

    CAS  PubMed  Google Scholar 

  55. Shuman, S. & Hurwitz, J. Mechanism of mRNA capping by vaccinia virus guanylyltransferase: characterization of an enzyme–guanylate intermediate. Proc. Natl Acad. Sci. USA 78, 187–191 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schwer, B. & Shuman, S. Mutational analysis of yeast mRNA capping enzyme. Proc. Natl Acad. Sci. USA 91, 4328–4332 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lindahl, T. & Barnes, D. E. Mammalian DNA ligases. Annu. Rev. Biochem. 61, 251–281 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Chu, C. et al. Structure of the guanylyltransferase domain of human mRNA capping enzyme. Proc. Natl Acad. Sci. USA 108, 10104–10108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fabrega, C., Shen, V., Shuman, S. & Lima, C. D. Structure of an mRNA capping enzyme bound to the phosphorylated carboxy-terminal domain of RNA polymerase II. Mol. Cell 11, 1549–1561 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Håkansson, K., Doherty, A. J., Shuman, S. & Wigley, D. B. X-ray crystallography reveals a large conformational change during guanyl transfer by mRNA capping enzymes. Cell 89, 545–553 (1997). A study that deciphers the GTase reaction, with corresponding crystal structure snapshots.

    Article  PubMed  Google Scholar 

  61. Håkansson, K. & Wigley, D. B. Structure of a complex between a cap analogue and mRNA guanylyl transferase demonstrates the structural chemistry of RNA capping. Proc. Natl Acad. Sci. USA 95, 1505–1510 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Reinisch, K. M., Nibert, M. L. & Harrison, S. C. Structure of the reovirus core at 3.6 A resolution. Nature 404, 960–967 (2000). A report detailing the complete orthoreoviral RNA cap assembly line at atomic resolution.

    Article  CAS  PubMed  Google Scholar 

  63. Sutton, G., Grimes, J. M., Stuart, D. I. & Roy, P. Bluetongue virus VP4 is an RNA-capping assembly line. Nature Struct. Mol. Biol. 14, 449–451 (2007).

    Article  CAS  Google Scholar 

  64. Cheng, L. et al. Atomic model of a cypovirus built from cryo-EM structure provides insight into the mechanism of mRNA capping. Proc. Natl Acad. Sci. USA 108, 1373–1378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim, J., Tao, Y., Reinisch, K. M., Harrison, S. C. & Nibert, M. L. Orthoreovirus and Aquareovirus core proteins: conserved enzymatic surfaces, but not protein–protein interfaces. Virus Res. 101, 15–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Luongo, C. L., Reinisch, K. M., Harrison, S. C. & Nibert, M. L. Identification of the guanylyltransferase region and active site in reovirus mRNA capping protein λ2. J. Biol. Chem. 275, 2804–2810 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Issur, M. et al. The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. RNA 15, 2340–2350 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bisaillon, M. & Lemay, G. Viral and cellular enzymes involved in synthesis of mRNA cap structure. Virology 236, 1–7 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Egloff, M. P., Benarroch, D., Selisko, B., Romette, J. L. & Canard, B. An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J. 21, 2757–2768 (2002). Characterization of the first (+)RNA virus MTase at atomic resolution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Martin, J. L. & McMillan, F. M. SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr. Opin. Struct. Biol. 12, 783–793 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Schubert, H. Many paths to methyltransfer: a chronicle of convergence. Trends Biochem. Sci. 28, 329–335 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Decroly, E. et al. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2′-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog. 7, e1002059 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Egloff, M. P. et al. Structural and functional analysis of methylation and 5′-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. J. Mol. Biol. 372, 723–736 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Dong, H., Ren, S., Li, H. & Shi, P. Y. Separate molecules of West Nile virus methyltransferase can independently catalyze the N7 and 2′-O methylations of viral RNA cap. Virology 377, 1–6 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Ray, D. et al. West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2′-O methylations by nonstructural protein 5. J. Virol. 80, 8362–8370 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fabrega, C., Hausmann, S., Shen, V., Shuman, S. & Lima, C. D. Structure and mechanism of mRNA cap (guanine-N7) methyltransferase. Mol. Cell 13, 77–89 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Bujnicki, J. M. & Rychlewski, L. Reassignment of specificities of two cap methyltransferase domains in the reovirus λ2 protein. Genome Biol. 2, RESEARCH0038.1–RESEARCH0038.6 (2001).

    Article  Google Scholar 

  78. Ferron, F., Longhi, S., Henrissat, B. & Canard, B. Viral RNA-polymerases – a predicted 2′-O-ribose methyltransferase domain shared by all Mononegavirales. Trends Biochem. Sci. 27, 222–224 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Hodel, A. E., Gershon, P. D., Shi, X. & Quiocho, F. A. The 1.85 Å structure of vaccinia protein VP39: a bifunctional enzyme that participates in the modification of both mRNA ends. Cell 85, 247–256 (1996). The first crystal structure of a viral enzyme involved in RNA capping.

    Article  CAS  PubMed  Google Scholar 

  80. Lockless, S. W., Cheng, H. T., Hodel, A. E., Quiocho, F. A. & Gershon, P. D. Recognition of capped RNA substrates by VP39, the vaccinia virus-encoded mRNA cap-specific 2′-O-methyltransferase. Biochemistry 37, 8564–8574 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Li, C., Xia, Y., Gao, X. & Gershon, P. D. Mechanism of RNA 2′-O-methylation: evidence that the catalytic lysine acts to steer rather than deprotonate the target nucleophile. Biochemistry 43, 5680–5687 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Hodel, A. E., Gershon, P. D. & Quiocho, F. A. Structural basis for sequence-nonspecific recognition of 5′-capped mRNA by a cap-modifying enzyme. Mol. Cell 1, 443–447 (1998). An article discussing the molecular basis of N7-methylated-cap selectivity and detailing the first RNA cap protein crystal structure.

    Article  CAS  PubMed  Google Scholar 

  83. Bouvet, M. et al. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog. 6, e1000863 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen, Y. et al. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc. Natl Acad. Sci USA 106, 3484–3489 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Decroly, E. et al. Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2′O)-methyltransferase activity. J. Virol. 82, 8071–8084 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ramadevi, N., Burroughs, N. J., Mertens, P. P., Jones, I. M. & Roy, P. Capping and methylation of mRNA by purified recombinant VP4 protein of bluetongue virus. Proc. Natl Acad. Sci. USA 95, 13537–13542 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ramadevi, N. & Roy, P. Bluetongue virus core protein VP4 has nucleoside triphosphate phosphohydrolase activity. J. Gen. Virol. 79, 2475–2480 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Abraham, G., Rhodes, D. P. & Banerjee, A. K. The 5′ terminal structure of the methylated mRNA synthesized in vitro by vesicular stomatitis virus. Cell 5, 51–58 (1975).

    Article  CAS  PubMed  Google Scholar 

  89. Abraham, G., Rhodes, D. P. & Banerjee, A. K. Novel initiation of RNA synthesis in vitro by vesicular stomatitis virus. Nature 255, 37–40 (1975).

    Article  CAS  PubMed  Google Scholar 

  90. Gupta, K. C. & Roy, P. Alternate capping mechanisms for transcription of spring viremia of carp virus: evidence for independent mRNA initiation. J. Virol. 33, 292–303 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Barik, S. The structure of the 5′ terminal cap of the respiratory syncytial virus mRNA. J. Gen. Virol. 74, 485–490 (1993).

    Article  CAS  PubMed  Google Scholar 

  92. Ogino, T. & Banerjee, A. K. The HR motif in the RNA-dependent RNA polymerase L protein of Chandipura virus is required for unconventional mRNA-capping activity. J. Gen. Virol. 91, 1311–1314 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ogino, T. & Banerjee, A. K. Unconventional mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus. Mol. Cell 25, 85–97 (2007). The elucidation of the unconventional RNA-capping pathway of (–)RNA viruses.

    Article  CAS  PubMed  Google Scholar 

  94. Bujnicki, J. M. & Rychlewski, L. In silico identification, structure prediction and phylogenetic analysis of the 2′-O-ribose (cap 1) methyltransferase domain in the large structural protein of ssRNA negative-strand viruses. Protein Eng. 15, 101–108 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Li, J., Fontaine-Rodriguez, E. C. & Whelan, S. P. Amino acid residues within conserved domain VI of the vesicular stomatitis virus large polymerase protein essential for mRNA cap methyltransferase activity. J. Virol. 79, 13373–13384 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rahmeh, A. A., Li, J., Kranzusch, P. J. & Whelan, S. P. J. Ribose 2′-O methylation of the vesicular stomatitis virus mRNA cap precedes and facilitates subsequent guanine-N-7 methylation by the large polymerase protein. J. Virol. 83, 11043–11050 (2009). A paper with significant implications for understanding the mechanisms of unconventional capping in VSV. The authors show the sequence requirements for methylation and the chain of events that characterize the mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Testa, D. & Banerjee, A. K. Two methyltransferase activities in the purified virions of vesicular stomatitis virus. J. Virol. 24, 786–793 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Tekes, G., Rahmeh, A. A. & Whelan, S. P. A freeze frame view of vesicular stomatitis virus transcription defines a minimal length of RNA for 5′ processing. PLoS Pathog. 7, e1002073 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ahola, T. & Kääriäinen, L. Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP. Proc. Natl Acad. Sci. USA 92, 507–511 (1995). The discovery of the unconventional RNA-capping pathway of alphaviruses, in which guanine-N7 methylation of GTP precedes m7GMP transfer onto the putative GTase, nsP1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Vasiljeva, L., Merits, A., Auvinen, P. & Kääriäinen, L. Identification of a novel function of the alphavirus capping apparatus. RNA 5′-triphosphatase activity of Nsp2. J. Biol. Chem. 275, 17281–17287 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Ahola, T., Laakkonen, P., Vihinen, H. & Kääriäinen, L. Critical residues of Semliki Forest virus RNA capping enzyme involved in methyltransferase and guanylyltransferase-like activities. J. Virol. 71, 392–397 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Li, Y. I., Chen, Y. J., Hsu, Y. H. & Meng, M. Characterization of the AdoMet-dependent guanylyltransferase activity that is associated with the N terminus of bamboo mosaic virus replicase. J. Virol. 75, 782–788 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Merits, A. et al. Virus-specific capping of tobacco mosaic virus RNA: methylation of GTP prior to formation of covalent complex p126-m7GMP. FEBS Lett. 455, 45–48 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Magden, J. et al. Virus-specific mRNA capping enzyme encoded by hepatitis E virus. J. Virol. 75, 6249–6255 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bouloy, M., Plotch, S. J. & Krug, R. M. Globin mRNAs are primers for the transcription of influenza viral RNA in vitro. Proc. Natl Acad. Sci. USA 75, 4886–4890 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Caton, A. J. & Robertson, S. Structure of the host-derived sequences present at the 5′ ends of influenza virus mRNA. Nucleic Acids Res. 8, 2591–2603 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Plotch, S. J., Bouloy, M. & Krug, R. M. Transfer of 5′-terminal cap of globin mRNA to influenza viral complementary RNA during transcription in vitro. Proc. Natl Acad. Sci. USA 76, 1618–1622 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Qi, X. et al. Cap binding and immune evasion revealed by Lassa nucleoprotein structure. Nature 468, 779–783 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bishop, D. H. M. Y., Gay, M. E. & Matsuoko, Y. Non Viral heterogeneous sequences are present at the 5′ ends of one species of snowshoe hare bunyavirus S. complementary RNA. Nucleic Acids Res. 11, 6409–6418 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bouloy, M., Pardigon, N., Vialat, P., Gerbaud, S. & Girard, M. Characterization of the 5′ and 3′ ends of viral messenger RNAs isolated from BHK21 cells infected with Germiston virus (Bunyavirus). Virology 175, 50–58 (1990).

    Article  CAS  PubMed  Google Scholar 

  111. Eshita, Y., Ericson, B., Romanowski, V. & Bishop, D. H. Analyses of the mRNA transcription processes of snowshoe hare bunyavirus S and M RNA species. J. Virol. 55, 681–689 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Patterson, J. L., Holloway, B. & Kolakofsky, D. La Crosse virions contain a primer-stimulated RNA polymerase and a methylated cap-dependent endonuclease. J. Virol. 52, 215–222 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Garcin, D. et al. The 5′ ends of Hantaan virus (Bunyaviridae) RNAs suggest a prime-and-realign mechanism for the initiation of RNA synthesis. J. Virol. 69, 5754–5762 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Jin, H. & Elliott, R. M. Non-viral sequences at the 5′ ends of Dugbe nairovirus S mRNAs. J. Gen. Virol. 74, 2293–2297 (1993).

    Article  CAS  PubMed  Google Scholar 

  115. Raju, R. et al. Nontemplated bases at the 5′ends of Tacaribe virus mRNAs. Virology 174, 53–59 (1990).

    Article  CAS  PubMed  Google Scholar 

  116. Weber, F., Haller, O. & Kochs, G. Nucleoprotein viral RNA and mRNA of Thogoto virus: a novel” cap-stealing” mechanism in tick-borne orthomyxoviruses? J. Virol. 70, 8361–8367 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Leahy, M. B., Dessens, J. T. & Nuttall, P. A. In vitro polymerase activity of Thogoto virus: evidence for a unique cap-snatching mechanism in a tick-borne orthomyxovirus. J. Virol. 71, 8347–8351 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Guilligay, D. et al. The structural basis for cap binding by influenza virus polymerase subunit PB2. Nature Struct. Mol. Biol. 15, 500–506 (2008).

    Article  CAS  Google Scholar 

  119. Dias, A. et al. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458, 914–918 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Yuan, P. et al. Crystal structure of an avian influenza polymerase PAN reveals an endonuclease active site. Nature 458, 909–913 (2009). Together with reference 119, this paper describes the structural and functional characterization of the cap-snatching endonuclease.

    Article  CAS  PubMed  Google Scholar 

  121. Crépin, T. et al. Mutational and metal binding analysis of the endonuclease domain of the influenza virus polymerase PA subunit. J. Virol. 84, 9096–9104 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Reguera, J., Weber, F. & Cusack, S. Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog. 6, e1001101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Morin, B. et al. The N-terminal domain of the arenavirus L protein is an RNA endonuclease essential in mRNA transcription. PLoS Pathog. 6, e1001038 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lelke, M., Brunotte, L., Busch, C. & Günther, S. An N-terminal region of Lassa virus L protein plays a critical role in transcription but not replication of the virus genome. J. Virol. 84, 1934–1944 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Kranzusch, P. J. et al. Assembly of a functional Machupo virus polymerase complex. Proc. Natl Acad. Sci. USA 107, 20069–20074 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ruigrok, R. W. H., Crépin, T., Hart, D. J. & Cusack, S. Towards an atomic resolution understanding of the influenza virus replication machinery. Curr. Opin. Struct. Biol. 20, 104–113 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Hastie, K. M., Kimberlin, C. R., Zandonatti, M. A., MacRae, I. J. & Saphire, E. O. Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3′ to 5′ exonuclease activity essential for immune suppression. Proc. Natl Acad. Sci. USA 108, 2396–2401 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mir, M. A., Duran, W. A., Hjelle, B. L., Ye, C. & Panganiban, A. T. Storage of cellular 5′ mRNA caps in P bodies for viral cap-snatching. Proc. Natl Acad. Sci. USA 105, 19294–19299 (2008). An article that casts light on how N protein binds preferentially to capped mRNAs, stores and protects these mRNAs in P-bodies, and potentially takes an active role in cap acquisition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ferron, F. et al. The hexamer structure of the rift valley fever virus nucleoprotein suggests a mechanism for its assembly into ribonucleoprotein complexes. PLoS Pathog. 7, e1002030 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Koyama, S., Ishii, K. J., Coban, C. & Akira, S. Innate immune response to viral infection. Cytokine 43, 336–341 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Takeuchi, O. & Akira, S. Recognition of viruses by innate immunity. Immunol. Rev. 220, 214–224, (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Wilkins, C. & Gale, M., Jr Recognition of viruses by cytoplasmic sensors. Curr. Opin. Immunol. 22, 41–47 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yoneyama, M. & Fujita, T. Recognition of viral nucleic acids in innate immunity. Rev. Med. Virol. 20, 4–22 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Brennan, K. & Bowie, A. G. Activation of host pattern recognition receptors by viruses. Curr. Opin. Microbiol. 13, 503–507 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Hansen, J. D., Vojtech, L. N. & Laing, K. J. Sensing disease and danger: a survey of vertebrate PRRs and their origins. Dev. Comp. Immunol. 35, 886–897 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Meylan, E., Tschopp, J. & Karin, M. Intracellular pattern recognition receptors in the host response. Nature 442, 39–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Züst, R. et al. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nature Immunol. 12, 137–143 (2011). The authors show for the first time the role of 2′- O -methylation in the sensing of self RNA by the innate immune system through the RNA sensor MDA5.

    Article  CAS  Google Scholar 

  139. Oshiumi, H., Sakai, K., Matsumoto, M. & Seya, T. DEAD/H BOX 3 (DDX3) helicase binds the RIG-I adaptor IPS-1 to up-regulate IFN-β-inducing potential. Eur. J. Immunol. 40, 940–948 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001 (2006). The 5′-triphosphate of viral RNA is identified as a major component in the RIG-I-mediated host innate immune response.

    Article  CAS  PubMed  Google Scholar 

  141. Schmidt, A. et al. 5′-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proc. Natl Acad. Sci. USA 106, 12067–12072 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang, Y. et al. Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nature Struct. Mol. Biol. 17, 781–787 (2010).

    Article  CAS  Google Scholar 

  143. Luthra, P., Sun, D., Silverman, R. H. & He, B. Activation of IFN-β expression by a viral mRNA through RNase L and MDA5. Proc. Natl Acad. Sci. USA 108, 2118–2123 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Li, X. et al. Structural basis of double-stranded RNA recognition by the RIG-I like receptor MDA5. Arch. Biochem. Biophys. 488, 23–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Daffis, S. et al. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468, 452–456 (2010). The authors demonstrate that 2′- O -methylation of the viral RNA cap evades host innate antiviral responses through escape of IFIT-mediated suppression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pichlmair, A. et al. IFIT1 is an antiviral protein that recognizes 5′-triphosphate RNA. Nature Immunol. 12, 624–630 (2011).

    Article  CAS  Google Scholar 

  147. Garcin, D. & Kolakofsky, D. A novel mechanism for the initiation of Tacaribe arenavirus genome replication. J. Virol. 64, 6196–6203 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Hong, Z. & Cameron, C. E. Pleiotropic mechanisms of ribavirin antiviral activities. Prog. Drug Res. 59, 41–69 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. Magden, J., Kääriäinen, L. & Ahola, T. Inhibitors of virus replication: recent developments and prospects. Appl. Microbiol. Biotechnol. 66, 612–621 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Lim, S. P. et al. Small molecule inhibitors that selectively block dengue virus methyltransferase. J. Biol. Chem. 286, 6233–6240 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Kuzuhara, T., Iwai, Y., Takahashi, H., Hatakeyama, D. & Echigo, N. Green tea catechins inhibit the endonuclease activity of influenza A virus RNA polymerase. PLoS Curr. 1, RRN1052 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Parkes, K. E. B. et al. Use of a pharmacophore model to discover a new class of influenza endonuclease inhibitors. J. Med. Chem. 46, 1153–1164 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Tomassini, J. et al. Inhibition of cap (m7GpppXm)-dependent endonuclease of influenza virus by 4-substituted 2,4-dioxobutanoic acid compounds. Antimicrob. Agents Chemother. 38, 2827–2837 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Balvay, L., Soto Rifo, R., Ricci, E. P., Decimo, D. & Ohlmann, T. Structural and functional diversity of viral IRESes. Biochim. Biophys. Acta 1789, 542–557 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. Guidotti, L. G. & Chisari, F. V. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu. Rev. Immunol. 19, 65–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  156. Malmgaard, L. Induction and regulation of IFNs during viral infections. J. Interferon Cytokine Res. 24, 439–454 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Garaigorta, U. & Chisari, F. V. Hepatitis C virus blocks interferon effector function by inducing protein kinase R phosphorylation. Cell Host Microbe 6, 513–522 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Blanc, A., Goyer, C. & Sonenberg, N. The coat protein of the yeast double-stranded RNA virus L-A attaches covalently to the cap structure of eukaryotic mRNA. Mol. Cell. Biol. 12, 3390–3398 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Naitow, H., Tang, J., Canady, M., Wickner, R. B. & Johnson, J. E. L-A virus at 3.4 Å resolution reveals particle architecture and mRNA decapping mechanism. Nature Struct. Biol. 9, 725–728 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Parrish, S., Resch, W. & Moss, B. Vaccinia virus D10 protein has mRNA decapping activity, providing a mechanism for control of host and viral gene expression. Proc. Natl Acad. Sci. USA 104, 2139–2144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. McLennan, A. G. Decapitation: poxvirus makes RNA lose its head. Trends Biochem. Sci. 32, 297–299 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Gaglia, M. M. & Glaunsinger, B. A. Viruses and the cellular RNA decay machinery. Wiley Interdiscip. Rev. RNA 1, 47–59 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are in debt to all previous and current laboratory members, too numerous to name, for their contributions and involvement in the study of viral RNA replication and capping. Special thanks go to B. Selisko for her tireless dedication to and help with the scientific elaboration of this manuscript. This work was supported in part through funding by the Fondation pour la Recherche Médicale (Programme Aide aux équipes), the French Direction Générale de l'Armement (contrat 07co404), Infectiopôle-Sud and the European Union Seventh Framework Programme (FP7/2007–2013) through the project SILVER (Small inhibitor leads against emerging RNA viruses; grant agreement 260644).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Canard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Protein Data Bank

1AV6

1CKM

1CKN

1CKO

1EJ6

1L9V

1YN9

2BHR

2JHC

2P41

2QZE

2VDW

2VQZ

2XI5

3HW4

3JSB

FURTHER INFORMATION

Bruno Canard's homepage

PyMOL

Glossary

Pre-mRNA splicing

A post-transcriptional modification of pre-mRNA, in which introns are excised and exons are joined in order to form a translationally functional, mature mRNA.

γ-phosphate

The third phosphate attached at the 5′ end of the ribose moiety of a nucleotide.

'Ping-pong' mechanism

A two-step mechanism in which a substrate molecule first forms a (covalent) link with the enzyme and is then transferred to an acceptor molecule to yield a product.

Poly(A) tail

A string of AMP that is added to the 3′ end of mRNA.

NUDIX hydrolase superfamily

A family of proteins that hydrolyse a wide range of organic pyrophosphates, including NDPs, NTPs, dinucleoside and diphosphoinositol polyphosphates, nucleotide sugars and RNA caps, with varying degrees of substrate specificity.

Single-stranded positive-sense RNA viruses

(ss(+)RNA viruses). Viruses that have or produce mRNAs that are co-linear to their genomic RNA.

43S pre-initiation complex

A multiprotein complex composed of eukaryotic translation initiation factor 3 (eIF3), eIF4A, eIF4E and eIF4G associated with the small ribosomal subunit. This pre-initiation complex scans the mRNA towards the 'start' codon (typically AUG), where translation is initiated.

Single-stranded negative-sense RNA viruses

(ss(−)RNA viruses). Viruses that have or produce mRNAs that are complementary to their genomic RNA.

Ambisense RNA viruses

Viruses (such as members of the families Arenaviridae and Bunyaviridae) that have or produce both mRNAs that are co-linear to and mRNAs that are complementary to their genomic RNA, although most mRNAs are complementary in polarity.

β-phosphate

The second phosphate attached at the 5′ end of the ribose moiety of a nucleotide.

Walker A and B motifs

Motifs that are present in nucleotide-binding proteins but also in a range of proteins with widely varying functions, including ATP synthases, myosins, transducins, helicases, kinases and RecA proteins. The Walker A motif contains a phosphate-binding loop (P-loop) motif with the consensus sequence GXXXGK(T/S), and the Walker B motif contains the consensus sequence (R/K)XXXXGXXXXLhhhhD (in which h refers to any hydrophobic residue).

Nucleophilic attack

Generally, a starting point for a chemical reaction; a doublet of electrons selectively attacks the positive or partially positive charge of the atomic nucleus in order to create a new chemical bond.

α-phosphate

The first phosphate attached at the 5′ end of the ribose moiety of a nucleotide.

pKa value

The acid dissociation constant, a quantitative measurement of the strength of a chemical group as an acid in solution. It corresponds to the pH value at which half of the ionizable group is either protonated or deprotonated.

ε-amino group

A positively charged group found at the extremity of a lysine side chain. The ε-amino group is a primary amine and, owing to its high pKa value, it is reactive and often participates in reactions at the active site of enzymes.

Stem loop

A hairpin structure in single-stranded RNA or DNA, resulting from intramolecular base-pairing when two regions of the same strand contain partial or perfect anti-complementary nucleotide sequences.

Cell-based replicon assays

Assays that allow one to follow the replication of a 'minimal viral genome' encoding the viral replication complex but no structural or envelope proteins, which are usually replaced by reporter genes (such as luciferase or chloramphenicol acetyl transferase genes).

Viral antigenomes

Viral RNAs that are complementary strands to the genome. The antigenome strand is used as a matrix for the synthesis of new viral genomes, and of viral mRNAs in the case of positive-sense RNA viruses.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Decroly, E., Ferron, F., Lescar, J. et al. Conventional and unconventional mechanisms for capping viral mRNA. Nat Rev Microbiol 10, 51–65 (2012). https://doi.org/10.1038/nrmicro2675

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro2675

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology