Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Viroporins: structure and biological functions

Key Points

  • Viroporins are small virally encoded hydrophobic proteins that oligomerize in the membrane of host cells, leading to the formation of hydrophilic pores. This activity modifies several cellular functions, including membrane permeability, Ca2+ homeostasis, membrane remodelling and glycoprotein trafficking.

  • A classification scheme for viroporins is proposed on the basis of their structure and membrane topology. Thus, class I and class II viroporins are defined according to the number of transmembrane domains in the protein (one and two, respectively), and subclasses are defined according to their orientation in the membrane.

  • The main function of viroporins during viral replication is to participate in virion morphogenesis and release from host cells. In addition, some viroporins are involved in viral entry and genome replication.

  • The structure and activity of several viroporins, such as picornavirus protein 2B (P2B), influenza A virus matrix protein 2 (M2), hepatitis C virus p7 and HIV-1 viral protein U (Vpu), have been analysed in detail.

  • New members of this expanding family of viral proteins have been described, from both RNA and DNA viruses. In addition to having a common general structure, all of these new viroporins have the ability to increase membrane permeability.

  • Viroporins represent ideal targets to block viral replication and the spread of infection. Although a number of selective inhibitors of viroporin ion channels have been analysed in detail, optimized screening systems promise to provide new and more potent antiviral compounds in the near future.

Abstract

Viroporins are small, hydrophobic proteins that are encoded by a wide range of clinically relevant animal viruses. When these proteins oligomerize in host cell membranes, they form hydrophilic pores that disrupt a number of physiological properties of the cell. Viroporins are crucial for viral pathogenicity owing to their involvement in several diverse steps of the viral life cycle. Thus, these viral proteins, which include influenza A virus matrix protein 2 (M2), HIV-1 viral protein U (Vpu) and hepatitis C virus p7, represent ideal targets for therapeutic intervention, and several compounds that block their pore-forming activity have been identified. Here, we review recent studies in the field that have advanced our knowledge of the structure and function of this expanding family of viral proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classification of viroporins according to the number of transmembrane domains and the membrane topology of the constituent monomers.
Figure 2: Cytopathic effects of viroporins and their functions during the viral life cycle.
Figure 3: Model of a viroporin promoting viral budding at the plasma membrane.
Figure 4: Three-dimensional structures of selected viroporins.

Similar content being viewed by others

References

  1. Carrasco, L. Modification of membrane permeability by animal viruses. Adv. Virus Res. 45, 61–112 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gonzalez, M. E. & Carrasco, L. Viroporins. FEBS Lett. 552, 28–34 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Hout, D. R. et al. Vpu: A multifunctional protein that enhances the pathogenesis of human immunodeficiency virus type 1. Curr. HIV Res. 2, 255–270 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Griffin, S. D. Plugging the holes in hepatitis C virus antiviral therapy. Proc. Natl Acad. Sci. USA 106, 12567–12568 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, J., Qiu, J. X., Soto, C. & DeGrado, W. F. Structural and dynamic mechanisms for the function and inhibition of the M2 proton channel from influenza A virus. Curr. Opin. Struct. Biol. 21, 68–80 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fischer, W. B. & Hsu, H. J. Viral channel forming proteins—modeling the target. Biochim. Biophys. Acta 1808, 561–571 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Carrasco, L. Membrane leakiness after viral infection and a new approach to the development of antiviral agents. Nature 272, 694–699 (1978). This study demonstrates that inhibitors of translation which are usually incapable of passing through the plasma membrane of cells selectively enter virus-infected cells and block protein synthesis.

    Article  CAS  PubMed  Google Scholar 

  8. Carrasco, L. & Smith, A. E. Sodium ions and the shut-off of host cell protein synthesis by picornaviruses. Nature 264, 807–809 (1976).

    Article  CAS  PubMed  Google Scholar 

  9. Lama, J. & Carrasco, L. Expression of poliovirus nonstructural proteins in Escherichia coli cells. Modification of membrane permeability induced by 2B and 3A. J. Biol. Chem. 267, 15932–15937 (1992).

    CAS  PubMed  Google Scholar 

  10. Doedens, J. R. & Kirkegaard, K. Inhibition of cellular protein secretion by poliovirus proteins 2B and 3A. EMBO J. 14, 894–907 (1995). This report describes how poliovirus infection blocks the secretory pathway. This effect is observed by transgenic expression of the non-structural proteins P2B or P3A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aldabe, R., Barco, A. & Carrasco, L. Membrane permeabilization by poliovirus proteins 2B and 2BC. J. Biol. Chem. 271, 23134–23137 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Aldabe, R., Irurzun, A. & Carrasco, L. Poliovirus protein 2BC increases cytosolic free calcium concentrations. J. Virol. 71, 6214–6217 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. van Kuppeveld, F. J. et al. Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. EMBO J. 16, 3519–3532 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barco, A. & Carrasco, L. A human virus protein, poliovirus protein 2BC, induces membrane proliferation and blocks the exocytic pathway in the yeast Saccharomyces cerevisiae. EMBO J. 14, 3349–3364 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pinto, L. H., Holsinger, L. J. & Lamb, R. A. Influenza virus M2 protein has ion channel activity. Cell 69, 517–528 (1992). This article shows that the expression of IAV M2 in X. laevis oocytes results in the formation of ion channels that are inhibited by amantadine.

    Article  CAS  PubMed  Google Scholar 

  16. Sakaguchi, T., Leser, G. P. & Lamb, R. A. The ion channel activity of the influenza virus M2 protein affects transport through the Golgi apparatus. J. Cell Biol. 133, 733–747 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Pinto, L. H. & Lamb, R. A. The M2 proton channels of influenza A and B viruses. J. Biol. Chem. 281, 8997–9000 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Pielak, R. M. & Chou, J. J. Influenza M2 proton channels. Biochim. Biophys. Acta 1808, 522–529 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Melton, J. V. et al. Alphavirus 6K proteins form ion channels. J. Biol. Chem. 277, 46923–46931 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Sanz, M. A., Madan, V., Carrasco, L. & Nieva, J. L. Interfacial domains in Sindbis virus 6K protein. Detection and functional characterization. J. Biol. Chem. 278, 2051–2057 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Sanz, M. A., Madan, V., Nieva, J. L. & Carrasco, L. in Viral Membrane Proteins: Structure, Function, and Drug Design (ed. Fischer, W.) 233–244 (Kluwer Academic/Plenum Publishers, 2005).

    Book  Google Scholar 

  22. Park, S. H. et al. Three-dimensional structure of the channel-forming trans-membrane domain of virus protein “u” (Vpu) from HIV-1. J. Mol. Biol. 333, 409–424 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Neil, S. J., Zang, T. & Bieniasz, P. D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451, 425–430 (2008). This work demonstrates that the HIV-1 viroporin Vpu counteracts the effects of tetherin, thereby facilitating the release of HIV-1 particles.

    Article  CAS  PubMed  Google Scholar 

  24. Griffin, S. D. et al. The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Lett. 535, 34–38 (2003). This study describes the capacity of HCV p7 to form ion channels, confirming its identity as a genuine viroporin.

    Article  CAS  PubMed  Google Scholar 

  25. Pavlovic, D. et al. The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc. Natl Acad. Sci. USA 100, 6104–6108 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jones, C. T., Murray, C. L., Eastman, D. K., Tassello, J. & Rice, C. M. Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus. J. Virol. 81, 8374–8383 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Steinmann, E. et al. Hepatitis C virus p7 protein is crucial for assembly and release of infectious virions. PLoS Pathog. 3, 962–971 (2007).

    Article  CAS  Google Scholar 

  28. Steinmann, E. et al. Antiviral effects of amantadine and iminosugar derivatives against hepatitis C virus. Hepatology 46, 330–338 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Luik, P. et al. The 3-dimensional structure of a hepatitis C virus p7 ion channel by electron microscopy. Proc. Natl Acad. Sci. USA 106, 12712–12716 (2009). This article provides the first reported structural reconstruction of a full-length viroporin immersed in a membrane-like environment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Van Damme, N. et al. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3, 245–252 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cady, S. D. et al. Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463, 689–692 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wozniak, A. L. et al. Intracellular proton conductance of the hepatitis C virus p7 protein and its contribution to infectious virus production. PLoS Pathog. 6, e1001087 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ewart, G. D., Mills, K., Cox, G. B. & Gage, P. W. Amiloride derivatives block ion channel activity and enhancement of virus-like particle budding caused by HIV-1 protein Vpu. Eur. Biophys. J. 31, 26–35 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Watanabe, S., Watanabe, T. & Kawaoka, Y. Influenza A virus lacking M2 protein as a live attenuated vaccine. J. Virol. 83, 5947–5950 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dube, M., Bego, M. G., Paquay, C. & Cohen, E. A. Modulation of HIV-1-host interaction: role of the Vpu accessory protein. Retrovirology 7, 114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu, W. et al. Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. Proc. Natl Acad. Sci. USA 103, 12540–12545 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gonzalez, M. E. & Carrasco, L. Human immunodeficiency virus type 1 VPU protein affects Sindbis virus glycoprotein processing and enhances membrane permeabilization. Virology 279, 201–209 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Brohm, C. et al. Characterization of determinants important for hepatitis C virus p7 function in morphogenesis by using trans-complementation. J. Virol. 83, 11682–11693 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hout, D. R. et al. Substitution of the transmembrane domain of Vpu in simian–human immunodeficiency virus (SHlVKu1bMC33) with that of M2 of influenza A results in a virus that is sensitive to inhibitors of the M2 ion channel and is pathogenic for pig-tailed macaques. Virology 344, 541–559 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Carrasco, L., Guinea, R., Irurzun, A. & Barco, A. in Molecular Biology of Picornaviruses (eds Semler, B. L. & Wimmer, E.) 337–354 (American Society for Microbiology Press, 2002).

    Google Scholar 

  41. Madan, V., Redondo, N. & Carrasco, L. Cell permeabilization by poliovirus 2B viroporin triggers bystander permeabilization in neighbouring cells through a mechanism involving gap junctions. Cell. Microbiol. 12, 1144–1157 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Han, Z. Y. & Harty, R. N. The NS3 protein of bluetongue virus exhibits viroporin-like properties. J. Biol. Chem. 279, 43092–43097 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Madan, V., Sanz, M. A. & Carrasco, L. Requirement of the vesicular system for membrane permeabilization by Sindbis virus. Virology 332, 307–315 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, D. X., Yuan, Q. & Liao, Y. Coronavirus envelope protein: a small membrane protein with multiple functions. Cell. Mol. Life Sci. 64, 2043–2048 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Han, Z. Y., Licata, J. M., Paragas, J. & Harty, R. N. Permeabilization of the plasma membrane by Ebola virus GP2. Virus Genes 34, 273–281 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Suzuki, T. et al. The human polyoma JC virus agnoprotein acts as a viroporin. PLoS Pathog. 6, e1000801 (2010). An instructive example of the thorough analysis that is required in order to specifically identify and classify new members of the viroporin family.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Agirre, A., Barco, A., Carrasco, L. & Nieva, J. L. Viroporin-mediated membrane permeabilization. Pore formation by nonstructural poliovirus 2B protein. J. Biol. Chem. 277, 40434–40441 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Fischer, W. B. & Kruger, J. Viral channel-forming proteins. Int. Rev. Cell. Mol. Biol. 275, 35–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pinto, L. H. et al. A functionally defined model for the M2 proton channel of influenza A virus suggests a mechanism for its ion selectivity. Proc. Natl Acad. Sci. USA 94, 11301–11306 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schubert, U. et al. Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells. FEBS Lett. 398, 12–18 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Mehnert, T. et al. Biophysical characterization of Vpu from HIV-1 suggests a channel-pore dualism. Proteins 70, 1488–1497 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Madan, V., Castello, A. & Carrasco, L. Viroporins from RNA viruses induce caspase-dependent apoptosis. Cell. Microbiol. 10, 437–451 (2008).

    CAS  PubMed  Google Scholar 

  53. Gonzalez, M. E. & Carrasco, L. The human immunodeficiency virus type 1 Vpu protein enhances membrane permeability. Biochemistry 37, 13710–13719 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Clarke, D. et al. Evidence for the formation of a heptameric ion channel complex by the hepatitis C virus p7 protein in vitro. J. Biol. Chem. 281, 37057–37068 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Madan, V., Garcia Mde, J., Sanz, M. A. & Carrasco, L. Viroporin activity of murine hepatitis virus E protein. FEBS Lett. 579, 3607–3612 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wilson, L., McKinlay, C., Gage, P. & Ewart, G. SARS coronavirus E protein forms cation-selective ion channels. Virology 330, 322–331 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Phillips, R., Ursell, T., Wiggins, P. & Sens, P. Emerging roles for lipids in shaping membrane-protein function. Nature 459, 379–385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chami, M., Ferrari, D., Nicotera, P., Paterlini-Brechot, P. & Rizzuto, R. Caspase-dependent alterations of Ca2+ signaling in the induction of apoptosis by hepatitis B virus X protein. J. Biol. Chem. 278, 31745–31755 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. de Jong, A. S. et al. Functional analysis of picornavirus 2B proteins: effects on calcium homeostasis and intracellular protein trafficking. J. Virol. 82, 3782–3790 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hyser, J. M., Collinson-Pautz, M. R., Utama, B. & Estes, M. K. Rotavirus disrupts calcium homeostasis by NSP4 viroporin activity. mBio 1, e00265-10 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. van Kuppeveld, F. J., Below, G. & Ehrenfeld, E. in The Picornaviruses (eds Ehrenfeld, E., Domingo, E. & Roos, R. P.) 181–193 (American Society for Microbiology Press, 2010).

    Google Scholar 

  62. Diaz, Y. et al. Expression of nonstructural rotavirus protein NSP4 mimics Ca2+ homeostasis changes induced by rotavirus infection in cultured cells. J. Virol. 82, 11331–11343 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhou, Y., Frey, T. K. & Yang, J. J. Viral calciomics: interplays between Ca2+ and virus. Cell Calcium 46, 1–17 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hajnoczky, G., Davies, E. & Madesh, M. Calcium signaling and apoptosis. Biochem. Biophys. Res. Commun. 304, 445–454 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Jacotot, E. et al. The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J. Exp. Med. 191, 33–46 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hsu, N. Y. et al. Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell 141, 799–811 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Suhy, D. A., Giddings, T. H. Jr & Kirkegaard, K. Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J. Virol. 74, 8953–8965 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. de Jong, A. S. et al. The coxsackievirus 2B protein increases efflux of ions from the endoplasmic reticulum and Golgi, thereby inhibiting protein trafficking through the Golgi. J. Biol. Chem. 281, 14144–14150 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Kirkegaard, K. Subversion of the cellular autophagy pathway by viruses. Curr. Top. Microbiol. Immunol. 335, 323–333 (2009).

    CAS  PubMed  Google Scholar 

  70. Ruiz, A., Guatelli, J. C. & Stephens, E. B. The Vpu protein: new concepts in virus release and CD4 down-modulation. Curr. HIV Res. 8, 240–252 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dube, M. et al. HIV-1 Vpu antagonizes BST-2 by interfering mainly with the trafficking of newly synthesized BST-2 to the cell surface. Traffic 12, 1714–1729 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Martin-Serrano, J. & Neil, S. J. Host factors involved in retroviral budding and release. Nature Rev. Microbiol. 9, 519–531 (2011).

    Article  CAS  Google Scholar 

  73. Terwilliger, E. F., Cohen, E. A., Lu, Y. C., Sodroski, J. G. & Haseltine, W. A. Functional role of human immunodeficiency virus type 1 vpu. Proc. Natl Acad. Sci. USA 86, 5163–5167 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Iwatsuki-Horimoto, K. et al. The cytoplasmic tail of the influenza A virus M2 protein plays a role in viral assembly. J. Virol. 80, 5233–5240 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hsu, K., Han, J., Shinlapawittayatorn, K., Deschenes, I. & Marban, E. Membrane potential depolarization as a triggering mechanism for Vpu-mediated HIV-1 release. Biophys. J. 99, 1718–1725 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang, D. T., Chi, N., Chen, S. C., Lee, T. Y. & Hsu, K. Background K2P channels KCNK3/9/15 limit the budding of cell membrane-derived vesicles. Cell Biochem. Biophys. 61, 585–594 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schnell, J. R. & Chou, J. J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451, 591–595 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Leiding, T., Wang, J., Martinsson, J., DeGrado, W. F. & Arskold, S. P. Proton and cation transport activity of the M2 proton channel from influenza A virus. Proc. Natl Acad. Sci. USA 107, 15409–15414 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sharma, M. et al. Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer. Science 330, 509–512 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rossman, J. S., Jing, X., Leser, G. P. & Lamb, R. A. Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell 142, 902–913 (2010). This study localizes IAV M2 to the neck of budding influenza viruses and describes its participation in virion scission from host cell membranes, in agreement with previously reported results.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Carrasco, L. Entry of animal viruses and macromolecules into cells. FEBS Lett. 350, 151–154 (1994).

    Article  CAS  PubMed  Google Scholar 

  82. Watanabe, T., Watanabe, S., Ito, H., Kida, H. & Kawaoka, Y. Influenza A virus can undergo multiple cycles of replication without M2 ion channel activity. J. Virol. 75, 5656–5662 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Griffin, S. et al. Genotype-dependent sensitivity of hepatitis C virus to inhibitors of the p7 ion channel. Hepatology 48, 1779–1790 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Fernandez-Puentes, C. & Carrasco, L. Viral infection permeabilizes mammalian cells to protein toxins. Cell 20, 769–775 (1980).

    Article  CAS  PubMed  Google Scholar 

  85. Nieva, J. L., Agirre, A., Nir, S. & Carrasco, L. Mechanisms of membrane permeabilization by picornavirus 2B viroporin. FEBS Lett. 552, 68–73 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. van Kuppeveld, F. J., Galama, J. M., Zoll, J., van den Hurk, P. J. & Melchers, W. J. Coxsackie B3 virus protein 2B contains cationic amphipathic helix that is required for viral RNA replication. J. Virol. 70, 3876–3886 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. van Kuppeveld, F. J., Melchers, W. J., Kirkegaard, K. & Doedens, J. R. Structure-function analysis of coxsackie B3 virus protein 2B. Virology 227, 111–118 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Martinez-Gil, L. et al. Membrane integration of poliovirus 2B viroporin. J. Virol. 85, 11315–11324 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Barco, A. & Carrasco, L. Identification of regions of poliovirus 2BC protein that are involved in cytotoxicity. J. Virol. 72, 3560–3570 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. de Jong, A. S. et al. Determinants for membrane association and permeabilization of the coxsackievirus 2B protein and the identification of the Golgi complex as the target organelle. J. Biol. Chem. 278, 1012–1021 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. van Kuppeveld, F. J., Melchers, W. J., Willems, P. H. & Gadella, T. W. Jr. Homomultimerization of the coxsackievirus 2B protein in living cells visualized by fluorescence resonance energy transfer microscopy. J. Virol. 76, 9446–9456 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Patargias, G., Barke, T., Watts, A. & Fischer, W. B. Model generation of viral channel forming 2B protein bundles from polio and coxsackie viruses. Mol. Membr. Biol. 26, 309–320 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Ojcius, D. M. & Young, J. D. Cytolytic pore-forming proteins and peptides: is there a common structural motif? Trends Biochem. Sci. 16, 225–229 (1991).

    Article  CAS  PubMed  Google Scholar 

  94. Madan, V. et al. Plasma membrane-porating domain in poliovirus 2B protein. A short peptide mimics viroporin activity. J. Mol. Biol. 374, 951–964 (2007). The region from poliovirus viroporin P2B that assembles hydrophilic pores is defined by assessing the pore-forming activity of an overlapping peptide library of the P2B sequence. The peptide comprising the amphipathic α-helix of P2B permeabilizes liposomes as well as bacterial and mammalian cells and has ion channel activity when inserted into the plasma membrane.

    Article  CAS  PubMed  Google Scholar 

  95. Sanchez-Martinez, S. et al. Functional and structural characterization of 2B viroporin membranolytic domains. Biochemistry 47, 10731–10739 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Hoofnagle, J. H. Course and outcome of hepatitis C. Hepatology 36, S21–S29 (2002).

    PubMed  Google Scholar 

  97. Moradpour, D., Penin, F. & Rice, C. M. Replication of hepatitis C virus. Nature Rev. Microbiol. 5, 453–463 (2007).

    Article  CAS  Google Scholar 

  98. Steinmann, E. & Pietschmann, T. Hepatitis C virus P7—a viroporin crucial for virus assembly and an emerging target for antiviral therapy. Viruses 2, 2078–2095 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Premkumar, A., Wilson, L., Ewart, G. D. & Gage, P. W. Cation-selective ion channels formed by p7 of hepatitis C virus are blocked by hexamethylene amiloride. FEBS Lett. 557, 99–103 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Montserret, R. et al. NMR structure and ion channel activity of the p7 protein from hepatitis C virus. J. Biol. Chem. 285, 31446–31461 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. McCown, M. F. & Pekosz, A. The influenza A virus M2 cytoplasmic tail is required for infectious virus production and efficient genome packaging. J. Virol. 79, 3595–3605 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ichinohe, T., Pang, I. K. & Iwasaki, A. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nature Immunol. 11, 404–410 (2010).

    Article  CAS  Google Scholar 

  103. Ma, H. et al. Human annexin A6 interacts with influenza A virus protein M2 and negatively modulates infection. J. Virol. 86, 1789–1901 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gannage, M. et al. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host Microbe 6, 367–380 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cordes, F. S., Tustian, A. D., Sansom, M. S., Watts, A. & Fischer, W. B. Bundles consisting of extended transmembrane segments of Vpu from HIV-1: computer simulations and conductance measurements. Biochemistry 41, 7359–7365 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Kueck, T. & Neil, S. J. A. Cytoplasmic tail determinant in HIV-1 Vpu mediates targeting of tetherin for endosomal degradation and counteracts interferon-induced restriction. PLoS Pathog. 8, e1002609 (2011).

    Article  Google Scholar 

  107. Magadan, J. G. & Bonifacino, J. S. Transmembrane domain determinants of CD4 downregulation by HIV-1 Vpu. J. Virol. 86, 757–772 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Iwabu, Y. et al. HIV-1 accessory protein Vpu internalizes cell-surface BST-2/tetherin through transmembrane interactions leading to lysosomes. J. Biol. Chem. 284, 35060–35072 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Perez-Caballero, D. et al. Tetherin inhibits HIV-1 release by directly tethering virions to cells. Cell 139, 499–511 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Evans, D. T., Serra-Moreno, R., Singh, R. K. & Guatelli, J. C. BST-2/tetherin: a new component of the innate immune response to enveloped viruses. Trends Microbiol. 18, 388–396 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Neil, S. J., Sandrin, V., Sundquist, W. I. & Bieniasz, P. D. An interferon-alpha-induced tethering mechanism inhibits HIV-1 and Ebola virus particle release but is counteracted by the HIV-1 Vpu protein. Cell Host Microbe 2, 193–203 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Acharya, R. et al. Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus. Proc. Natl Acad. Sci. USA 107, 15075–15080 (2010). On the basis of the high-resolution structure of the M2 channel, the authors of this report suggest mechanisms for proton conductance and asymmetrical diffusion in the presence of a proton gradient.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Moffat, J. C. et al. Proton transport through influenza A virus M2 protein reconstituted in vesicles. Biophys. J. 94, 434–445 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Stouffer, A. L. et al. Structural basis for the function and inhibition of an influenza virus proton channel. Nature 451, 596–599 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Lu, J. X., Sharpe, S., Ghirlando, R., Yau, W. M. & Tycko, R. Oligomerization state and supramolecular structure of the HIV-1 Vpu protein transmembrane segment in phospholipid bilayers. Protein Sci. 19, 1877–1896 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lopez, C. F., Montal, M., Blasie, J. K., Klein, M. L. & Moore, P. B. Molecular dynamics investigation of membrane-bound bundles of the channel-forming transmembrane domain of viral protein U from the human immunodeficiency virus HIV-1. Biophys. J. 83, 1259–1267 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cook, G. A. & Opella, S. J. Secondary structure, dynamics, and architecture of the p7 membrane protein from hepatitis C virus by NMR spectroscopy. Biochim. Biophys. Acta 1808, 1448–1453 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Kendal, A. P. & Klenk, H. D. Amantadine inhibits an early, M2 protein-dependent event in the replication cycle of avian influenza (H7) viruses. Arch. Virol. 119, 265–273 (1991).

    Article  CAS  PubMed  Google Scholar 

  119. StGelais, C. et al. Inhibition of hepatitis C virus p7 membrane channels in a liposome-based assay system. Antiviral Res. 76, 48–58 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Govorkova, E. A. & Webster, R. G. Combination chemotherapy for influenza. Viruses 2, 1510–1529 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Foster, T. L. et al. Resistance mutations define specific antiviral effects for inhibitors of the hepatitis C virus p7 ion channel. Hepatology 54, 79–90 (2011). Specific resistance mutations are used to define the mode of action for two classes of p7 inhibitors: adamantanes and alkylated imino sugars. Adamantanes prevent the channel opening that is mediated by low pH, whereas imino sugars prevent p7 oligomerization and channel formation.

    Article  CAS  PubMed  Google Scholar 

  122. van Soest, H. et al. No beneficial effects of amantadine in treatment of chronic hepatitis C patients. Dig. Liver Dis. 42, 496–502 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Pawlotsky, J. M., Chevaliez, S. & McHutchison, J. G. The hepatitis C virus life cycle as a target for new antiviral therapies. Gastroenterology 132, 1979–1998 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Wilson, L., Gage, P. & Ewart, G. Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication. Virology 353, 294–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Luscombe, C. A. et al. A novel Hepatitis C virus p7 ion channel inhibitor, BIT225, inhibits bovine viral diarrhea virus in vitro and shows synergism with recombinant interferon-α-2b and nucleoside analogues. Antiviral Res. 86, 144–153 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Khoury, G., Ewart, G., Luscombe, C., Miller, M. & Wilkinson, J. Antiviral efficacy of the novel compound BIT225 against HIV-1 release from human macrophages. Antimicrob. Agents Chemother. 54, 835–845 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Xie, S. Q. et al. DIDS blocks a chloride-dependent current that is mediated by the 2B protein of enterovirus 71. Cell Res. 21, 1271–1275 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gervais, C. et al. Development and validation of a high-throughput screening assay for the hepatitis C virus p7 viroporin. J. Biomol. Screen 16, 363–369 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Raghava, S., Giorda, K. M., Romano, F. B., Heuck, A. P. & Hebert, D. N. The SV40 late protein VP4 is a viroporin that forms pores to disrupt membranes for viral release. PLoS Pathog. 7, e1002116 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wetherill, L. F. et al. High-risk human papillomavirus E5 oncoprotein displays channel-forming activity sensitive to small-molecule inhibitors. J. Virol. 86, 5341–5351 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Machamer, C. E. & Youn, S. The transmembrane domain of the infectious bronchitis virus E protein is required for efficient virus release. Adv. Exp. Med. Biol. 581, 193–198 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ye, Y. & Hogue, B. G. Role of the coronavirus E viroporin protein transmembrane domain in virus assembly. J. Virol. 81, 3597–3607 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tan, Y. J., Lim, S. G. & Hong, W. Regulation of cell death during infection by the severe acute respiratory syndrome coronavirus and other coronaviruses. Cell. Microbiol. 9, 2552–2561 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Plugge, B. et al. A potassium channel protein encoded by chlorella virus PBCV-1. Science 287, 1641–1644 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Wang, K., Xie, S. Q. & Sun, B. Viral proteins function as ion channels. Biochim. Biophys. Acta 1808, 510–515 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Gladue, D. P. et al. Classical swine fever virus p7 protein is a viroporin involved in virulence in swine. J. Virol. 86, 6778–6791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mould, J. A. et al. Influenza B virus BM2 protein has ion channel activity that conducts protons across membranes. Dev. Cell 5, 175–184 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Piller, S. C., Ewart, G. D., Premkumar, A., Cox, G. B. & Gage, P. W. Vpr protein of human immunodeficiency virus type 1 forms cation-selective channels in planar lipid bilayers. Proc. Natl Acad. Sci. USA 93, 111–115 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Silic-Benussi, M., Marin, O., Biasiotto, R., D'Agostino, D. M. & Ciminale, V. Effects of human T-cell leukemia virus type 1 (HTLV-1) p13 on mitochondrial K+ permeability: a new member of the viroporin family? FEBS Lett. 584, 2070–2075 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

L.C. is supported by the Spanish Ministerio de Ciencia e Innovacion (MICIIN) (grant BFU2009-07352), and J.L.N. is supported by the MICIIN (grant BIO2011-29792) and the Basque Government (grant GIU-06/42). The authors also acknowledge the institutional grant from the Fundacion Ramón Areces to the Centro de Biología Molecular Severo Ochoa at the Universidad Autónoma de Madrid, Spain, and the Spanish Science Research Council (CSIC). The authors thank M. E. González for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

DATABASES

1PI7

2K8J

3LBW

FURTHER INFORMATION

Luis Carrasco's homepage

Glossary

Patch clamping

A high-resolution electrophysiological technique that allows currents to be recorded through single ion channels. The technique uses glass pipettes to electrically isolate channel-containing membrane patches. Current flow can be recorded in cell-attached and excised membrane patches.

Hygromycin B test

An experiment to test membrane permeability. Hygromycin, an inhibitor of translation, does not easily pass through the plasma membrane of control cells, but after cell permeabilization by viroporins, the inhibitor is able to reach its target (the ribosome) and block protein synthesis.

Ionophore

A lipophilic compound that inserts into membranes and transports ions in favour of the electrochemical gradient.

Adamantane

A rigid molecule with a backbone based on three interconnected cyclohexane rings. Derivatives of adamantane (amantadine and rimantadine) have been shown to be effective inhibitors of viroporin activity in some cases.

Molecular dynamics simulations

Computational simulations that calculate the time-dependent motions of atoms in a molecular system. This method is used to obtain microscopic-level information about the fluctuations and conformational changes of proteins.

Inflammasomes

Protein complexes that are involved in the processing and release of pro-inflammatory cytokines during the innate immune response to viral infection.

Autophagosome

A double-membraned vesicle that captures cellular components (including proteins, membrane fragments and whole organelles) and delivers them to lysosomes for degradation through a process called autophagy.

Asymmetrical conductance

The capacity of an ion channel to conduct preferentially outward or preferentially inward ion fluxes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieva, J., Madan, V. & Carrasco, L. Viroporins: structure and biological functions. Nat Rev Microbiol 10, 563–574 (2012). https://doi.org/10.1038/nrmicro2820

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro2820

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology