Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Orthobunyaviruses: recent genetic and structural insights

Key Points

  • Orthobunyaviruses are arthropod-transmitted viruses that are characterized by a tripartite, negative-sense RNA genome. Some viruses in this family are associated with diseases in humans (such as fever and encephalitis) and domesticated animals (including abortion and teratogenic effects in offspring). Schmallenberg virus, which is a recently emerged member of the family, caused a disease outbreak in domesticated animals in Europe in 2012–2013.

  • Viral replication occurs in the cytoplasm of infected cells and viruses mature by budding in the Golgi complex. Although infection of mammalian cells usually results in cell death, replication in arthropod vector cells is not cytopathic and these cells become persistently infected.

  • Viral mRNA synthesis is primed by capped oligonucleotides that are derived from host cell mRNAs in a process that is known as cap snatching. The endonuclease activity that is responsible for generating the primers is contained in the amino-terminal domain of the viral RNA-dependent RNA polymerase protein.

  • The three-dimensional structure of the viral N (nucleocapsid) protein shows that it forms a tetramer that contains a novel fold with a central, positively charged groove that binds to the viral RNA.

  • The viral non-structural protein NSs is the major virulence factor and antagonizes the host innate immune response by causing global inhibition of RNA polymerase II-mediated transcription.

  • Possession of a segmented genome enables orthobunyaviruses to evolve rapidly by segment reassortment during mixed infections. Reassortment occurs widely in nature and reassortant viruses can have dramatically altered properties, such as increased virulence.

  • Little is known about the burden of orthobunyavirus disease and there is a need for improved global surveillance to monitor orthobunyavirus activity.

Abstract

Orthobunyaviruses, which have small, tripartite, negative-sense RNA genomes and structurally simple virions composed of just four proteins, can have devastating effects on human health and well-being, either by causing disease in humans or by causing disease in livestock and crops. In this Review, I describe the recent genetic and structural advances that have revealed important insights into the composition of orthobunyavirus virions, viral transcription and replication and viral interactions with the host innate immune response. Lastly, I highlight outstanding questions and areas of future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The orthobunayvirus particle.
Figure 2: Coding strategy of the orthobunyavirus genome.
Figure 3: Structure of the orthobunyavirus N protein.
Figure 4: The orthobunyavirus replication cycle.

Similar content being viewed by others

References

  1. Rosenberg, R., Johansson, M. A., Powers, A. M. & Miller, B. R. Search strategy has influenced the discovery rate of human viruses. Proc. Natl Acad. Sci. USA 110, 13961–13964 (2013).

    CAS  PubMed  Google Scholar 

  2. Vaheri, A. et al. Uncovering the mysteries of hantavirus infections. Nature Rev. Microbiol. 11, 539–550 (2013).

    CAS  Google Scholar 

  3. Calisher, C. H. in The Bunyaviridae (ed. Elliott, R. M.) 1–17 (Plenum Press, 1996).

    Google Scholar 

  4. Haddow, A. D. & Odoi, A. The incidence risk, clustering, and clinical presentation of La Crosse virus infections in the eastern United States, 2003–2007. PLoS ONE 4, e6145 (2009).

    PubMed  PubMed Central  Google Scholar 

  5. Beaty, B. & Calisher, C. Bunyaviridae — natural history. Curr. Top. Microbiol. Immunol. 169, 27–78 (1991).

    CAS  PubMed  Google Scholar 

  6. Patrican, L. A. & DeFoliart, G. R. Lack of adverse effect of transovarially acquired La Crosse virus infection on the reproductive capacity of Aedes triseriatus (Diptera: Culicidae). J. Med. Entomol. 22, 604–611 (1985).

    CAS  PubMed  Google Scholar 

  7. Jackson, B. T., Brewster, C. C. & Paulson, S. L. La Crosse virus infection alters blood feeding behavior in Aedes triseriatus and Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 49, 1424–1429 (2012).

    PubMed  PubMed Central  Google Scholar 

  8. Reese, S. M., Beaty, M. K., Gabitzsch, E. S., Blair, C. D. & Beaty, B. J. Aedes triseriatus females transovarially infected with La Crosse virus mate more efficiently than uninfected mosquitoes. J. Med. Entomol. 46, 1152–1158 (2009).

    PubMed  PubMed Central  Google Scholar 

  9. Thompson, W. H. & Beaty, B. J. Venereal transmission of La Crosse (California encephalitis) arbovirus in Aedes triseriatus mosquitoes. Science 196, 530–531 (1977).

    CAS  PubMed  Google Scholar 

  10. Marklewitz, M. et al. Discovery of a unique novel clade of mosquito-associated bunyaviruses. J. Virol. 87, 12850–12865 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Taylor, K. G. & Peterson, K. E. Innate immune response to La Crosse virus infection. J. Neurovirol. 20, 150–156 (2014).

    CAS  PubMed  Google Scholar 

  12. Bennett, R. S. et al. La Crosse virus infectivity, pathogenesis, and immunogenicity in mice and monkeys. Virol. J. 5, 25 (2008).

    PubMed  PubMed Central  Google Scholar 

  13. Varela, M. et al. Schmallenberg virus pathogenesis, tropism and interaction with the innate immune system of the host. PLoS Pathog. 9, e1003133 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wernike, K. et al. Schmallenberg virus experimental infection of sheep. Vet. Microbiol. 166, 461–466 (2013).

    CAS  PubMed  Google Scholar 

  15. Barrett, A. D. T. & Shope, R. E. in Topley and Wilson's Microbiology and Microbial Infections. (eds Mahy, B. W. J. & Meulen, V.t.) 1025–1058 (Hodder Arnold, 2005).

    Google Scholar 

  16. Obijeski, J. F., Bishop, D. H., Murphy, F. A. & Palmer, E. L. Structural proteins of La Crosse virus. J. Virol. 19, 985–997 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bowden, T. A. et al. Orthobunyavirus ultrastructure and the curious tripodal glycoprotein spike. PLoS Pathog. 9, e1003374 (2013). This cryoelectron microscopy study of Bunyamwera virus particles presents the three-dimensional structure of the glycoprotein spike resolved to 3 nm.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Battisti, A. J. et al. Structural studies of Hantaan virus. J. Virol. 85, 835–841 (2011).

    CAS  PubMed  Google Scholar 

  19. Sherman, M. B., Freiberg, A. N., Holbrook, M. R. & Watowich, S. J. Single-particle cryo-electron microscopy of Rift Valley fever virus. Virology 387, 11–15 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Plyusnin, A. et al. in Virus taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. (eds King, A. M. Q., Adams, M. J., Carstens, E. B. & Lefkowits, E. J.) 725–741 (Elsevier, 2012).

    Google Scholar 

  21. Barr, J. N., Elliott, R. M., Dunn, E. F. & Wertz, G. W. Segment-specific terminal sequences of Bunyamwera bunyavirus regulate genome replication. Virology 311, 326–338 (2003).

    CAS  PubMed  Google Scholar 

  22. Barr, J. N. & Wertz, G. W. Role of the conserved nucleotide mismatch within 3′- and 5′-terminal regions of Bunyamwera virus in signaling transcription. J. Virol. 79, 3586–3594 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kohl, A., Dunn, E. F., Lowen, A. C. & Elliott, R. M. Complementarity, sequence and structural elements within the 3′ and 5′ non-coding regions of the Bunyamwera orthobunyavirus S segment determine promoter strength. J. Gen. Virol. 85, 3269–3278 (2004).

    CAS  PubMed  Google Scholar 

  24. Kohl, A., Lowen, A. C., Leonard, V. H. J. & Elliott, R. M. Genetic elements regulating packaging of the Bunyamwera orthobunyavirus genome. J. Gen. Virol. 87, 177–187 (2006).

    CAS  PubMed  Google Scholar 

  25. Osborne, J. C. & Elliott, R. M. RNA binding properties of bunyamwera virus nucleocapsid protein and selective binding to an element in the 5′ terminus of the negative-sense S segment. J. Virol. 74, 9946–9952 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Barr, J. N., Rodgers, J. W. & Wertz, G. W. Identification of the Bunyamwera bunyavirus transcription termination signal. J. Gen. Virol. 87, 189–198 (2006).

    CAS  PubMed  Google Scholar 

  27. Blakqori, G., Lowen, A. C. & Elliott, R. M. The small genome segment of Bunyamwera orthobunyavirus harbours a single transcription termination signal. J. Gen. Virol. 93, 1449–1455 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mazel-Sanchez, B. & Elliott, R. M. Attenuation of Bunyamwera orthobunyavirus replication by targeted mutagenesis of genomic UTRs and creation of viable viruses with minimal genome segments. J. Virol. 86, 13672–13678 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Elliott, R. M. & Blakqori, G. in Bunyaviridae. Molecular and Cellular Biology (eds Plyusnin, A. & Elliott, R. M.) 1–39 (Caister Academic Press, 2011).

    Google Scholar 

  30. Fazakerley, J. K. et al. Organization of the middle RNA segment of snowshoe hare Bunyavirus. Virology 167, 422–432 (1988).

    CAS  PubMed  Google Scholar 

  31. Fuller, F., Bhown, A. S. & Bishop, D. H. Bunyavirus nucleoprotein, N, and a non-structural protein, NSS, are coded by overlapping reading frames in the S RNA. J. Gen. Virol. 64, 1705–1714 (1983).

    CAS  PubMed  Google Scholar 

  32. Mohamed, M., McLees, A. & Elliott, R. M. Viruses in the Anopheles A, Anopheles B, and Tete serogroups in the Orthobunyavirus genus (family Bunyaviridae) do not encode an NSs protein. J. Virol. 83, 7612–7618 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chowdhary, R. et al. Genetic characterization of the Wyeomyia group of orthobunyaviruses and their phylogenetic relationships. J. Gen. Virol. 93, 1023–1034 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lanciotti, R. S. et al. Isolation of a novel orthobunyavirus (Brazoran virus) with a 1.7 kb S segment that encodes a unique nucleocapsid protein possessing two putative functional domains. Virology 444, 55–63 (2013).

    CAS  PubMed  Google Scholar 

  35. Jin, H. & Elliott, R. M. Mutagenesis of the L protein encoded by Bunyamwera virus and production of monoclonal antibodies. J. Gen. Virol. 73, 2235–2244 (1992).

    CAS  PubMed  Google Scholar 

  36. Reguera, J., Weber, F. & Cusack, S. Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog. 6, e1001101 (2010). This paper characterizes the endonuclease domain that is located in the N terminus of the orthobunyavirus RdRp, which generates the capped primers that are required for viral mRNA synthesis.

    PubMed  PubMed Central  Google Scholar 

  37. Patterson, J. L., Holloway, B. & Kolakofsky, D. La Crosse virions contain a primer-stimulated RNA polymerase and a methylated cap-dependent endonuclease. J. Virol. 52, 215–222 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rossier, C., Patterson, J. & Kolakofsky, D. La Crosse virus small genome mRNA is made in the cytoplasm. J. Virol. 58, 647–650 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shi, X., Lappin, D. F. & Elliott, R. M. Mapping the Golgi targeting and retention signal of Bunyamwera virus glycoproteins. J. Virol. 78, 10793–10802 (2004). This study shows that the Golgi-targeting signal is present in the transmembrane domain of the orthobunyavirus Gn protein.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Garry, C. E. & Garry, R. F. Proteomics computational analyses suggest that the carboxyl terminal glycoproteins of Bunyaviruses are class II viral fusion protein (β-penetrenes). Theor. Biol. Med. Model. 1, 10 (2004).

    PubMed  PubMed Central  Google Scholar 

  41. Plassmeyer, M. L. et al. Mutagenesis of the La Crosse virus glycoprotein supports a role for Gc (1066–1087) as the fusion peptide. Virology 358, 273–282 (2007).

    CAS  PubMed  Google Scholar 

  42. Shi, X., Goli, J., Clark, G., Brauburger, K. & Elliott, R. M. Functional analysis of the Bunyamwera orthobunyavirus Gc glycoprotein. J. Gen. Virol. 90, 2483–2492 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Shi, X., van Mierlo, J. T., French, A. & Elliott, R. M. Visualizing the replication cycle of bunyamwera orthobunyavirus expressing fluorescent protein-tagged Gc glycoprotein. J. Virol. 84, 8460–8469 (2010). This paper describes the generation of a recombinant BUNV in which the Gc glycoprotein is fused to GFP, which enables viral propagation to be monitored by light microscopy.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ogg, M. M. & Patterson, J. L. RNA binding domain of Jamestown Canyon virus S segment RNAs. J. Virol. 81, 13754–13760 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Shi, X. et al. Requirement of the N-terminal region of orthobunyavirus nonstructural protein NSm for virus assembly and morphogenesis. J. Virol. 80, 8089–8099 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dong, H., Li, P., Bottcher, B., Elliott, R. M. & Dong, C. Crystal structure of Schmallenberg orthobunyavirus nucleoprotein–RNA complex reveals a novel RNA sequestration mechanism. RNA 19, 1129–1136 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dong, H., Li, P., Elliott, R. M. & Dong, C. Structure of Schmallenberg orthobunyavirus nucleoprotein suggests a novel mechanism of genome encapsidation. J. Virol. 87, 5593–5601 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ariza, A. et al. Nucleocapsid protein structures from orthobunyaviruses reveal insight into ribonucleoprotein architecture and RNA polymerization. Nucleic Acids Res. 41, 5912–5926 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, B. et al. Bunyamwera virus possesses a distinct nucleocapsid protein to facilitate genome encapsidation. Proc. Natl Acad. Sci. USA 110, 9048–9053 (2013).

    CAS  PubMed  Google Scholar 

  50. Niu, F. et al. Structure of the Leanyer orthobunyavirus nucleoprotein–RNA complex reveals unique architecture for RNA encapsidation. Proc. Natl Acad. Sci. USA 110, 9054–9059 (2013).

    CAS  PubMed  Google Scholar 

  51. Reguera, J., Malet, H., Weber, F. & Cusack, S. Structural basis for encapsidation of genomic RNA by La Crosse orthobunyavirus nucleoprotein. Proc. Natl Acad. Sci. USA 110, 7246–7251 (2013). References 47, 48, 49, 50 and 51 report crystal structures of orthobunyavirus nucleocapsid proteins.

    CAS  PubMed  Google Scholar 

  52. Zheng, W. & Tao, Y. J. Genome encapsidation by orthobunyavirus nucleoproteins. Proc. Natl Acad. Sci. USA 110, 8769–8770 (2013).

    CAS  PubMed  Google Scholar 

  53. Leonard, V. H., Kohl, A., Osborne, J. C., McLees, A. & Elliott, R. M. Homotypic interaction of Bunyamwera virus nucleocapsid protein. J. Virol. 79, 13166–13172 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Eifan, S. A. & Elliott, R. M. Mutational analysis of the Bunyamwera orthobunyavirus nucleocapsid protein gene. J. Virol. 83, 11307–11317 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nakitare, G. W. & Elliott, R. M. Expression of the Bunyamwera virus M genome segment and intracellular localisation of NSm. Virology 195, 511–520 (1993).

    CAS  PubMed  Google Scholar 

  56. Lappin, D. F., Nakitare, G. W., Palfreyman, J. W. & Elliott, R. M. Localisation of Bunyamwera bunyavirus G1 glycoprotein to the Golgi requires association with G2 but not NSm. J. Gen. Virol. 75, 3441–3451 (1994).

    CAS  PubMed  Google Scholar 

  57. Fontana, J., Lopez-Montero, N., Elliott, R. M., Fernandez, J. J. & Risco, C. The unique architecture of Bunyamwera virus factories around the Golgi complex. Cell. Microbiol. 10, 2012–2028 (2008).

    PubMed  Google Scholar 

  58. Bupp, K., Stillmock, K. & Gonzalez-Scarano, F. Analysis of the intracellular transport properties of recombinant La Crosse virus glycoproteins. Virology 220, 485–490 (1996).

    CAS  PubMed  Google Scholar 

  59. Thomas, D. et al. Inhibition of RNA polymerase II phosphorylation by a viral interferon antagonist. J. Biol. Chem. 279, 31471–31477 (2004).

    CAS  PubMed  Google Scholar 

  60. Eifan, S., Schnettler, E., Dietrich, I., Kohl, A. & Blomstrom, A. L. Non-structural proteins of arthropod-borne bunyaviruses: roles and functions. Viruses 5, 2447–2468 (2013).

    PubMed  PubMed Central  Google Scholar 

  61. Bridgen, A., Weber, F., Fazakerley, J. K. & Elliott, R. M. Bunyamwera bunyavirus nonstructural protein NSs is a nonessential gene product that contributes to viral pathogenesis. Proc. Natl Acad. Sci. USA 98, 664–669 (2001).

    CAS  PubMed  Google Scholar 

  62. Blakqori, G. & Weber, F. Efficient cDNA-based rescue of La Crosse bunyaviruses expressing or lacking the nonstructural protein NSs. J. Virol. 79, 10420–10428 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Elliott, R. M. et al. Establishment of a reverse genetics system for Schmallenberg virus, a newly emerged orthobunyavirus in Europe. J. Gen. Virol. 94, 851–859 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hart, T. J., Kohl, A. & Elliott, R. M. Role of the NSs protein in the zoonotic capacity of Orthobunyaviruses. Zoonoses Publ. Health 56, 285–296 (2009).

    CAS  Google Scholar 

  65. Kohl, A. et al. Bunyamwera virus nonstructural protein NSs counteracts interferon regulatory factor 3-mediated induction of early cell death. J. Virol. 77, 7999–8008 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mukherjee, P., Woods, T. A., Moore, R. A. & Peterson, K. E. Activation of the innate signaling molecule MAVS by bunyavirus infection upregulates the adaptor protein SARM1, leading to neuronal death. Immunity 38, 705–716 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Colon-Ramos, D. A. et al. Inhibition of translation and induction of apoptosis by Bunyaviral nonstructural proteins bearing sequence similarity to reaper. Mol. Biol. Cell 14, 4162–4172 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Weber, F., Dunn, E. F., Bridgen, A. & Elliott, R. M. The Bunyamwera virus nonstructural protein NSs inhibits viral RNA synthesis in a minireplicon system. Virology 281, 67–74 (2001).

    CAS  PubMed  Google Scholar 

  69. Blakqori, G., Kochs, G., Haller, O. & Weber, F. Functional L polymerase of La Crosse virus allows in vivo reconstitution of recombinant nucleocapsids. J. Gen. Virol. 84, 1207–1214 (2003).

    CAS  PubMed  Google Scholar 

  70. Lozach, P. Y. et al. DC-SIGN as a receptor for phleboviruses. Cell Host Microbe 10, 75–88 (2011).

    CAS  PubMed  Google Scholar 

  71. Santos, R. I. et al. Oropouche virus entry into HeLa cells involves clathrin and requires endosomal acidification. Virus Res. 138, 139–143 (2008).

    CAS  PubMed  Google Scholar 

  72. Hollidge, B. S. et al. Orthobunyavirus entry into neurons and other mammalian cells occurs via clathrin-mediated endocytosis and requires trafficking into early endosomes. J. Virol. 86, 7988–8001 (2012). This paper describes the entry mechanism of LACV into cells of the central nervous system.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hacker, J. K. & Hardy, J. L. Adsorptive endocytosis of California encephalitis virus into mosquito and mammalian cells: a role for G1. Virology 235, 40–47 (1997).

    CAS  PubMed  Google Scholar 

  74. Ludwig, G. V., Christensen, B. M., Yuill, T. M. & Schultz, K. T. Enzyme processing of La Crosse virus glycoprotein G1: a bunyavirus-vector infection model. Virology 171, 108–113 (1989).

    CAS  PubMed  Google Scholar 

  75. Ludwig, G. V., Israel, B. A., Christensen, B. M., Yuill, T. M. & Schultz, K. T. Role of La Crosse virus glycoproteins in attachment of virus to host cells. Virology 181, 564–571 (1991).

    CAS  PubMed  Google Scholar 

  76. Jin, H. & Elliott, R. M. Characterisation of Bunyamwera virus S RNA that is transcribed and replicated by the L protein expressed from recombinant vaccinia virus. J. Virol. 67, 1396–1404 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Blakqori, G., van Knippenberg, I. & Elliott, R. M. Bunyamwera orthobunyavirus S-segment untranslated regions mediate poly(A) tail-independent translation. J. Virol. 83, 3637–3646 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kolakofsky, D., Bellocq, C. & Raju, R. The translational requirement for La Crosse virus S-mRNA synthesis. Cold Spring Harb. Symp. Quant. Biol. 52, 373–379 (1987).

    CAS  PubMed  Google Scholar 

  79. Patterson, J. L. & Kolakofsky, D. Characterization of La Crosse virus small-genome transcripts. J. Virol. 49, 680–685 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Vialat, P. & Bouloy, M. Germiston virus transcriptase requires active 40S ribosomal subunits and utilizes capped cellular RNAs. J. Virol. 66, 685–693 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bellocq, C., Raju, R., Patterson, J. & Kolakofsky, D. Translational requirement of La Crosse virus S-mRNA synthesis: in vitro studies. J. Virol. 61, 87–95 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Raju, R. & Kolakofsky, D. Translational requirement of La Crosse virus S-mRNA synthesis: in vivo studies. J. Virol. 61, 96–103 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Barr, J. N. Bunyavirus mRNA synthesis is coupled to translation to prevent premature transcription termination. RNA 13, 731–736 (2007). This study explores the unique requirement for ongoing protein synthesis for orthobunyavirus mRNA synthesis and demonstrates that the translation of nascent mRNAs prevents premature termination of viral transcription.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dunn, E. F., Pritlove, D. C., Jin, H. & Elliott, R. M. Transcription of a recombinant bunyavirus RNA template by transiently expressed bunyavirus proteins. Virology 211, 133–143 (1995).

    CAS  PubMed  Google Scholar 

  85. Shi, X., Kohl, A., Li, P. & Elliott, R. M. Role of the cytoplasmic tail domains of Bunyamwera orthobunyavirus glycoproteins Gn and Gc in virus assembly and morphogenesis. J. Virol. 81, 10151–10160 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Salanueva, I. J. et al. Polymorphism and structural maturation of Bunyamwera virus in Golgi and post-Golgi compartments. J. Virol. 77, 1368–1381 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Novoa, R. R., Calderita, G., Cabezas, P., Elliott, R. M. & Risco, C. Key Golgi factors for structural and functional maturation of bunyamwera virus. J. Virol. 79, 10852–10863 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Madoff, D. H. & Lenard, J. A membrane glycoprotein that accumulates intracellularly: cellular processing of the large glycoprotein of LaCrosse virus. Cell 28, 821–829 (1982).

    CAS  PubMed  Google Scholar 

  89. Hutchinson, E. C., von Kirchbach, J. C., Gog, J. R. & Digard, P. Genome packaging in influenza A virus. J. Gen. Virol. 91, 313–328 (2010).

    CAS  PubMed  Google Scholar 

  90. Lowen, A. C., Boyd, A., Fazakerley, J. K. & Elliott, R. M. Attenuation of bunyavirus replication by rearrangement of viral coding and noncoding sequences. J. Virol. 79, 6940–6946 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Sanz-Sanchez, L. & Risco, C. Multilamellar structures and filament bundles are found on the cell surface during bunyavirus egress. PLoS ONE 8, e65526 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Borucki, M. K., Kempf, B. J., Blitvich, B. J., Blair, C. D. & Beaty, B. J. La Crosse virus: replication in vertebrate and invertebrate hosts. Microbes Infect. 4, 341–350 (2002).

    PubMed  Google Scholar 

  93. Scallan, M. F. & Elliott, R. M. Defective RNAs in mosquito cells persistently infected with Bunyamwera virus. J. Gen. Virol. 73, 53–60 (1992).

    CAS  PubMed  Google Scholar 

  94. Hacker, D., Raju, R. & Kolakofsky, D. La Crosse virus nucleocapsid protein controls its own synthesis in mosquito cells by encapsidating its mRNA. J. Virol. 63, 5166–5174 (1989). This study shows that the dsRNA panhandle structure in LACV nucleocapsids triggers the innate immune response by activating RIGI shortly after viral entry.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Szemiel, A. M., Failloux, A. B. & Elliott, R. M. Role of Bunyamwera orthobunyavirus NSs protein in infection of mosquito cells. PLoS Negl Trop. Dis. 6, e1823 (2012).

    PubMed  PubMed Central  Google Scholar 

  96. Lopez-Montero, N. & Risco, C. Self-protection and survival of arbovirus-infected mosquito cells. Cell. Microbiol. 13, 300–315 (2011).

    CAS  PubMed  Google Scholar 

  97. Randall, R. E. & Goodbourn, S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J. Gen. Virol. 89, 1–47 (2008).

    CAS  PubMed  Google Scholar 

  98. Schoggins, J. W. & Rice, C. M. Interferon-stimulated genes and their antiviral effector functions. Curr. Opin. Virol. 1, 519–525 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Weber, M. et al. Incoming RNA virus nucleocapsids containing a 5′-triphosphorylated genome activate RIG-I and antiviral signaling. Cell Host Microbe 13, 336–346 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kochs, G., Janzen, C., Hohenberg, H. & Haller, O. Antivirally active MxA protein sequesters La Crosse virus nucleocapsid protein into perinuclear complexes. Proc. Natl Acad. Sci. USA 99, 3153–3158 (2002).

    CAS  PubMed  Google Scholar 

  101. Streitenfeld, H. et al. Activation of PKR by Bunyamwera virus is independent of the viral interferon antagonist NSs. J. Virol. 77, 5507–5511 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Carlton-Smith, C. & Elliott, R. M. Viperin, MTAP44, and protein kinase R contribute to the interferon-induced inhibition of Bunyamwera orthobunyavirus replication. J. Virol. 86, 11548–11557 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Schoggins, J. W. et al. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505, 691–695 (2014).

    CAS  PubMed  Google Scholar 

  104. Weber, F. et al. Bunyamwera bunyavirus nonstructural protein NSs counteracts the induction of alpha/beta interferon. J. Virol. 76, 7949–7955 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Blakqori, G. et al. La Crosse bunyavirus nonstructural protein NSs serves to suppress the type I interferon system of mammalian hosts. J. Virol. 81, 4991–4999 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Leonard, V. H., Kohl, A., Hart, T. J. & Elliott, R. M. Interaction of Bunyamwera Orthobunyavirus NSs protein with mediator protein MED8: a mechanism for inhibiting the interferon response. J. Virol. 80, 9667–9675 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Poss, Z. C., Ebmeier, C. C. & Taatjes, D. J. The Mediator complex and transcription regulation. Crit. Rev. Biochem. Mol. Biol. 48, 575–608 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. van Knippenberg, I., Carlton-Smith, C. & Elliott, R. M. The N-terminus of Bunyamwera orthobunyavirus NSs protein is essential for interferon antagonism. J. Gen. Virol. 91, 2002–2006 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Verbruggen, P. et al. Interferon antagonist NSs of La Crosse virus triggers a DNA damage response-like degradation of transcribing RNA polymerase II. J. Biol. Chem. 286, 3681–3692 (2011). This paper describes the mechanism by which the LACV NSs protein degrades host cell RNA polymerase II to evade the innate immune response of the host.

    CAS  PubMed  Google Scholar 

  110. Briese, T., Calisher, C. H. & Higgs, S. Viruses of the family Bunyaviridae: are all available isolates reassortants? Virology 446, 207–216 (2013). This provocative paper discusses the importance of reassortment in bunyavirus evolution.

    CAS  PubMed  Google Scholar 

  111. Wernike, K. et al. Schmallenberg virus — two years of experiences. Prev. Vet. Med. http://dx.doi.org/10.1016/j.prevetmed.2014.03.021 (2014).

  112. Kim, Y. H. et al. Development of inactivated trivalent vaccine for the teratogenic Aino, Akabane and Chuzan viruses. Biologicals 39, 152–157 (2011).

    CAS  PubMed  Google Scholar 

  113. Wernike, K., Nikolin, V. M., Hechinger, S., Hoffmann, B. & Beer, M. Inactivated Schmallenberg virus prototype vaccines. Vaccine 31, 3558–3563 (2013).

    CAS  PubMed  Google Scholar 

  114. Donald, C. L., Kohl, A. & Schnettler, E. New insights into control of arbovirus replication and spread by insect RNA interference pathways. Insects 3, 511–531 (2012).

    PubMed  PubMed Central  Google Scholar 

  115. Hoffmann, B. et al. Novel orthobunyavirus in cattle, Europe, 2011. Emerg. Infect. Dis. 18, 469–472 (2012). This paper describes the initial characterization of Schmallenberg virus as a new orthobunyavirus and provides the first report of a Simbu serogroup virus in Europe.

    PubMed  PubMed Central  Google Scholar 

  116. van den Brom, R. et al. Epizootic of ovine congenital malformations associated with Schmallenberg virus infection. Tijdschr Diergeneeskd 137, 106–111 (2012).

    CAS  PubMed  Google Scholar 

  117. Afonso, A. et al. The Schmallenberg virus epidemic in Europe — 2011–2013. Prev. Vet. Med. http://dx.doi.org/10.1016/j.prevetmed.2014.02.012 (2014).

  118. European Commission. Statement on the Schmallenberg Virus Situation issued by the European Commission together with the EU Member States following the working group held on 17 February 2012. [online] (2012).

  119. Harris, K. A. et al. The impact of Schmallenberg virus on British sheep farms during the 2011/2012 lambing season. Vet. Rec. http://dx.doi.org/10.1136/vr.102295 (2014).

  120. Goller, K. V., Hoper, D., Schirrmeier, H., Mettenleiter, T. C. & Beer, M. Schmallenberg virus as possible ancestor of Shamonda virus. Emerg. Infect. Dis. 18, 1644–1646 (2012).

    PubMed  PubMed Central  Google Scholar 

  121. Veronesi, E. et al. Implicating Culicoides biting midges as vectors of Schmallenberg virus using semi-quantitative RT-PCR. PLoS ONE 8, e57747 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Sedda, L. & Rogers, D. J. The influence of the wind in the Schmallenberg virus outbreak in Europe. Sci. Rep. 3, 3361 (2013). This study models the contribution of wind to the spread of Schmallenberg virus and suggests that most infections originate from the bite of midges that are spread by downwind movements.

    PubMed  PubMed Central  Google Scholar 

  123. Bilk, S. et al. Organ distribution of Schmallenberg virus RNA in malformed newborns. Vet. Microbiol. 159, 236–238 (2012).

    CAS  PubMed  Google Scholar 

  124. Kupferschmidt, K. Scientists rush to find clues on new animal virus. Science 335, 1028–1029 (2012).

    PubMed  Google Scholar 

  125. Larska, M., Lechowski, L., Grochowska, M. & Zmudzinski, J. F. Detection of the Schmallenberg virus in nulliparous Culicoides obsoletus/scoticus complex and C. punctatus — the possibility of transovarial virus transmission in the midge population and of a new vector. Vet. Microbiol. 166, 467–473 (2013).

    PubMed  Google Scholar 

  126. Meroc, E. et al. Follow-up of the Schmallenberg virus seroprevalence in Belgian cattle. Transbound. Emerg. Dis. http://dx.doi.org/10.1111/tbed.12202 (2013).

  127. Hulst, M. et al. Genetic characterization of an atypical Schmallenberg virus isolated from the brain of a malformed lamb. Virus Genes 47, 505–514 (2013).

    CAS  PubMed  Google Scholar 

  128. Rosseel, T. et al. DNase SISPA-next generation sequencing confirms Schmallenberg virus in Belgian field samples and identifies genetic variation in Europe. PLoS ONE 7, e41967 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Coupeau, D., Claine, F., Wiggers, L., Kirschvink, N. & Muylkens, B. In vivo and in vitro identification of a hypervariable region in Schmallenberg virus. J. Gen. Virol. 94, 1168–1174 (2013).

    CAS  PubMed  Google Scholar 

  130. Fischer, M. et al. A mutation 'hot spot' in the Schmallenberg virus M segment. J. Gen. Virol. 94, 1161–1167 (2013).

    CAS  PubMed  Google Scholar 

  131. Bridgen, A. & Elliott, R. M. Rescue of a segmented negative-strand RNA virus entirely from cloned complementary DNAs. Proc. Natl Acad. Sci. USA 93, 15400–15404 (1996). This paper describes the initial reverse genetics system for Bunyamwera virus, which was the first system used to generate a negative-sense RNA virus with a segmented genome from plasmid DNAs.

    CAS  PubMed  Google Scholar 

  132. Lowen, A. C., Noonan, C., McLees, A. & Elliott, R. M. Efficient bunyavirus rescue from cloned cDNA. Virology 330, 493–500 (2004).

    CAS  PubMed  Google Scholar 

  133. Ogawa, Y., Sugiura, K., Kato, K., Tohya, Y. & Akashi, H. Rescue of Akabane virus (family Bunyaviridae) entirely from cloned cDNAs by using RNA polymerase I. J. Gen. Virol. 88, 3385–3390 (2007).

    CAS  PubMed  Google Scholar 

  134. Iroegbu, C. U. & Pringle, C. R. Genetic interactions among viruses of the Bunyamwera complex. J. Virol. 37, 383–394 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Urquidi, V. & Bishop, D. H. Non-random reassortment between the tripartite RNA genomes of La Crosse and snowshoe hare viruses. J. Gen. Virol. 73, 2255–2265 (1992).

    CAS  PubMed  Google Scholar 

  136. Beaty, B. J., Bishop, D. H., Gay, M. & Fuller, F. Interference between bunyaviruses in Aedes triseriatus mosquitoes. Virology 127, 83–90 (1983).

    CAS  PubMed  Google Scholar 

  137. Beaty, B. J. et al. Molecular basis of bunyavirus transmission by mosquitoes: role of the middle-sized RNA segment. Science 211, 1433–1435 (1981).

    CAS  PubMed  Google Scholar 

  138. Briese, T., Bird, B., Kapoor, V., Nichol, S. T. & Lipkin, W. I. Batai and Ngari viruses: M segment reassortment and association with severe febrile disease outbreaks in East Africa. J. Virol. 80, 5627–5630 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the author's laboratory is supported by a Wellcome Trust Senior Investigator Award. The author apologizes to colleagues whose work could not be cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Elliott.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

Arthrogryposis

A congenital abnormality in which the limb joints are deformed and inflexible.

Hydranencephaly

A condition that arises during foetal development, in which the central cavity of the brain is missing and is replaced with cerebrospinal fluid.

Complement fixation

An immunological test to measure whether antibody–antigen complexes can deplete a known concentration of standard complement proteins and protect added red blood cells from lysis. For orthobunyaviruses, complement-fixing antibodies are elicited by the nucleocapsid protein and are used to define serogroups.

Neutralization

An immunological test to detect antibodies that bind to a virus and reduce its titre in an infectivity assay. For orthobunyaviruses, neutralizing antibodies are elicited by the viral glycoproteins and are used for the identification of specific viruses.

Haemagglutination inhibition

An immunological test to measure the ability of antibodies to block the agglutination of red blood cells by a virus. For orthobunyaviruses, the viral glycoproteins mediate haemagglutination, and antibodies to these proteins that inhibit haemagglutination are used to define serogroups.

Cryoelectron microscopy

A technique that preserves the native state of biological material in a frozen hydrated state, which is usually achieved by rapid freezing in liquid ethane. Specimens are examined in a transmission electron microscope at ultralow temperatures and can be visualized without the need for heavy-metal staining.

Subtomographic averaging

An electron microscopy technique to visualize structures in three dimensions (3D). The specimen stage is tilted at regular increments and a series of transmission electron images is taken, which are then processed to generate a high-resolution (up to 5 nm) 3D image.

Leaky ribosomal scanning

A mechanism by which internal AUG codons in an mRNA are used to initiate translation. Ribosomes occasionally skip the first AUG codon, which is often not in an optimal sequence context for initiation, and a downstream AUG is selected instead.

Cap snatching

A mechanism to prime viral mRNA synthesis. A viral endonuclease cleaves the 5′ ends of cellular mRNAs about 12–18 nucleotides after the 5′ 7-methylguanylate residue (the cap), and the resulting short oligonucleotides are used to initiate viral mRNA transcription.

Class II fusion domain

Proteins that contain this domain mediate the fusion of viral membranes to cellular membranes. Class II fusion peptides, which are also known as betapenetrenes, are found internally in the surface glycoproteins of bunyaviruses, alphaviruses and flaviviruses and mostly comprise of β-structures.

Minigenome

A genome analogue that comprises the 3′ and 5′ UTRs of a viral genome segment and contains a reporter gene (for example, luciferase) in the negative-sense in place of the viral coding sequence.

DC-SIGN

(Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin). A calcium-dependent carbohydrate-binding protein (C-type lectin) receptor that is present on the surface of both macrophages and dendritic cells.

Macropinocytosis

A process that involves the uptake of molecules into cells in a clathrin-independent manner. Membrane ruffles trap fluid as they fold over themselves at the cell surface and undergo fusion, which results in vesicles that pinch off the membrane surface and hence deliver cargo to the cytoplasm.

Caveolar endocytosis

A clathrin-independent mechanism of endocytosis. Entry into cells is mediated by caveolae, which are flask-shaped invaginations on the cell surface that contain the protein caveolin.

Rabbit reticulocyte lysate

An in vitro or cell-free translation system that is based on nuclease-treated lysates of reticulocytes (the cells that are responsible for the production of haemoglobin), which enables the translation of exogenous RNAs.

Virus factory

A region of the host cell that is modified by the virus, such that it recruits cellular organelles and functions as a scaffold for virus assembly.

Endoglycosidase H

(Endo H). An enzyme that cleaves asparagine-linked high-mannose glycans from glycoproteins but does not digest complex oligosaccharide side chains. EndoH sensitivity is used as a marker to monitor oligosaccharide processing of a protein as it transits through the Golgi complex.

Exocytic pathway

The exocytic pathway consists of a series of membrane-bound organelles that transport proteins and lipids in vesicles from the ER to the cell surface.

RNAi

In the context of this Review, a gene-silencing mechanism in which viral RNAs are targeted for destruction by specific small interfering RNA molecules.

Pattern recognition receptors

(PRRs). A diverse group of membrane and cytoplasmic proteins that identify various microbial pathogen components to trigger the innate immune system.

Mediator

A multiprotein complex that functions as a key component of the RNA polymerase II transcriptional machinery. It functions as a bridge between the enzyme and regulatory proteins and is involved in both activation and repression of mRNA production.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elliott, R. Orthobunyaviruses: recent genetic and structural insights. Nat Rev Microbiol 12, 673–685 (2014). https://doi.org/10.1038/nrmicro3332

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro3332

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing