Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From self sufficiency to dependence: mechanisms and factors important for autotransporter biogenesis

Key Points

  • In Gram-negative bacteria, substrates of the type V secretion pathway include a superfamily of proteins called autotransporters (ATs); these proteins are associated with a range of virulence functions, including adhesion, colonization, cell mobility, biofilm formation and cytotoxicity.

  • An understanding of how these proteins are delivered to the bacterial cell surface is crucial, as it could offer substantial biotechnical and biomedical benefits, including vaccine development through the secretion of unrelated target proteins.

  • Until recently, ATs were thought of as self-contained secretion systems. However, recent findings demonstrating that passenger domain secretion requires the aid of accessory factors, including the β-barrel assembly machinery (Bam) and several periplasmic chaperones, have challenged the perceived simplicity of AT secretion.

  • There have been several recent advances in our understanding of the molecular basis of AT biogenesis in Gram-negative bacteria, and we can now draw analogies between this process and outer-membrane protein (OMP) biogenesis.

  • These recent advances have also discovered common structural themes, translocation intermediates and accessory interactions during inner-membrane translocation, periplasmic transit and outer-membrane translocation of ATs. Furthermore, we have an improved understanding of the regulation of AT expression, the Bam complex, the driving force for passenger domain transport, and the cleavage of passenger domains after outer-membrane translocation.

Abstract

Autotransporters are a superfamily of proteins that use the type V secretion pathway for their delivery to the surface of Gram-negative bacteria. At first glance, autotransporters look to contain all the functional elements required to promote their own secretion: an amino-terminal signal peptide to mediate translocation across the inner membrane, a central passenger domain that is the secreted functional moiety, and a channel-forming carboxyl terminus that facilitates passenger domain translocation across the outer membrane. However, recent discoveries of common structural themes, translocation intermediates and accessory interactions have challenged the perceived simplicity of autotransporter secretion. Here, we discuss how these studies have led to an improved understanding of the mechanisms responsible for autotransporter biogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Secretion mechanisms that constitute the type V secretion pathway.
Figure 2: Anatomy of the classical autotransporter structure.
Figure 3: Classical autotransporter biogenesis.
Figure 4: Models of passenger domain translocation across the outer membrane.
Figure 5: Mechanisms of passenger domain cleavage.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Economou, A. et al. Secretion by numbers: protein traffic in prokaryotes. Mol. Microbiol. 62, 308–319 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Henderson, I. R., Navarro-Garcia, F., Desvaux, M., Fernandez, R. C. & Ala'Aldeen, D. Type V protein secretion pathway: the autotransporter story. Microbiol. Mol. Biol. Rev. 68, 692–744 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pohlner, J., Halter, R., Beyreuther, K. & Meyer, T. F. Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325, 458–462 (1987). This paper describes the gene organization and model for extracellular secretion of the first identified AT, IgAP; in this model, the β-domain serves as a pore for translocation of the passenger domain across the outer membrane, after which the protein is released from the cell surface by autoproteolysis.

    Article  CAS  PubMed  Google Scholar 

  4. Hegde, R. S. & Bernstein, H. D. The surprising complexity of signal sequences. Trends Biochem. Sci. 31, 563–571 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Desvaux, M. et al. The unusual extended signal peptide region of the type V secretion system is phylogenetically restricted. FEMS Microbiol. Lett. 264, 22–30 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Dautin, N. & Bernstein, H. D. Protein secretion in Gram-negative bacteria via the autotransporter pathway. Annu. Rev. Microbiol. 61, 89–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Jacob-Dubuisson, F., Fernandez, R. & Coutte, L. Protein secretion through autotransporter and two-partner pathways. Biochim. Biophys. Acta 1694, 235–257 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Desvaux, M. et al. A conserved extended signal peptide region directs posttranslational protein translocation via a novel mechanism. Microbiology 153, 59–70 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Henderson, I. R., Navarro-Garcia, F. & Nataro, J. P. The great escape: structure and function of the autotransporter proteins. Trends Microbiol. 6, 370–378 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Von Heijne, G. On the hydrophobic nature of signal sequences. Eur. J. Biochem. 116, 419–422 (1981).

    Article  CAS  PubMed  Google Scholar 

  11. Peterson, J. H., Woolhead, C. A. & Bernstein, H. D. Basic amino acids in a distinct subset of signal peptides promote interaction with the signal recognition particle. J. Biol. Chem. 278, 46155–46162 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Sijbrandi, R. et al. Signal recognition particle (SRP)-mediated targeting and Sec-dependent translocation of an extracellular Escherichia coli protein. J. Biol. Chem. 278, 4654–4659 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Lee, H. C. & Bernstein, H. D. The targeting pathway of Escherichia coli presecretory and integral membrane proteins is specified by the hydrophobicity of the targeting signal. Proc. Natl Acad. Sci. USA 98, 3471–3476 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peterson, J. H., Szabady, R. L. & Bernstein, H. D. An unusual signal peptide extension inhibits the binding of bacterial presecretory proteins to the signal recognition particle, trigger factor, and the SecYEG complex. J. Biol. Chem. 281, 9038–9048 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Lambert-Buisine, C., Willery, E., Locht, C. & Jacob-Dubuisson, F. N-terminal characterization of the Bordetella pertussis filamentous haemagglutinin. Mol. Microbiol. 28, 1283–1293 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Szabady, R. L., Peterson, J. H., Skillman, K. M. & Bernstein, H. D. An unusual signal peptide facilitates late steps in the biogenesis of a bacterial autotransporter. Proc. Natl Acad. Sci. USA 102, 221–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Leyton, D. L. et al. The unusual extended signal peptide region is not required for secretion and function of an Escherichia coli autotransporter. FEMS Microbiol. Lett. 311, 133–139 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Jong, W. S. P. & Luirink, J. The conserved extension of the Hbp autotransporter signal peptide does not determine targeting pathway specificity. Biochem. Biophys. Res. Commun. 368, 522–527 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Chevalier, N. et al. Membrane targeting of a bacterial virulence factor harbouring an extended signal peptide. J. Mol. Microbiol. Biotechnol. 8, 7–18 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Jong, W. S. P. et al. YidC is involved in the biogenesis of the secreted autotransporter hemoglobin protease. J. Biol. Chem. 285, 39682–39690 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Van Ulsen, P. et al. A Neisserial autotransporter NalP modulating the processing of other autotransporters. Mol. Microbiol. 50, 1017–1030 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Coutte, L., Antoine, R., Drobecq, H., Locht, C. & Jacob-Dubuisson, F. Subtilisin-like autotransporter serves as maturation protease in a bacterial secretion pathway. EMBO J. 20, 5040–5048 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Odenbreit, S., Till, M., Hofreuter, D., Faller, G. & Haas, R. Genetic and functional characterization of the alpAB gene locus essential for the adhesion of Helicobacter pylori to human gastric tissue. Mol. Microbiol. 31, 1537–1548 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Ashgar, S. S. A. et al. CapA, an autotransporter protein of Campylobacter jejuni, mediates association with human epithelial cells and colonization of the chicken gut. J. Bacteriol. 189, 1856–1865 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Henderson, I. R. & Lam, A. C. Polymorphic proteins of Chlamydia spp. - autotransporters beyond the Proteobacteria. Trends Microbiol. 9, 573–578 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Okuda, S. & Tokuda, H. Lipoprotein sorting in bacteria. Annu. Rev. Microbiol. 65, 239–259 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Coutte, L. et al. Surface anchoring of bacterial subtilisin important for maturation function. Mol. Microbiol. 49, 529–539 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Knowles, T. J., Scott-Tucker, A., Overduin, M. & Henderson, I. R. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nature Rev. Microbiol. 7, 206–214 (2009).

    Article  CAS  Google Scholar 

  29. Sklar, J. G., Wu, T., Kahne, D. & Silhavy, T. J. Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev. 21, 2473–2484 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lazar, S. & Kolter, R. SurA assists the folding of Escherichia coli outer membrane proteins. J. Bacteriol. 178, 1770–1773 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jose, J., Kramer, J., Klauser, T., Pohlner, J. & Meyer, T. F. Absence of periplasmic DsbA oxidoreductase facilitates export of cysteine-containing passenger proteins to the Escherichia coli cell surface via the Igaβ autotransporter pathway. Gene 178, 107–110 (1996). This work shows that DsbA catalyses disulphide bond formation between cysteine residues in a non-native AT passenger domain, providing the first evidence that ATs form periplasmic intermediates during biogenesis.

    Article  CAS  PubMed  Google Scholar 

  32. Purdy, G. E., Fisher, C. R. & Payne, S. M. IcsA surface presentation in Shigella flexneri requires the periplasmic chaperones DegP, Skp, and SurA. J. Bacteriol. 189, 5566–5573 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wagner, J. K., Heindl, J. E., Gray, A. N., Jain, S. & Goldberg, M. B. Contribution of the periplasmic chaperone Skp to efficient presentation of the autotransporter IcsA on the surface of Shigella flexneri. J. Bacteriol. 191, 815–821 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Ruiz-Perez, F. et al. Roles of periplasmic chaperone proteins in the biogenesis of serine protease autotransporters of Enterobacteriaceae. J. Bacteriol. 191, 6571–6583 (2009). The authors of this paper show, for the first time, direct binding of periplasmic chaperones SurA, Skp, DegP and BamA to highly conserved motifs in passenger and β-domains, suggesting that AT biogenesis requires the aid of accessory factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ruiz-Perez, F., Henderson, I. R. & Nataro, J. P. Interaction of FkpA, a peptidyl-prolyl cis/trans isomerase with EspP autotransporter protein. Gut Microbes 1, 339–344 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ieva, R. & Bernstein, H. D. Interaction of an autotransporter passenger domain with BamA during its translocation across the bacterial outer membrane. Proc. Natl Acad. Sci. USA 106, 19120–19125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sauri, A. et al. The Bam (Omp85) complex is involved in secretion of the autotransporter haemoglobin protease. Microbiology 155, 3982–3991 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Ieva, R., Tian, P., Peterson, J. H. & Bernstein, H. D. Sequential and spatially restricted interactions of assembly factors with an autotransporter β domain. Proc. Natl Acad. Sci. USA 108, e383–e391 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bennion, D., Charlson, E. S., Coon, E. & Misra, R. Dissection of β-barrel outer membrane protein assembly pathways through characterizing BamA POTRA 1 mutants of Escherichia coli. Mol. Microbiol. 77, 1153–1171 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mogensen, J. E., Kleinschmidt, J. H., Schmidt, M. A. & Otzen, D. E. Misfolding of a bacterial autotransporter. Protein Sci. 14, 2814–2827 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Volokhina, E. B. et al. Role of the periplasmic chaperones Skp, SurA, and DegQ in outer membrane protein biogenesis in Neisseria meningitidis. J. Bacteriol. 193, 1612–1621 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jain, S. & Goldberg, M. B. Requirement for YaeT in the outer membrane assembly of autotransporter proteins. J. Bacteriol. 189, 5393–5398 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Voulhoux, R., Bos, M. P., Geurtsen, J., Mols, M. & Tommassen, J. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299, 262–265 (2003). This elegant study demonstrates the essential nature of BamA and its role in the biogenesis of OMPs.

    Article  CAS  PubMed  Google Scholar 

  44. Rossiter, A. E. et al. The essential β-barrel assembly machinery complex components BamD and BamA are required for autotransporter biogenesis. J. Bacteriol. 193, 4250–4253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Leyton, D. L. et al. Size and conformation limits to secretion of disulfide-bonded loops in autotransporter proteins. J. Biol. Chem. 286, 42283–42291 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Barnard, T. J., Dautin, N., Lukacik, P., Bernstein, H. D. & Buchanan, S. K. Autotransporter structure reveals intra-barrel cleavage followed by conformational changes. Nature Struct. Mol. Biol. 14, 1214–1220 (2007). This article describes the crystal structure of an AT β-barrel after intra-barrel cleavage of the passenger domain. The authors reveal a gating mechanism that restricts access to the barrel pore and increases the stability of the barrel.

    Article  CAS  Google Scholar 

  48. van den Berg, B. Crystal structure of a full-length autotransporter. J. Mol. Biol. 396, 627–633 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Zhai, Y. et al. Autotransporter passenger domain secretion requires a hydrophobic cavity at the extracellular entrance of the β-domain pore. Biochem. J. 435, 577–578 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Oomen, C. J. et al. Structure of the translocator domain of a bacterial autotransporter. EMBO J. 23, 1257–1266 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tajima, N., Kawai, F., Park, S.-Y. & Tame, J. R. H. A novel intein-like autoproteolytic mechanism in autotransporter proteins. J. Mol. Biol. 402, 645–656 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Barnard, T. J. et al. Molecular basis for the activation of a catalytic asparagine residue in a self-cleaving bacterial autotransporter. J. Mol. Biol. 415, 128–142 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Loveless, B. J. & Saier, M. H. A novel family of channel-forming, autotransporting, bacterial virulence factors. Mol. Membr. Biol. 14, 113–123 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Khalid, S. & Sansom, M. S. P. Molecular dynamics simulations of a bacterial autotransporter: NalP from Neisseria meningitidis. Mol. Membr. Biol. 23, 499–508 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. De, E. et al. Influence of the passenger domain of a model autotransporter on the properties of its translocator domain. Mol. Membr. Biol. 25, 192–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Clantin, B. et al. Structure of the membrane protein FhaC: a member of the Omp85-TpsB transporter superfamily. Science 317, 957–961 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Saurí, A. et al. Autotransporter β-domains have a specific function in protein secretion beyond outer-membrane targeting. J. Mol. Biol. 412, 553–567 (2011).

    Article  PubMed  CAS  Google Scholar 

  58. Yen, Y. T. et al. Importance of conserved residues of the serine protease autotransporter β-domain in passenger domain processing and β-barrel assembly. Infect. Immun. 78, 3516–3528 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Roussel-Jazédé, V. et al. Channel properties of the translocator domain of the autotransporter Hbp of Escherichia coli. Mol. Membr. Biol. 28, 157–169 (2011).

    Article  CAS  Google Scholar 

  60. Kostakioti, M. & Stathopoulos, C. Role of the α-helical linker of the C-terminal translocator in the biogenesis of the serine protease subfamily of autotransporters. Infect. Immun. 74, 4961–4969 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Marin, E., Bodelon, G. & Fernandez, L. A. Comparative analysis of the biochemical and functional properties of C-terminal domains of autotransporters. J. Bacteriol. 192, 5588–5602 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Meng, G., Surana, N. K., St Geme, J. W. 3rd & Waksman, G. Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter. EMBO J. 25, 2297–2304 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dautin, N. & Bernstein, H. D. Residues in a conserved α-helical segment are required for cleavage but not secretion of an Escherichia coli serine protease autotransporter passenger domain. J. Bacteriol. 193, 3748–3756 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Junker, M., Besingi, R. N. & Clark, P. L. Vectorial transport and folding of an autotransporter virulence protein during outer membrane secretion. Mol. Microbiol. 71, 1323–1332 (2009). This report documents vectorial transport and folding of pertactin, showing (through disulphide bond-mediated passenger domain stalling) that the carboxyl terminus of the passenger domain is presented on the bacterial cell surface first and folds into a stable protease-resistant structure.

    Article  CAS  PubMed  Google Scholar 

  65. Renn, J. P. & Clark, P. L. A conserved stable core structure in the passenger domain β-helix of autotransporter virulence proteins. Biopolymers 89, 420–427 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Peterson, J. H., Tian, P., Ieva, R., Dautin, N. & Bernstein, H. D. Secretion of a bacterial virulence factor is driven by the folding of a C-terminal segment. Proc. Natl Acad. Sci. USA 107, 17739–17744 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Junker, M. et al. Pertactin β-helix folding mechanism suggests common themes for the secretion and folding of autotransporter proteins. Proc. Natl Acad. Sci. USA 103, 4918–4923 (2006). This study reveals the folding of pertactin, demonstrating that the carboxyl terminus of the β-helix is more stable than the amino-terminal rungs. The authors suggest a general mechanism for AT secretion, in which the carboxy-terminal core serves as a scaffold that allows stacking of the β-helix to initiate vectorial folding of the passenger domain, thereby driving secretion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jong, W. S. P. et al. Limited tolerance towards folded elements during secretion of the autotransporter Hbp. Mol. Microbiol. 63, 1524–1536 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Saurí, A., ten Hagen-Jongman, C. M., van Ulsen, P. & Luirink, J. Estimating the size of the active translocation pore of an autotransporter. J. Mol. Biol. 29 Dec 2011 (doi:10.1016/jmb.2011.12.047).

  70. Ieva, R., Skillman, K. M. & Bernstein, H. D. Incorporation of a polypeptide segment into the β-domain pore during the assembly of a bacterial autotransporter. Mol. Microbiol. 67, 188–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Veiga, E., De Lorenzo, V. & Fernández, L. A. Structural tolerance of bacterial autotransporters for folded passenger protein domains. Mol. Microbiol. 52, 1069–1080 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Skillman, K. M., Barnard, T. J., Peterson, J. H., Ghirlando, R. & Bernstein, H. D. Efficient secretion of a folded protein domain by a monomeric bacterial autotransporter. Mol. Microbiol. 58, 945–958 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Benz, I. & Schmidt, M. A. AIDA-I, the adhesin involved in diffuse adherence of the diarrhoeagenic Escherichia coli strain 2787 (O126:H27), is synthesized via a precursor molecule. Mol. Microbiol. 6, 1539–1546 (1992).

    Article  CAS  PubMed  Google Scholar 

  74. Lindenthal, C. & Elsinghorst, E. A. Identification of a glycoprotein produced by enterotoxigenic Escherichia coli. Infect. Immun. 67, 4084–4091 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sherlock, O., Dobrindt, U., Jensen, J. B., Munk Vejborg, R. & Klemm, P. Glycosylation of the self-recognizing Escherichia coli Ag43 autotransporter protein. J. Bacteriol. 188, 1798–1807 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Robert, V. et al. Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Biol. 4, e377 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Phan, G. et al. Crystal structure of the FimD usher bound to its cognate FimC–FimH substrate. Nature 474, 49–53 (2011). This elegant work documents the crystal structure of the FimD β-barrel in active translocation of its cognate FimC–FimH substrate. The work shows, for the first time, that usher activation triggers a marked conformational rearrangement in the FimD β-barrel.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. May, K. L. & Morona, R. Mutagenesis of the Shigella flexneri autotransporter IcsA reveals novel functional regions involved in IcsA biogenesis and recruitment of host neural Wiscott-Aldrich syndrome protein. J. Bacteriol. 190, 4666–4676 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dutta, P. R., Sui, B. Q. & Nataro, J. P. Structure-function analysis of the enteroaggregative Escherichia coli plasmid-encoded toxin autotransporter using scanning linker mutagenesis. J. Biol. Chem. 278, 39912–39920 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Ohnishi, Y., Nishiyama, M., Horinouchi, S. & Beppu, T. Involvement of the COOH-terminal pro-sequence of Serratia marcescens serine protease in the folding of the mature enzyme. J. Biol. Chem. 269, 32800–32806 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Oliver, D. C., Huang, G., Nodel, E., Pleasance, S. & Fernandez, R. C. A conserved region within the Bordetella pertussis autotransporter BrkA is necessary for folding of its passenger domain. Mol. Microbiol. 47, 1367–1383 (2003). This paper provides genetic, biochemical and structural evidence that the AC domain of BrkA is required for folding and stability of the passenger domain concurrent with or after outer-membrane translocation.

    Article  CAS  PubMed  Google Scholar 

  82. Konieczny, M. et al. Modular organization of the AIDA autotransporter translocator: the N-terminal β1-domain is surface-exposed and stabilizes the transmembrane β2-domain. Antonie Van Leeuwenhoek 80, 19–34 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Soprova, Z. et al. A conserved aromatic residue in the autochaperone domain of the autotransporter Hbp is critical for initiation of outer membrane translocation. J. Biol. Chem. 285, 38224–38233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Renn, J. P., Junker, M., Besingi, R. N., Braselmann, E. & Clark, P. L. ATP-independent control of autotransporter virulence protein transport via the folding properties of the secreted protein. Chem. Biol. 29 Dec 2011 (doi:10.1016/j.chembiol.2011.11.009).

    Article  CAS  Google Scholar 

  85. Gangwer, K. A. et al. Crystal structure of the Helicobacter pylori vacuolating toxin p55 domain. Proc. Natl Acad. Sci. USA 104, 16293–16298 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Johnson, T. A., Qiu, J., Plaut, A. G. & Holyoak, T. Active-site gating regulates substrate selectivity in a chymotrypsin-like serine protease: the structure of Haemophilus influenzae immunoglobulin A1 protease. J. Mol. Biol. 389, 559–574 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Emsley, P., Charles, I. G., Fairweather, N. F. & Isaacs, N. W. Structure of Bordetella pertussis virulence factor P.69 pertactin. Nature 381, 90–92 (1996). This investigation reveals the first crystal structure of an AT passenger domain, that of Pertactin, demonstrating a large right-handed β-helix connected by loops of varying length and structure.

    Article  CAS  PubMed  Google Scholar 

  88. Otto, B. R. et al. Crystal structure of hemoglobin protease, a heme binding autotransporter protein from pathogenic Escherichia coli. J. Biol. Chem. 280, 17339–17345 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Meng, G., Spahich, N., Kenjale, R., Waksman, G. & St Geme, J. W. 3rd. Crystal structure of the Haemophilus influenzae Hap adhesin reveals an intercellular oligomerization mechanism for bacterial aggregation. EMBO J. 30, 3864–3874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Khan, S., Mian, H. S., Sandercock, L. E., Chirgadze, N. Y. & Pai, E. F. Crystal structure of the passenger domain of the Escherichia coli autotransporter EspP. J. Mol. Biol. 413, 985–1000 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nishimura, K. et al. Role of domains within the autotransporter Hbp/Tsh. Acta Crystallogr. D Biol. Crystallogr. 66, 1295–1300 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Telford, J. L. et al. Gene structure of the Helicobacter pylori cytotoxin and evidence of its key role in gastric disease. J. Exp. Med. 179, 1653–1658 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Cover, T. L. & Blanke, S. R. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nature Rev. Microbiol. 3, 320–332 (2005).

    Article  CAS  Google Scholar 

  94. Charbonneau, M.-E., Janvore, J. & Mourez, M. Autoprocessing of the Escherichia coli AIDA-I autotransporter. J. Biol. Chem. 284, 17340–17351 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shere, K. D., Sallustio, S., Manessis, A., D'Aversa, T. G. & Goldberg, M. B. Disruption of IcsP, the major Shigella protease that cleaves IcsA, accelerates actin-based motility. Mol. Microbiol. 25, 451–462 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Egile, C., D'Hauteville, H., Parsot, C. & Sansonetti, P. J. SopA, the outer membrane protease responsible for polar localization of IcsA in Shigella flexneri. Mol. Microbiol. 23, 1063–1073 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Turner, D. P. J. et al. Characterization of MspA, an immunogenic autotransporter protein that mediates adhesion to epithelial and endothelial cells in Neisseria meningitidis. Infect. Immun. 74, 2957–2964 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. van Ulsen, P. et al. A novel phase-variable autotransporter serine protease, AusI, of Neisseria meningitidis. Microb. Infect. 8, 2088–2097 (2006).

    Article  CAS  Google Scholar 

  99. Turner, D. P. J., Wooldridge, K. G. & Ala'Aldeen, D. A. A. Autotransported serine protease A of Neisseria meningitidis: an immunogenic, surface-exposed outer membrane, and secreted protein. Infect. Immun. 70, 4447–4461 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Serruto, D. et al. Neisseria meningitidis App, a new adhesin with autocatalytic serine protease activity. Mol. Microbiol. 48, 323–334 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Hendrixson, D. R., de la Morena, M. L., Stathopoulos, C. & St Geme, J. W. 3rd. Structural determinants of processing and secretion of the Haemophilus influenzae Hap protein. Mol. Microbiol. 26, 505–518 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Fink, D. L., Cope, L. D., Hansen, E. J. & Geme, J. W. S. The Hemophilus influenzae Hap autotransporter is a chymotrypsin clan serine protease and undergoes autoproteolysis via an intermolecular mechanism. J. Biol. Chem. 276, 39492–39500 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Stein, M., Kenny, B., Stein, M. A. & Finlay, B. B. Characterization of EspC, a 110-kilodalton protein secreted by enteropathogenic Escherichia coli which is homologous to members of the immunoglobulin A protease-like family of secreted proteins. J. Bacteriol. 178, 6546–6554 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Patel, S. K., Dotson, J., Allen, K. P. & Fleckenstein, J. M. Identification and characterization of EatA, an autotransporter protein of enterotoxigenic Escherichia coli. Infect. Immun. 72, 1786–1794 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Navarro-García, F., Sears, C., Eslava, C., Cravioto, A. & Nataro, J. P. Cytoskeletal effects induced by Pet, the serine protease enterotoxin of enteroaggregative Escherichia coli. Infect. Immun. 67, 2184–2192 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Velarde, J. J. & Nataro, J. P. Hydrophobic residues of the autotransporter EspP linker domain are important for outer membrane translocation of its passenger. J. Biol. Chem. 279, 31495–31504 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Dautin, N., Barnard, T. J., Anderson, D. E. & Bernstein, H. D. Cleavage of a bacterial autotransporter by an evolutionary convergent autocatalytic mechanism. EMBO J. 26, 1942–1952 (2007). This paper describes an autocatalytic mechanism for passenger domain cleavage (involving residues that are part of the β-barrel lumen) that is universal among SPATEs and a few distantly related ATs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Leyton, D. L., Sloan, J., Hill, R. E., Doughty, S. & Hartland, E. L. Transfer region of pO113 from enterohemorrhagic Escherichia coli: similarity with R64 and identification of a novel plasmid-encoded autotransporter, EpeA. Infect. Immun. 71, 6307–6319 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kenny, B. & Finlay, B. B. Protein secretion by enteropathogenic Escherichia coli is essential for transducing signals to epithelial cells. Proc. Natl Acad. Sci. USA 92, 7991–7995 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kenny, B., Abe, A., Stein, M. & Finlay, B. Enteropathogenic Escherichia coli protein secretion is induced in response to conditions similar to those in the gastrointestinal tract. Infect. Immun. 65, 2606–2612 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Brunder, W., Schmidt, H. & Karch, H. EspP, a novel extracellular serine protease of enterohemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V. Mol. Microbiol. 24, 767–778 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Henderson, I. R., Czeczulin, J., Eslava, C., Noriega, F. & Nataro, J. P. Characterization of Pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infect. Immun. 67, 5587–5596 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Benjelloun-Touimi, Z., Sansonetti, P. J. & Parsot, C. SepA, the major extracellular protein of Shigella flexneri: autonomous secretion and involvement in tissue invasion. Mol. Microbiol. 17, 123–135 (1995).

    Article  CAS  PubMed  Google Scholar 

  114. Al-Hasani, K. et al. The sigA gene which is borne on the she pathogenicity island of Shigella flexneri 2a encodes an exported cytopathic protease involved in intestinal fluid accumulation. Infect. Immun. 68, 2457–2463 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Stathopoulos, C., Provence, D. L. & Curtiss, R. 3rd. Characterization of the avian pathogenic Escherichia coli hemagglutinin Tsh, a member of the immunoglobulin A protease-type family of autotransporters. Infect. Immun. 67, 772–781 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Otto, B. R., van Dooren, S. J., Nuijens, J. H., Luirink, J. & Oudega, B. Characterization of a hemoglobin protease secreted by the pathogenic Escherichia coli strain EB1. J. Exp. Med. 188, 1091–1103 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Beier, D. & Gross, R. in Bacterial Signal Transduction: Networks and Drug Targets 149–160 (Springer, New York, 2008).

    Book  Google Scholar 

  118. Elliott, S. J. et al. The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE- and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infect. Immun. 68, 6115–6126 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Giangrossi, M. et al. A novel antisense RNA regulates at transcriptional level the virulence gene icsA of Shigella flexneri. Nucleic Acids Res. 38, 3362–3375 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wallecha, A., Munster, V., Correnti, J., Chan, T. & van der Woude, M. Dam- and OxyR-dependent phase variation of agn43: essential elements and evidence for a new role of DNA methylation. J. Bacteriol. 184, 3338–3347 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Haagmans, W. & Van Der Woude, M. Phase variation of Ag43 in Escherichia coli: Dam-dependent methylation abrogates OxyR binding and OxyR-mediated repression of transcription. Mol. Microbiol. 35, 877–887 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Waldron, D. E., Owen, P. & Dorman, C. J. Competitive interaction of the OxyR DNA-binding protein and the Dam methylase at the antigen 43 gene regulatory region in Escherichia coli. Mol. Microbiol. 44, 509–520 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Rossiter, A. E. et al. Transcription of the plasmid-encoded toxin gene from enteroaggregative Escherichia coli is regulated by a novel co-activation mechanism involving CRP and Fis. Mol. Microbiol. 81, 179–191 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Walther, D., Rapaport, D. & Tommassen, J. Biogenesis of β-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence. Cell. Mol. Life Sci. 66, 2789–2804 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hagan, C. L., Kim, S. & Kahne, D. Reconstitution of outer membrane protein assembly from purified components. Science 328, 890–892 (2010). This work shows, for the first time, that components of the Bam complex can be purified and functionally reconstituted in proteoliposomes. This study finds that the assembly of a β-barrel substrate requires a soluble chaperone in addition to the Bam complex and occurs without an input of energy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Knowles, T. J. et al. Fold and function of polypeptide transport-associated domains responsible for delivering unfolded proteins to membranes. Mol. Microbiol. 68, 1216–1227 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Kim, S. et al. Structure and function of an essential component of the outer membrane protein assembly machine. Science 317, 961–964 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Malinverni, J. C. et al. YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol. Microbiol. 61, 151–164 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Sklar, J. G. et al. Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli. Proc. Natl Acad. Sci. USA 104, 6400–6405 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Vuong, P., Bennion, D., Mantei, J., Frost, D. & Misra, R. Analysis of YfgL and YaeT interactions through bioinformatics, mutagenesis, and biochemistry. J. Bacteriol. 190, 1507–1517 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Charlson, E. S., Werner, J. N. & Misra, R. Differential effects of yfgL mutation on Escherichia coli outer membrane proteins and lipopolysaccharide. J. Bacteriol. 188, 7186–7194 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Knowles, T. J. et al. Structure and function of BamE within the outer membrane and the β-barrel assembly machine. EMBO Rep. 12, 123–128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wu, T. et al. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121, 235–245 (2005). The authors of this paper provide the first documented evidence that BamA forms a hetero-oligomeric structure with the BamBCD lipoproteins, which were identified as accessory components of the complex.

    Article  CAS  PubMed  Google Scholar 

  134. Eggert, U. S. et al. Genetic basis for activity differences between vancomycin and glycolipid derivatives of vancomycin. Science 294, 361–364 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Rigel, N. W., Schwalm, J., Ricci, D. P. & Silhavy, T. J. BamE modulates the Escherichia coli beta-barrel assembly machine component BamA. J. Bacteriol. 16 Dec 2011 (doi:10.1128/JB.06426-11).

    Article  PubMed  CAS  Google Scholar 

  136. Delattre, A.-S. et al. Functional importance of a conserved sequence motif in FhaC, a prototypic member of the TpsB/Omp85 superfamily. FEBS J. 277, 4755–4765 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Krojer, T. et al. Structural basis for the regulated protease and chaperone function of DegP. Nature 453, 885–890 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. E. Fitzpatrick for helpful discussion and critical reading of the manuscript. This work was supported by the UK Medical Research Council and UK Biotechnology and Biological Sciences Research Council grants to I.R.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denisse L. Leyton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Ian R. Henderson's homepage

Protein Data Bank

SUPPLEMENTARY INFORMATION

S1 (table)

Glossary

Translocation

The movement of proteins from one subcellular location to another (including movement to outside the cell).

Signal peptide

A short sequence found in nascent proteins that directs their transport to a particular subcellular location.

Signal peptidase

An endopeptidase that removes the signal peptide after protein translocation.

SPATE

Serine protease autotransporters from members of the family Enterobacteriaceae.

Lol pathway

A lipoprotein-specific sorting machinery that transfers lipoproteins from the inner membrane to the outer membrane.

Crosslink

To form a covalent bond between adjacent chains of a molecule.

POTRA domains

(Polypeptide transport-associated domains). Protein domains that are found in β-barrel assembly machinery protein A (BamA) family members.

Brownian ratchet

Directionally biased diffusion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leyton, D., Rossiter, A. & Henderson, I. From self sufficiency to dependence: mechanisms and factors important for autotransporter biogenesis. Nat Rev Microbiol 10, 213–225 (2012). https://doi.org/10.1038/nrmicro2733

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro2733

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology