Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Looking under the skin: the first steps in malarial infection and immunity

A Corrigendum to this article was published on 08 October 2013

This article has been updated

Key Points

  • Malaria is the most deadly parasitic infection of humans, killing up to 1 million people per year. No vaccine is currently available, and the development of drug-resistant Plasmodium spp. is of increasing concern.

  • The first phase of infection, the pre-erythrocytic (PE) phase, is clinically asymptomatic. Only after parasite replication in the liver and infection of large numbers of erythrocytes do symptoms arise.

  • The PE phase comprises sporozoites (the infectious stage) and the liver stages. Once injected by a mosquito, the sporozoites can remain in the skin, be transported in lymph vessels to draining lymph nodes or travel through the bloodstream to the liver. In the liver, sporozoites undergo an elaborate replication and developmental programme and transform into the merozoites that are released from the liver to infect erythrocytes.

  • The PE phase of infection is a formidable window of opportunity for therapeutic interventions owing to the small number of parasites present. Thus, targeting this 'bottleneck' of Plasmodium spp. infection with vaccines is an attractive strategy.

  • Live attenuated parasites mimicking the PE phase of infection can be used as vaccines. Attenuation is achieved by radiation, genetic alterations or drug-mediated developmental arrest.

Abstract

Malaria, which is caused by Plasmodium spp., starts with an asymptomatic phase, during which sporozoites, the parasite form that is injected into the skin by a mosquito, develop into merozoites, the form that infects erythrocytes. This pre-erythrocytic phase is still the most enigmatic in the parasite life cycle, but has long been recognized as an attractive vaccination target. In this Review, we present what has been learned in recent years about the natural history of the pre-erythrocytic stages, mainly using intravital imaging in rodents. We also consider how this new knowledge is in turn changing our understanding of the immune response mounted by the host against the pre-erythrocytic forms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Plasmodium spp. life cycle.
Figure 2: The pre-erythrocytic phase in rodents.
Figure 3: Host cell traversal by sporozoites.
Figure 4: Liver-stage maturation and live attenuated parasite-based vaccine strategies.

Similar content being viewed by others

Change history

  • 08 October 2013

    In Box 3 of the above article (page 709) the sentence “Recently, it was found that five intravenous injections of >105 cryopreserved RAS protected all six tested patients against a challenge by bites of five mosquitoes 3 weeks after the last immunization dose, whereas four intravenous immunizations protected only three of nine patients139” should have read “Recently, it was found that five intravenous injections of >105 cryopreserved RAS protected all six tested patients against a challenge by bites of five mosquitoes 3 weeks after the last immunization dose, whereas four intravenous immunizations protected only six of nine patients139.” The authors apologize to readers for any misunderstanding caused. This has now been corrected online.

References

  1. Carter, R. & Mendis, K. N. Evolutionary and historical aspects of the burden of malaria. Clin. Microbiol. Rev. 15, 564–594 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  2. WHO. Malaria fact sheet. WHO Media Center [online], (2013).

  3. Mbogo, C. M. et al. Spatial and temporal heterogeneity of Anopheles mosquitoes and Plasmodium falciparum transmission along the Kenyan coast. Am. J. Trop. Med. Hyg. 68, 734–742 (2003).

    Article  PubMed  Google Scholar 

  4. Mulligan, H. W., Russell, P. F. & Mohan, B. N. Active immunization of fowls against Plasmodium gallinaceum by injections of killed homologous sporozoites. J. Malaria Inst. India 4, 25–34 (1941).

    Google Scholar 

  5. Nussenzweig, R. S., Vanderberg, J., Most, H. & Orton, C. Protective immunity produced by the injection of X-irradiated sporozoites of Plasmodium berghei. Nature 216, 160–162 (1967). The first vaccination of mice against sporozoite challenge.

    Article  CAS  PubMed  Google Scholar 

  6. Clyde, D. F., Most, H., McCarthy, V. C. & Vanderberg, J. P. Immunization of man against sporozoite-induced falciparum malaria. Am. J. Med. Sci. 266, 169–177 (1973). The first vaccination of humans against malaria.

    Article  CAS  PubMed  Google Scholar 

  7. Laveran, A. Un nouveau parasite trouvé dans le sang des malades atteints de fièvre palustre: origine parasitaire des accidents de l'impaludisme. Bull. Mem. Soc. Med. Hop. Paris 17, 158–164 (in French) (1881).

    Google Scholar 

  8. Ross, R. On some peculiar pigmented cells found in two mosquitos fed on malaria blood. Br. Med. J. 2, 1786–1788 (1897).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Grassi, B., Bignami, A. & Bastianelli, G. Ulteriori ricerche sul ciclo dei parassiti malarici umani nel corpo del zanzarone. Atti R. Accad. Lincei 8, 21–28 (1899) (in Italian).

    Google Scholar 

  10. Huff, C. G. Life cycle of malarial parasites. Annu. Rev. Microbiol. 1, 43–60 (1947).

    Article  Google Scholar 

  11. Shortt, H. E., Garnham, P. C. C. & Malamos, B. The pre-erythrocytic stage of mammalian malaria. Br. Med. J. 1, 192–194 (1948). The first demonstration that sporozoites of Plasmodium spp. which infect mammals transform in the liver.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Krotoski, W. A. et al. Demonstration of hypnozoites in sporozoite-transmitted Plasmodium vivax infection. Am. J. Trop. Med. Hyg. 31, 1291–1293 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. Markus, M. B. The hypnozoite concept, with particular reference to malaria. Parasitol. Res. 108, 247–252 (2011).

    Article  PubMed  Google Scholar 

  14. Markus, M. B. Dormancy in mammalian malaria. Trends Parasitol. 28, 39–45 (2012).

    Article  PubMed  Google Scholar 

  15. Vincke, I. H. & Lips, M. Un nouveau Plasmodium d'un rongeur sauvage du Congo: Plasmodium berghei n. sp. Ann. Soc. Belge Med. Trop. 28, 97–104 (1948) (in French).

    CAS  PubMed  Google Scholar 

  16. Yoeli, M., Most, H. & Boné, G. Plasmodium berghei: cyclical transmissions by experimentally infected Anopheles quadrimaculatus. Science 144, 1580–1581 (1964).

    Article  CAS  PubMed  Google Scholar 

  17. Yoeli, M., Vanderberg, J., Upmanis, R. S. & Most, H. Primary tissue phase of Plasmodium berghei in different experimental hosts. Nature 208, 903 (1965). The first observation of P. berghei schizonts in the liver of rodents.

    Article  CAS  PubMed  Google Scholar 

  18. van Dijk, M. R., Janse, C. J. & Waters, A. P. Expression of a Plasmodium gene introduced into subtelomeric regions of Plasmodium berghei chromosomes. Science 271, 662–665 (1996). The first genetic transformation by homologous recombination in P. berghei erythrocytic stages.

    Article  CAS  PubMed  Google Scholar 

  19. Vanderberg, J. P. Studies on the motility of Plasmodium sporozoites. J. Protozool. 21, 527–537 (1974).

    Article  CAS  PubMed  Google Scholar 

  20. Vanderberg, J. P., Chew, S. & Stewart, M. J. Plasmodium sporozoite interactions with macrophages in vitro: a videomicroscopic analysis. J. Protozool. 37, 528–536 (1990). The first observation of Plasmodium sp.sporozoites traversing host cells in vitro.

    Article  CAS  PubMed  Google Scholar 

  21. Mota, M. M. et al. Migration of Plasmodium sporozoites through cells before infection. Science 291, 141–144 (2001). A study that shows the membrane-wounding activity of Plasmodium spp. sporozoites.

    Article  CAS  PubMed  Google Scholar 

  22. Hollingdale, M. R., Leef, J. L., McCullough, M. & Beaudoin, R. L. In vitro cultivation of the exoerythrocytic stage of Plasmodium berghei from sporozoites. Science 213, 1021–1022 (1981).

    Article  CAS  PubMed  Google Scholar 

  23. Mazier, D. et al. Complete development of hepatic stages of Plasmodium falciparum in vitro. Science 227, 440–442 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. Ponnudurai, T., Lensen, A. H., van Gemert, G. J., Bolmer, M. G. & Meuwissen, J. H. Feeding behaviour and sporozoite ejection by infected Anopheles stephensi. Trans. R. Soc. Trop. Med. Hyg. 85, 175–180 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Medica, D. L. & Sinnis, P. Quantitative dynamics of Plasmodium yoelii sporozoite transmission by infected anopheline mosquitoes. Infect. Immun. 73, 4363–4369 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Beier, J. C., Davis, J. R., Vaughan, J. A., Noden, B. H. & Beier, M. S. Quantitation of Plasmodium falciparum sporozoites transmitted in vitro by experimentally infected Anopheles gambiae and Anopheles stephensi. Am. J. Trop. Med. Hyg. 44, 564–570 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Frischknecht, F. et al. Imaging movement of malaria parasites during transmission by Anopheles mosquitoes. Cell. Microbiol. 6, 687–694 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Jin, Y., Kebaier, C. & Vanderberg, J. Direct microscopic quantification of dynamics of Plasmodium berghei sporozoite transmission from mosquitoes to mice. Infect. Immun. 75, 5532–5539 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Sidjanski, S. & Vanderberg, J. P. Delayed migration of Plasmodium sporozoites from the mosquito bite site to the blood. Am. J. Trop. Med. Hyg. 57, 426–429 (1997). Work showing that most sporozoites are deposited into the skin when a mosquito bites.

    Article  CAS  PubMed  Google Scholar 

  30. Matsuoka, H., Yoshida, S., Hirai, M. & Ishii, A. A rodent malaria, Plasmodium berghei, is experimentally transmitted to mice by merely probing of infective mosquito, Anopheles stephensi. Parasitol. Int. 51, 17–23 (2002).

    Article  PubMed  Google Scholar 

  31. Vanderberg, J. P. & Frevert, U. Intravital microscopy demonstrating antibody-mediated immobilisation of Plasmodium berghei sporozoites injected into skin by mosquitoes. Int. J. Parasitol. 34, 991–996 (2004). The first imaging of sporozoite gliding motility in the skin of mice.

    Article  PubMed  Google Scholar 

  32. Amino, R. et al. Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nature Med. 12, 220–224 (2006). An article describing the tripartite fate of sporozoites inoculated into the skin.

    Article  CAS  PubMed  Google Scholar 

  33. Amino, R. et al. Imaging malaria sporozoites in the dermis of the mammalian host. Nature Protoc. 2, 1705–1712 (2007).

    Article  CAS  Google Scholar 

  34. Yamauchi, L. M., Coppi, A., Snounou, G. & Sinnis, P. Plasmodium sporozoites trickle out of the injection site. Cell. Microbiol. 9, 1215–1222 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Xu, W.-Y., Wang, X.-X., Qi, J., Duan, J.-H. & Huang, F.-S. Plasmodium yoelii: influence of immune modulators on the development of the liver stage. Exp. Parasitol. 126, 254–258 (2010).

    Article  CAS  Google Scholar 

  36. Ellis, J. et al. Cloning and expression in E. coli of the malarial sporozoite surface antigen gene from Plasmodium knowlesi. Nature 302, 536–538 (1983). The first cloning of a Plasmodium spp. gene.

    Article  CAS  PubMed  Google Scholar 

  37. Pradel, G., Garapaty, S. & Frevert, U. Proteoglycans mediate malaria sporozoite targeting to the liver. Mol. Microbiol. 45, 637–651 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Suarez, J. E. et al. Plasmodium falciparum circumsporozoite (CS) protein peptides specifically bind to HepG2 cells. Vaccine 19, 4487–4495 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Rathore, D., Sacci, J. B., de la Vega, P. & McCutchan, T. F. Binding and invasion of liver cells by Plasmodium falciparum sporozoites. Essential involvement of the amino terminus of circumsporozoite protein. J. Biol. Chem. 277, 7092–7098 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Cerami, C. et al. The basolateral domain of the hepatocyte plasma membrane bears receptors for the circumsporozoite protein of Plasmodium falciparum sporozoites. Cell 70, 1021–1033 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Frevert, U. et al. Malaria circumsporozoite protein binds to heparan sulfate proteoglycans associated with the surface membrane of hepatocytes. J. Exp. Med. 177, 1287–1298 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Sinnis, P. et al. Structural and functional properties of region II-plus of the malaria circumsporozoite protein. J. Exp. Med. 180, 297–306 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Coppi, A. et al. The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host. J. Exp. Med. 208, 341–356 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Frevert, U. et al. Intravital observation of Plasmodium berghei sporozoite infection of the liver. PLoS Biol. 3, e192 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Mota, M. M., Hafalla, J. C. R. & Rodriguez, A. Migration through host cells activates Plasmodium sporozoites for infection. Nature Med. 8, 1318–1322 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Carrolo, M. et al. Hepatocyte growth factor and its receptor are required for malaria infection. Nature Med. 9, 1363–1369 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Kaushansky, A. & Kappe, S. H. I. The crucial role of hepatocyte growth factor receptor during liver-stage infection is not conserved among Plasmodium species. Nature Med. 17, 1180–1181 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Ishino, T., Yano, K., Chinzei, Y. & Yuda, M. Cell-passage activity is required for the malarial parasite to cross the liver sinusoidal cell layer. PLoS Biol. 2, e4 (2004). The generation of the first Plasmodium spp. sporozoites deficient in CT.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ishino, T., Chinzei, Y. & Yuda, M. A. Plasmodium sporozoite protein with a membrane attack complex domain is required for breaching the liver sinusoidal cell layer prior to hepatocyte infection. Cell. Microbiol. 7, 199–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Yuda, M. & Ishino, T. Liver invasion by malarial parasites — how do malarial parasites break through the host barrier? Cell. Microbiol. 6, 1119–1125 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Amino, R. et al. Host cell traversal is important for progression of the malaria parasite through the dermis to the liver. Cell Host Microbe 3, 88–96 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Tavares, J. et al. Role of host cell traversal by the malaria sporozoite during liver infection. J. Exp. Med. 210, 905–915 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Pradel, G. & Frevert, U. Malaria sporozoites actively enter and pass through rat Kupffer cells prior to hepatocyte invasion. Hepatology 33, 1154–1165 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Baer, K. et al. Kupffer cells are obligatory for Plasmodium yoelii sporozoite infection of the liver. Cell. Microbiol. 9, 397–412 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Coppi, A. et al. Heparan sulfate proteoglycans provide a signal to Plasmodium sporozoites to stop migrating and productively invade host cells. Cell Host Microbe 2, 316–327 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Frevert, U., Sinnis, P., Esko, J. D. & Nussenzweig, V. Cell surface glycosaminoglycans are not obligatory for Plasmodium berghei sporozoite invasion in vitro. Mol. Biochem. Parasitol. 76, 257–266 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Coppens, I., Sullivan, D. J. & Prigge, S. T. An update on the rapid advances in malaria parasite cell biology. Trends Parasitol. 26, 305–310 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Spielmann, T., Montagna, G. N., Hecht, L. & Matuschewski, K. Molecular make-up of the Plasmodium parasitophorous vacuolar membrane. Int. J. Med. Microbiol. 302, 179–186 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Graewe, S., Stanway, R. R., Rennenberg, A. & Heussler, V. T. Chronicle of a death foretold: Plasmodium liver stage parasites decide on the fate of the host cell. FEMS Microbiol. Rev. 36, 111–130 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Lim, L. & McFadden, G. I. The evolution, metabolism and functions of the apicoplast. Phil. Trans. R. Soc. 365, 749–763 (2010).

    Article  CAS  Google Scholar 

  61. Van de Sand, C. et al. The liver stage of Plasmodium berghei inhibits host cell apoptosis. Mol. Microbiol. 58, 731–742 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Rennenberg, A. et al. Exoerythrocytic Plasmodium parasites secrete a cysteine protease inhibitor involved in sporozoite invasion and capable of blocking cell death of host hepatocytes. PLoS Pathog. 6, e1000825 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Kaushansky, A. et al. Suppression of host p53 is critical for Plasmodium liver-stage infection. Cell Rep. 3, 630–637 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Sturm, A. et al. Alteration of the parasite plasma membrane and the parasitophorous vacuole membrane during exo-erythrocytic development of malaria parasites. Protist 160, 51–63 (2009).

    Article  PubMed  Google Scholar 

  65. Schmidt-Christensen, A., Sturm, A., Horstmann, S. & Heussler, V. T. Expression and processing of Plasmodium berghei SERA3 during liver stages. Cell. Microbiol. 10, 1723–1734 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Graewe, S. et al. Hostile takeover by Plasmodium: reorganization of parasite and host cell membranes during liver stage egress. PLoS Pathog. 7, e1002224 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Frevert, U. Sneaking in through the back entrance: the biology of malaria liver stages. Trends Parasitol. 20, 417–424 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Sturm, A. et al. Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science 313, 1287–1290 (2006). The first observation of hepatic merozoite release via merosomes.

    Article  CAS  PubMed  Google Scholar 

  69. Thiberge, S. et al. In vivo imaging of malaria parasites in the murine liver. Nature Protoc. 2, 1811–1818 (2007).

    Article  CAS  Google Scholar 

  70. Vaughan, A. M. et al. Complete Plasmodium falciparum liver-stage development in liver-chimeric mice. J. Clin. Invest. 122, 3618–3628 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Baer, K., Klotz, C., Kappe, S. H. I., Schnieder, T. & Frevert, U. Release of hepatic Plasmodium yoelii merozoites into the pulmonary microvasculature. PLoS Pathog. 3, e171 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Gueirard, P. et al. Development of the malaria parasite in the skin of the mammalian host. Proc. Natl Acad. Sci. USA 107, 18640–18645 (2010). The first observation of merozoite formation in the skin of mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Voza, T., Miller, J. L., Kappe, S. H. I. & Sinnis, P. Extrahepatic exoerythrocytic forms of rodent malaria parasites at the site of inoculation: clearance after immunization, susceptibility to primaquine, and contribution to blood-stage infection. Infect. Immun. 80, 2158–2164 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Mellor, A. L. & Munn, D. H. Immune privilege: a recurrent theme in immunoregulation? Immunol. Rev. 213, 5–11 (2006).

    Article  Google Scholar 

  75. Frevert, U., Späth, G. F. & Yee, H. Exoerythrocytic development of Plasmodium gallinaceum in the White Leghorn chicken. Int. J. Parasitol. 38, 655–672 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Silvie, O. et al. Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nature Med. 9, 93–96 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Boyd, M. F. & Kitchen, S. F. The demonstration of sporozoites in human tissues. Am. J. Trop. Med. Hyg. 19, 27–31 (1939).

    Article  Google Scholar 

  78. Offeddu, V., Thathy, V., Marsh, K. & Matuschewski, K. Naturally acquired immune responses against Plasmodium falciparum sporozoites and liver infection. Int. J. Parasitol. 42, 535–548 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Hoffman, S. L. et al. Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J. Infect. Dis. 185, 1155–1164 (2002).

    Article  PubMed  Google Scholar 

  80. Mueller, A.-K., Labaied, M., Kappe, S. H. I. & Matuschewski, K. Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature 433, 164–167 (2005). The first GAP-induced protection against sporozoite challenge in mice.

    Article  CAS  PubMed  Google Scholar 

  81. Mueller, A.-K. et al. Plasmodium liver stage developmental arrest by depletion of a protein at the parasite-host interface. Proc. Natl Acad. Sci. USA 102, 3022–3027 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. van Dijk, M. R. et al. Genetically attenuated, 36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells. Proc. Natl Acad. Sci. USA 102, 12194–12199 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Labaied, M. et al. Plasmodium yoelii sporozoites with simultaneous deletion of P52 and P36 are completely attenuated and confer sterile immunity against infection. Infect. Immun. 75, 3758–3768 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Jobe, O. et al. Genetically attenuated Plasmodium berghei liver stages induce sterile protracted protection that is mediated by major histocompatibility complex class I-dependent interferon-γ-producing CD8+ T cells. J. Infect. Dis. 196, 599–607 (2007).

    Article  PubMed  CAS  Google Scholar 

  85. Mueller, A.-K. et al. Genetically attenuated Plasmodium berghei liver stages persist and elicit sterile protection primarily via CD8 T cells. Am. J. Pathol. 171, 107–115 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Tarun, A. S. et al. Protracted sterile protection with Plasmodium yoelii pre-erythrocytic genetically attenuated parasite malaria vaccines is independent of significant liver-stage persistence and is mediated by CD8+ T cells. J. Infect. Dis. 196, 608–616 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Vaughan, A. M. et al. Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cell. Microbiol. 11, 506–520 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Pei, Y. et al. Plasmodium pyruvate dehydrogenase activity is only essential for the parasite's progression from liver infection to blood infection. Mol. Microbiol. 75, 957–971 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Haussig, J. M., Matuschewski, K. & Kooij, T. W. A. Inactivation of a Plasmodium apicoplast protein attenuates formation of liver merozoites. Mol. Microbiol. 81, 1511–1525 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Butler, N. S. et al. Superior antimalarial immunity after vaccination with late liver stage-arresting genetically attenuated parasites. Cell Host Microbe 9, 451–462 (2011). Work showing that late-arrested liver-stage GAP protect better than RAS.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Falae, A. et al. Role of Plasmodium berghei cGMP-dependent protein kinase in late liver stage development. J. Biol. Chem. 285, 3282–3288 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Beaudoin, R. L., Strome, C. P. A., Mitchell, F. & Tubergen, T. A. Plasmodium berghei: immunization of mice against the ANKA strain using the unaltered sporozoite as an antigen. Exp. Parasitol. 42, 1–5 (1977). The first use of DAP to protect against malaria in rodents.

    Article  CAS  PubMed  Google Scholar 

  93. Orjih, A. U., Cochrane, A. H. & Nussenzweig, R. S. Comparative studies on the immunogenicity of infective and attenuated sporozoites of Plasmodium berghei. Trans. R. Soc. Trop. Med. Hyg. 76, 57–61 (1982).

    Article  CAS  PubMed  Google Scholar 

  94. Belnoue, E. et al. Protective T cell immunity against malaria liver stage after vaccination with live sporozoites under chloroquine treatment. J. Immunol. 172, 2487–2495 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Inoue, M. & Culleton, R. L. The intradermal route for inoculation of sporozoites of rodent malaria parasites for immunological studies. Parasite Immunol. 33, 137–142 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Friesen, F. et al. Natural immunization against malaria: causal prophylaxis with antibiotics. Sci. Transl. Med. 14, 40ra49 (2010).

    Google Scholar 

  97. Friesen, J. & Matuschewski, K. Comparative efficacy of pre-erythrocytic whole organism vaccine strategies against the malaria parasite. Vaccine 29, 7002–7008 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Roestenberg, M. et al. Protection against a malaria challenge by sporozoite inoculation. N. Engl. J. Med. 361, 468–477 (2009). Validation of the DAP concept in humans.

    Article  CAS  PubMed  Google Scholar 

  99. Roestenberg, M. et al. Long-term protection against malaria after experimental sporozoite inoculation: an open-label follow-up study. Lancet 377, 1770–1776 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Purcell, L. A. et al. Chemically attenuated Plasmodium sporozoites induce specific immune responses, sterile immunity and cross-protection against heterologous challenge. Vaccine 26, 4880–4884 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Ngonseu, E., Chatterjee, S. & Wery, M. Blocked hepatic-stage parasites and decreased susceptibility to Plasmodium berghei infections in BALB/c mice. Parasitology 117, 419–423 (1998).

    Article  PubMed  Google Scholar 

  102. Schmidt, N. W., Butler, N. S. & Harty, J. T. Plasmodium–host interactions directly influence the threshold of memory CD8 T cells required for protective immunity. J. Immunol. 186, 5873–5884 (2011).

    Article  PubMed  CAS  Google Scholar 

  103. Yoshida, N., Nussenzweig, R. S., Potocnjak, P., Nussenzweig, V. & Aikawa, M. Hybridoma produces protective antibodies directed against the sporozoite stage of malaria parasite. Science 207, 71–73 (1980). The first demonstration that antibodies to CSP neutralize infectivity.

    Article  CAS  PubMed  Google Scholar 

  104. Stewart, M. J., Nawrot, R. J., Schulman, S. & Vanderberg, J. P. Plasmodium berghei sporozoite invasion is blocked in vitro by sporozoite-immobilizing antibodies. Infect. Immun. 51, 859–864 (1986).

    PubMed  PubMed Central  CAS  Google Scholar 

  105. Schofield, L. et al. γ-interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. Nature 330, 664–666 (1987). The first evidence that CD8+ T cells are important for RAS-induced protection in mice.

    Article  CAS  PubMed  Google Scholar 

  106. Weiss, W. R., Sedegah, M., Beaudoin, R. L., Miller, L. H. & Good, M. F. CD8+ T cells (cytotoxic/suppressors) are required for protection in mice immunized with malaria sporozoites. Proc. Natl Acad. Sci. USA 85, 573–576 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Romero, P. et al. Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria. Nature 341, 323–326 (1989).

    Article  CAS  PubMed  Google Scholar 

  108. Rodrigues, M. M. et al. CD8+ cytolytic T cell clones derived against the Plasmodium yoelii circumsporozoite protein protect against malaria. Int. Immunol. 3, 579–585 (1991).

    Article  CAS  PubMed  Google Scholar 

  109. Tsuji, M., Romero, P., Nussenzweig, R. S. & Zavala, F. CD4+ cytolytic T cell clone confers protection against murine malaria. J. Exp. Med. 172, 1353–1357 (1990).

    Article  CAS  PubMed  Google Scholar 

  110. Rénia, L. et al. Effector functions of circumsporozoite peptide-primed CD4+ T cell clones against Plasmodium yoelii liver stages. J. Immunol. 150, 1471–1478 (1993).

    PubMed  Google Scholar 

  111. Chakravarty, S., Baldeviano, G. C., Overstreet, M. G. & Zavala, F. Effector CD8+ T lymphocytes against liver stages of Plasmodium yoelii do not require γ interferon for antiparasite activity. Infect. Immun. 76, 3628–3631 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Butler, N. S., Schmidt, N. W. & Harty, J. T. Differential effector pathways regulate memory CD8 T cell immunity against Plasmodium berghei versus P. yoelii sporozoites. J. Immunol. 184, 2528–2538 (2010).

    Article  PubMed  CAS  Google Scholar 

  113. Cockburn, I. A. et al. In vivo imaging of CD8+ T cell-mediated elimination of malaria liver stages. Proc. Natl Acad. Sci. USA 110, 9090–9095 (2013). The first In vivo imaging of pathogen killing by CD8+ T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cohen, J., Nussenzweig, V., Nussenzweig, R., Vekemans, J. & Leach, A. From the circumsporozoite protein to the RTS, S/AS candidate vaccine. Hum. Vaccines 6, 90–96 (2010).

    Article  CAS  Google Scholar 

  115. Luke, T. C. & Hoffman, S. L. Rationale and plans for developing a non-replicating, metabolically active, radiation-attenuated Plasmodium falciparum sporozoite vaccine. J. Exp. Biol. 206, 3803–3808 (2003).

    Article  PubMed  Google Scholar 

  116. Epstein, J. E. et al. Live attenuated malaria vaccine designed to protect through hepatic CD8+ T cell immunity. Science 334, 475–480 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Nganou-Makamdop, K. & Sauerwein, R. W. Liver or blood-stage arrest during malaria sporozoite immunization: the later the better? Trends Parasitol. 29, 304–310 (2013).

    Article  PubMed  Google Scholar 

  118. Stoute, J. A. et al. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. N. Engl. J. Med. 336, 86–91 (1997).

    Article  CAS  PubMed  Google Scholar 

  119. Kester, K. E. et al. Phase 2a trial of 0, 1, and 3 month and 0, 7, and 28 day immunization schedules of malaria vaccine RTS,S/AS02 in malaria-naïve adults at the Walter Reed Army Institute of Research. Vaccine 26, 2191–2202 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Kester, K. E. et al. Randomized, double-blind, phase 2a trial of falciparum malaria vaccines RTS,S/AS01B and RTS, S/AS02A in malaria-naive adults: safety, efficacy, and immunologic associates of protection. J. Infect. Dis. 200, 337–346 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Agnandji, S. T. et al. First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children. N. Engl. J. Med. 365, 1863–1875 (2011).

    Article  PubMed  Google Scholar 

  122. Nussenzweig, V., Good, M. F. & Hill, A. V. S. Mixed results for a malaria vaccine. Nature Med. 17, 1560–1561 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Olotu, A. et al. Four-year efficacy of RTS, S/AS01E and its interaction with malaria exposure. N. Engl. J. Med. 368, 1111–1120 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Mellouk, S., Lunel, F., Sedegah, M., Beaudoin, R. & Druilhe, P. Protection against malaria induced by irradiated sporozoites. Lancet 335, 721 (1990).

    Article  CAS  PubMed  Google Scholar 

  125. Chatterjee, S., François, G., Druilhe, P., Timperman, G. & Wéry, M. Immunity to Plasmodium berghei exoerythrocytic forms derived from irradiated sporozoites. Parasitol. Res. 82, 297–303 (1996).

    Article  CAS  PubMed  Google Scholar 

  126. Silvie, O. et al. Effects of irradiation on Plasmodium falciparum sporozoite hepatic development: implications for the design of pre-erythrocytic malaria vaccines. Parasite Immunol. 24, 221–223 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Pombo, D. J. et al. Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum. Lancet 360, 610–617 (2002).

    Article  PubMed  Google Scholar 

  128. Bijker, E. M. et al. Protection against malaria after immunization by chloroquine prophylaxis and sporozoites is mediated by preerythrocytic immunity. Proc. Natl Acad. Sci. USA 110, 7862–7867 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yu, M. et al. The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. Cell Host Microbe 4, 567–578 (2008). Work showing an essential role for the parasite apicoplast in the late phase of liver-stage development.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Lasonder, E. et al. Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity. PLoS Pathog. 4, e1000195 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Tarun, A. S. et al. A combined transcriptome and proteome survey of malaria parasite liver stages. Proc. Natl Acad. Sci. USA 105, 305–310 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chakravarty, S. et al. CD8+ T lymphocytes protective against malaria liver stages are primed in skin-draining lymph nodes. Nature Med. 13, 1035–1041 (2007). A study which finds that protective immune responses to sporozoites are generated in skin-draining lymph nodes.

    Article  CAS  PubMed  Google Scholar 

  133. Obeid, M. et al. Skin-draining lymph node priming is sufficient to induce sterile immunity against pre-erythrocytic malaria. EMBO Mol. Med. 5, 250–263 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Sano, G. et al. Swift development of protective effector functions in naive CD8+ T cells against malaria liver stages. J. Exp. Med. 194, 173–179 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Cockburn, I. A. et al. Dendritic cells and hepatocytes use distinct pathways to process protective antigen from Plasmodium in vivo. PLoS Pathog. 7, e1001318 (2011). The PEXEL motif is shown to be dispensable for presentation of the CSP antigen.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Cockburn, I. A. et al. Prolonged antigen presentation is required for optimal CD8+ T cell responses against malaria liver stage parasites. PLoS Pathog. 6, e1000877 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Hafalla, J. C. R. et al. Priming of CD8+ T cell responses following immunization with heat-killed Plasmodium sporozoites. Eur. J. Immunol. 36, 1179–1186 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Seder, R. A. et al. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science http://dx.doi.org/10.1126/science.1241800 (2013). The first demonstrated protection of humans by parenteral injection of RAS.

  140. Nganou-Makamdop, K. et al. Reduced Plasmodium berghei sporozoite liver load associates with low protective efficacy after intradermal immunization. Parasite Immunol. 34, 562–569 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Voza, T., Kebaier, C. & Vanderberg, J. P. Intradermal immunization of mice with radiation-attenuated sporozoites of Plasmodium yoelii induces effective protective immunity. Malaria J. 9, 362 (2010).

    Article  Google Scholar 

  142. Ploemen, I. H. et al. Plasmodium liver load following parenteral sporozoite administration in rodents. Vaccine 31, 3410–3416 (2013).

    Article  PubMed  Google Scholar 

  143. Bongfen, S. E., Torgler, R., Romero, J. F., Rénia, L. & Corradin, G. Plasmodium berghei-infected primary hepatocytes process and present the circumsporozoite protein to specific CD8+ T cells in vitro. J. Immunol. 178, 7054–7063 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Spielmann, T. & Gilberger, T.-W. Protein export in malaria parasites: do multiple export motifs add up to multiple export pathways? Trends Parasitol. 26, 6–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Grüring, C. et al. Uncovering common principles in protein export of malaria parasites. Cell Host Microbe 12, 717–729 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Singh, A. P. et al. Plasmodium circumsporozoite protein promotes the development of the liver stages of the parasite. Cell 131, 492–504 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Ginhoux, F., Ng, L. G. & Merad, M. Understanding the murine cutaneous dendritic cell network to improve intradermal vaccination strategies. Curr. Top. Microbiol. Immunol. 351, 1–24 (2012).

    CAS  PubMed  Google Scholar 

  148. Guilbride, D. L., Gawlinski, P. & Guilbride, P. D. L. Why functional pre-erythrocytic and bloodstage malaria vaccines fail: a meta-analysis of fully protective immunizations and novel immunological model. PLoS ONE 5, e10685 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Druilhe, P. & Barnwell, J. W. Pre-erythrocytic stage malaria vaccines: time for a change in path. Curr. Opin. Microbiol. 10, 371–378 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Hill, A. V. S. et al. Prime-boost vectored malaria vaccines: progress and prospects. Hum. Vaccines 6, 78–83 (2010).

    Article  CAS  Google Scholar 

  151. Reyes-Sandoval, A. et al. CD8+ T effector memory cells protect against liver-stage malaria. J. Immunol. 187, 1347–1357 (2011).

    Article  PubMed  CAS  Google Scholar 

  152. Kumar, K. A. et al. The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites. Nature 444, 937–940 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Mauduit, M. et al. Minimal role for the circumsporozoite protein in the induction of sterile immunity by vaccination with live rodent malaria sporozoites. Infect. Immun. 78, 2182–2188 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Murphy, S. C., Kas, A., Stone, B. C. & Bevan, M. J. A T-cell response to a liver-stage Plasmodium antigen is not boosted by repeated sporozoite immunizations. Proc. Natl Acad. Sci. USA 110, 6055–6060 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Ménard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Sterilizing immunity

Immunity resulting in parasite clearance from the host.

Schizonts

Multinucleate, intracellular parasite stages originating from a single organism that reproduces by schizogony. Schizonts contain many individual merozoites when mature.

Hypnozoites

Dormant, non-dividing, intrahepatocytic forms of certain Plasmodium species, including Plasmodium vivax and Plasmodium ovale, which infect humans.

Recurrences

New phases of parasite multiplication inside erythrocytes. These recurrences originate from intra-erythrocytic parasite forms (recrudescence) or hypnozoites (relapse).

Gliding

A substrate-dependent type of unicellular motility defined by the lack of cell deformation during movement.

Parasitophorous vacuole

The vacuole inside which the parasite resides on host cell entry and throughout intracellular development.

Stellate cells

Pericytes that are located between a hepatocyte and a sinusoidal endothelial cell; also called Ito cells.

Kupffer cell

A resident macrophage in the liver; these cells mostly double-line the endothelial cell wall inside the sinusoid lumen.

Apicoplast

A relict, non-photosynthetic plastid-like organelle of red-algal origin, inherited from secondary endosymbiosis.

Immunoprivileged sites

Sites in the mammalian body that are characterized by the lack of major histocompatibility complex expression, the absence of phagocytic and antigen-presenting cells, and a potent immunosuppressant microenvironment.

Subunit vaccination

Vaccination using material that is distinct from live parasites (typically, recombinant proteins or virus-vectored antigens).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ménard, R., Tavares, J., Cockburn, I. et al. Looking under the skin: the first steps in malarial infection and immunity. Nat Rev Microbiol 11, 701–712 (2013). https://doi.org/10.1038/nrmicro3111

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro3111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing