Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The sweet spot: defining virus–sialic acid interactions

Key Points

  • Many viruses engage sialylated glycans to bind to and infect cells. Sialic acid-binding viruses include influenza virus, reovirus, adenovirus and rotavirus, which bind to host receptors via their stalk-like attachment proteins.

  • Glycan microarray technology has enabled the rapid identification of specific carbohydrate ligands for several viruses. This technology has been used to discern glycan-binding preferences between closely related strains, including pathogenic influenza virus isolates.

  • Improvements in X-ray crystallography have enabled the virus–glycan interaction to be studied in detail and, coupled with reverse genetics approaches, structure–function relationships of virus–glycan interactions can be determined in vitro and in vivo.

  • The complexity of virus–sialic acid interactions is remarkable, as linkage basis and sialic acid modifications, such as sulphation, influence binding capacity. Preferences in glycan engagement influence influenza virus host range and modulate tissue tropism.

  • Virus–sialylated glycan interactions are an important therapeutic target, and structure–function analysis has facilitated drug development and may improve oncolytic vector design.

Abstract

Viral infections are initiated by attachment of the virus to host cell surface receptors, including sialic acid-containing glycans. It is now possible to rapidly identify specific glycan receptors using glycan array screening, to define atomic-level structures of virus–glycan complexes and to alter the glycan-binding site to determine the function of glycan engagement in viral disease. This Review highlights general principles of virus–glycan interactions and provides specific examples of sialic acid binding by viruses with stalk-like attachment proteins, including influenza virus, reovirus, adenovirus and rotavirus. Understanding virus–glycan interactions is essential to combating viral infections and designing improved viral vectors for therapeutic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sialic acid types and glycosidic linkage.
Figure 2: Influenza virus binding to differentially linked sialic acids.
Figure 3: T1 and T3 reovirus σ1 proteins differentially bind to sialylated glycans.
Figure 4: Interaction between adenovirus 37 and glycan.
Figure 5: The VP8* domain of rotavirus VP4 differentially engages glycans.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Barton, E. S., Connolly, J. L., Forrest, J. C., Chappell, J. D. & Dermody, T. S. Utilization of sialic acid as a coreceptor enhances reovirus attachment by multistep adhesion strengthening. J. Biol. Chem. 276, 2200–2211 (2001).

    CAS  PubMed  Google Scholar 

  2. Chappell, J. D., Duong, J. L., Wright, B. W. & Dermody, T. S. Identification of carbohydrate-binding domains in the attachment proteins of type 1 and type 3 reoviruses. J. Virol. 74, 8472–8479 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Chappell, J. D., Gunn, V. L., Wetzel, J. D., Baer, G. S. & Dermody, T. S. Mutations in type 3 reovirus that determine binding to sialic acid are contained in the fibrous tail domain of viral attachment protein s1. J. Virol. 71, 1834–1841 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsai, B. et al. Gangliosides are receptors for murine polyoma virus and SV40. EMBO J. 22, 4346–4355 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rogers, G. N. et al. Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature 304, 76–78 (1983).

    CAS  PubMed  Google Scholar 

  6. Neu, U., Bauer, J. & Stehle, T. Viruses and sialic acids: rules of engagement. Curr. Opin. Struct. Biol. 21, 610–618 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Silva, L. A. et al. A single-amino-acid polymorphism in Chikungunya virus E2 glycoprotein influences glycosaminoglycan utilization. J. Virol. 88, 2385–2397 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Gardner, C. L. et al. Natural variation in the heparan sulfate binding domain of the eastern equine encephalitis virus E2 glycoprotein alters interactions with cell surfaces and virulence in mice. J. Virol. 87, 8582–8590 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gardner, C. L., Ebel, G. D., Ryman, K. D. & Klimstra, W. B. Heparan sulfate binding by natural eastern equine encephalitis viruses promotes neurovirulence. Proc. Natl Acad. Sci. USA 108, 16026–16031 (2011).

    CAS  PubMed  Google Scholar 

  10. Tiwari, V., Maus, E., Sigar, I. M., Ramsey, K. H. & Shukla, D. Role of heparan sulfate in sexually transmitted infections. Glycobiology 22, 1402–1412 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hu, L. et al. Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature 485, 256–259 (2012). This study identifies HBGA as a receptor for human rotavirus strain HAL1166 and defines the glycan-binding site using X-ray crystallography. Interestingly, only modest changes in the glycan-binding site greatly alter glycan-binding specificity among rotavirus strains.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu, Y. et al. Poly-LacNAc as an age-specific ligand for rotavirus P[11] in neonates and infants. PLoS ONE 8, e78113 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Neu, U. et al. Structures of Merkel cell polyomavirus VP1 complexes define a sialic acid binding site required for infection. PLoS Pathog. 8, e1002738 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Neu, U. et al. Structure–function analysis of the human JC polyomavirus establishes the LSTc pentasaccharide as a functional receptor motif. Cell Host Microbe 8, 309–319 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Varki, A. Multiple changes in sialic acid biology during human evolution. Glycoconjugate J. 26, 231–245 (2009). This review provides insights into the host–pathogen 'arms race' throughout the course of human evolution.

    CAS  Google Scholar 

  16. Varki, A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 446, 1023–1029 (2007).

    CAS  PubMed  Google Scholar 

  17. Schwarzkopf, M. et al. Sialylation is essential for early development in mice. Proc. Natl Acad. Sci. USA 99, 5267–5270 (2002).

    CAS  PubMed  Google Scholar 

  18. Svennerholm, L. Interaction of cholera toxin and ganglioside G(M1). Adv. Exp. Med. Biol. 71, 191–204 (1976).

    CAS  PubMed  Google Scholar 

  19. Reiss, K. et al. The GM2 glycan serves as a functional co-receptor for serotype 1 reovirus. PLoS Pathog. 8, e1003078 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rogers, G. N., Pritchett, T. J., Lane, J. L. & Paulson, J. C. Differential sensitivity of human, avian, and equine influenza A viruses to a glycoprotein inhibitor of infection: selection of receptor specific variants. Virology 131, 394–408 (1983).

    CAS  PubMed  Google Scholar 

  21. Nilsson, E. C. et al. The GD1a glycan is a cellular receptor for adenoviruses causing epidemic keratoconjunctivitis. Nature Med. 17, 105–109 (2011). This study identifies GD1a as a cellular receptor for Ad37 and defines the glycan-binding site using NMR spectroscopy and X-ray crystallography.

    CAS  PubMed  Google Scholar 

  22. Miller-Podraza, H., Bradley, R. M. & Fishman, P. H. Biosynthesis and localization of gangliosides in cultured cells. Biochemistry 21, 3260–3265 (1982).

    CAS  PubMed  Google Scholar 

  23. Blixt, O. et al. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl Acad. Sci. USA 101, 17033–17038 (2004).

    CAS  PubMed  Google Scholar 

  24. Feizi, T., Fazio, F., Chai, W. & Wong, C. H. Carbohydrate microarrays — a new set of technologies at the frontiers of glycomics. Curr. Opin. Struct. Biol. 13, 637–645 (2003).

    CAS  PubMed  Google Scholar 

  25. Liu, Y. et al. Neoglycolipid-based oligosaccharide microarray system: preparation of NGLs and their noncovalent immobilization on nitrocellulose-coated glass slides for microarray analyses. Methods Mol. Biol. 808, 117–136 (2012).

    CAS  PubMed  Google Scholar 

  26. Liu, Y., Palma, A. S. & Feizi, T. Carbohydrate microarrays: key developments in glycobiology. Biol. Chem. 390, 647–656 (2009). This review provides a comprehensive description of glycan array technology.

    CAS  PubMed  Google Scholar 

  27. Childs, R. A. et al. Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray. Nature Biotech. 27, 797–799 (2009). This study uses glycan array technology to determine the glycan-binding specificity of pandemic H1N1 in comparison to the 2009 seasonal strain. It is an example of how glycan arrays can be used to identify specific glycan receptors for emerging virus strains.

    CAS  Google Scholar 

  28. Stevens, J. et al. Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J. Mol. Biol. 355, 1143–1155 (2006). This study is an important example of how glycan array technology can be used to determine differences in receptor specificity between influenza virus strains.

    CAS  PubMed  Google Scholar 

  29. Ramani, S. et al. The VP8* domain of neonatal rotavirus strain G10P[11] binds to type II precursor glycans. J. Virol. 87, 7255–7264 (2013). This study defines the glycan receptor specificity of neonatal rotavirus infections.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Neu, U., Woellner, K., Gauglitz, G. & Stehle, T. Structural basis of GM1 ganglioside recognition by simian virus 40. Proc. Natl Acad. Sci. USA 105, 5219–5224 (2008).

    CAS  PubMed  Google Scholar 

  31. Xu, R. et al. Preferential recognition of avian-like receptors in human influenza A H7N9 viruses. Science 342, 1230–1235 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gulati, S., Lasanajak, Y., Smith, D. F., Cummings, R. D. & Air, G. M. Glycan array analysis of influenza H1N1 binding and release. Cancer Biomark. 14, 43–53 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. Fukui, S., Feizi, T., Galustian, C., Lawson, A. M. & Chai, W. Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate–protein interactions. Nature Biotech. 20, 1011–1017 (2002).

    CAS  Google Scholar 

  34. Palma, A. S., Feizi, T., Childs, R. A., Chai, W. & Liu, Y. The neoglycolipid (NGL)-based oligosaccharide microarray system poised to decipher the meta-glycome. Curr. Opin. Chem. Biol. 18, 1–8 (2014).

    Google Scholar 

  35. Wang, L. et al. Cross-platform comparison of glycan microarray formats. Glycobiology 24, 507–517 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Padler-Karavani, V. et al. Cross-comparison of protein recognition of sialic acid diversity on two novel sialoglycan microarrays. J. Biol. Chem. 287, 22593–22608 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Engelhardt, O. G. Many ways to make an influenza virus — review of influenza virus reverse genetics methods. Influenza Other Respir. Viruses 7, 249–256 (2013).

    CAS  PubMed  Google Scholar 

  38. Fodor, E. et al. Rescue of influenza A virus from recombinant DNA. J. Virol. 73, 9679–9682 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Boehme, K. W., Ikizler, M., Kobayashi, T. & Dermody, T. S. Reverse genetics for mammalian reovirus. Methods 55, 109–113 (2011). This study describes methods for mammalian reovirus reverse genetics in detail.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kobayashi, T., Ooms, L. S., Ikizler, M., Chappell, J. D. & Dermody, T. S. An improved reverse genetics system for mammalian orthoreoviruses. Virology 2, 194–200 (2010).

    Google Scholar 

  41. Adams, P. D. et al. Advances, interactions, and future developments in the CNS, Phenix, and Rosetta structural biology software systems. Annu. Rev. Biophys. 42, 265–287 (2013).

    CAS  PubMed  Google Scholar 

  42. Wlodawer, A., Minor, W., Dauter, Z. & Jaskolski, M. Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination. FEBS J. 280, 5705–5736 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rademacher, C., Krishna, N. R., Palcic, M., Parra, F. & Peters, T. NMR experiments reveal the molecular basis of receptor recognition by a calicivirus. J. Am. Chem. Soc. 130, 3669–3675 (2008).

    CAS  PubMed  Google Scholar 

  44. Weis, W. et al. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333, 426–431 (1988).

    CAS  PubMed  Google Scholar 

  45. Nobusawa, E. et al. Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. Virology 182, 475–485 (1991).

    CAS  PubMed  Google Scholar 

  46. Watowich, S. J., Skehel, J. J. & Wiley, D. C. Crystal structures of influenza virus hemagglutinin in complex with high-affinity receptor analogs. Structure 2, 719–731 (1994).

    CAS  PubMed  Google Scholar 

  47. Sauter, N. K. et al. Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography. Biochemistry 31, 9609–9621 (1992).

    CAS  PubMed  Google Scholar 

  48. Xiong, X. et al. Receptor binding by an H7N9 influenza virus from humans. Nature 499, 496–499 (2013).

    CAS  PubMed  Google Scholar 

  49. Xiong, X. et al. Receptor binding by a ferret-transmissible H5 avian influenza virus. Nature 497, 392–396 (2013).

    CAS  PubMed  Google Scholar 

  50. Zhang, Y. et al. H5N1 hybrid viruses bearing 2009/H1N1 virus genes transmit in guinea pigs by respiratory droplet. Science 340, 1459–1463 (2013).

    CAS  PubMed  Google Scholar 

  51. Chandrasekaran, A. et al. Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nature Biotech. 26, 107–113 (2008).

    CAS  Google Scholar 

  52. Matrosovich, M. et al. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J. Virol. 74, 8502–8512 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Connor, R. J., Kawaoka, Y., Webster, R. G. & Paulson, J. C. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205, 17–23 (1994).

    CAS  PubMed  Google Scholar 

  54. Imai, M. & Kawaoka, Y. The role of receptor binding specificity in interspecies transmission of influenza viruses. Curr. Opin. Virol. 2, 160–167 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Stevens, J., Blixt, O., Paulson, J. C. & Wilson, I. A. Glycan microarray technologies: tools to survey host specificity of influenza viruses. Nature Rev. Microbiol. 4, 857–864 (2006).

    CAS  Google Scholar 

  56. Glaser, L. et al. A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J. Virol. 79, 11533–11536 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu, Y. et al. Altered receptor specificity and cell tropism of D222G hemagglutinin mutants isolated from fatal cases of pandemic A(H1N1) 2009 influenza virus. J. Virol. 84, 12069–12074 (2010).

    PubMed  PubMed Central  Google Scholar 

  58. Bradley, K. C. et al. Comparison of the receptor binding properties of contemporary swine isolates and early human pandemic H1N1 isolates (Novel 2009 H1N1). Virology 413, 169–182 (2011).

    CAS  PubMed  Google Scholar 

  59. Gulati, S. et al. Human H3N2 influenza viruses isolated from 1968 to 2012 show varying preference for receptor substructures with no apparent consequences for disease or spread. PLoS ONE 8, e66325 (2013). This study reveals the remarkable diversity in influenza virus haemagglutinin binding preferences using glycan array screening.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Crusat, M. et al. Changes in the hemagglutinin of H5N1 viruses during human infection — influence on receptor binding. Virology 447, 326–337 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Belser, J. A., Katz, J. M. & Tumpey, T. M. The ferret as a model organism to study influenza A virus infection. Dis. Models Mechanisms 4, 575–579 (2011).

    CAS  Google Scholar 

  62. Imai, M. et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486, 420–428 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Linster, M. et al. Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Cell 157, 329–339 (2014). This study identifies the precise genetic changes that are required for influenza virus transmissibility.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. de Graaf, M. & Fouchier, R. A. Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO J. 33, 823–841 (2014). This study reviews the function of receptor binding in influenza virus pathogenesis in detail.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Tai, J. H. et al. Prevalence of reovirus-specific antibodies in young children in Nashville, Tennessee. J. Infect. Dis. 191, 1221–1224 (2005).

    PubMed  Google Scholar 

  66. Reiter, D. M. et al. Crystal structure of reovirus attachment protein σ1 in complex with sialylated oligosaccharides. PLoS Pathog. 7, e1002166 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kirchner, E., Guglielmi, K. M., Strauss, H. M., Dermody, T. S. & Stehle, T. Structure of reovirus s1 in complex with its receptor junctional adhesion molecule-A. PLoS Pathog. 4, e1000235 (2008).

    PubMed  PubMed Central  Google Scholar 

  68. Barton, E. S. et al. Junction adhesion molecule is a receptor for reovirus. Cell 104, 441–451 (2001).

    CAS  PubMed  Google Scholar 

  69. Antar, A. A. R. et al. Junctional adhesion molecule-A is required for hematogenous dissemination of reovirus. Cell Host Microbe 5, 59–71 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Bazzoni, G. et al. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J. Biol. Chem. 275, 20520–20526 (2000).

    CAS  PubMed  Google Scholar 

  71. Ebnet, K., Schulz, C. U., Meyer Zu Brickwedde, M. K., Pendl, G. G. & Vestweber, D. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J. Biol. Chem. 275, 27979–27988 (2000).

    CAS  PubMed  Google Scholar 

  72. Maschio, A. D. et al. Leukocyte recruitment in the cerebrospinal fluid of mice with experimental meningitis is inhabited by an antibody to junctional adhesion molecule (JAM). J. Exp. Med. 190, 1351–1356 (1999).

    PubMed  PubMed Central  Google Scholar 

  73. Lechner, F. et al. Antibodies to the junctional adhesion molecule cause disruption of endothelial cells and do not prevent leukocyte influx into the meninges after viral or bacterial infection. J. Infect. Dis. 182, 978–982 (2000).

    CAS  PubMed  Google Scholar 

  74. Lerner, A. M., Cherry, J. D. & Finland, M. Haemagglutination with reoviruses. Virology 19, 58–65 (1963).

    CAS  PubMed  Google Scholar 

  75. Fukuda, M., Lauffenburger, M., Sasaki, H., Rogers, M. E. & Dell, A. Structures of novel sialylated O-linked oligosaccharides isolated from human erythrocyte glycophorins. J. Biol. Chem. 262, 11952–11957 (1987).

    CAS  PubMed  Google Scholar 

  76. Pahlsson, P., Blackall, D. P., Ugorski, M., Czerwinski, M. & Spitalnik, S. L. Biochemical characterization of the O-glycans on recombinant glycophorin A expressed in Chinese hamster ovary cells. Glycoconjugate J. 11, 43–50 (1994).

    CAS  Google Scholar 

  77. Eggers, H. J., Gomatos, P. J. & Tamm, I. Agglutination of bovine erythrocytes: a general characteristic of reovirus type 3. Proc. Soc. Exp. Biol. Med. 110, 879–881 (1962).

    CAS  PubMed  Google Scholar 

  78. Barton, E. S. et al. Utilization of sialic acid as a coreceptor is required for reovirus-induced biliary disease. J. Clin. Invest. 111, 1823–1833 (2003). This study demonstrates a linkage between sialic acid binding and alterations in reovirus tropism.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Frierson, J. M. et al. Utilization of sialylated glycans as coreceptors enhances the neurovirulence of serotype 3 reovirus. J. Virol. 86, 13164–13173 (2012). This work shows that sialic acid-binding capacity increases reovirus-induced neurovirulence in mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Konopka-Anstadt, J. L. et al. The Nogo receptor NgR1 mediates infection by mammalian reovirus. Cell Host Microbe 15, 681–691 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Weiner, H. L., Drayna, D., Averill, D. R. Jr & Fields, B. N. Molecular basis of reovirus virulence: role of the S1 gene. Proc. Natl Acad. Sci. USA 74, 5744–5748 (1977).

    CAS  PubMed  Google Scholar 

  82. Weiner, H. L., Greene, M. I. & Fields, B. N. Delayed hypersensitivity in mice infected with reovirus. I. Identification of host and viral gene products responsible for the immune response. J. Immunol. 125, 278–282 (1980).

    CAS  PubMed  Google Scholar 

  83. Morrison, L. A., Sidman, R. L. & Fields, B. N. Direct spread of reovirus from the intestinal lumen to the central nervous system through vagal autonomic nerve fibers. Proc. Natl Acad. Sci. USA 88, 3852–3856 (1991).

    CAS  PubMed  Google Scholar 

  84. Tyler, K. L., McPhee, D. A. & Fields, B. N. Distinct pathways of viral spread in the host determined by reovirus S1 gene segment. Science 233, 770–774 (1986).

    CAS  PubMed  Google Scholar 

  85. Cupelli, K. & Stehle, T. Viral attachment strategies: the many faces of adenoviruses. Curr. Opin. Virol. 1, 84–91 (2011).

    CAS  PubMed  Google Scholar 

  86. Kemp, M. C., Hierholzer, J. C., Cabradilla, C. P. & Obijeski, J. F. The changing etiology of epidemic keratoconjunctivitis: antigenic and restriction enzyme analyses of adenovirus types 19 and 37 isolated over a 10-year period. J. Infect. Dis. 148, 24–33 (1983).

    CAS  PubMed  Google Scholar 

  87. Arnberg, N., Edlund, K., Kidd, A. H. & Wadell, G. Adenovirus type 37 uses sialic acid as a cellular receptor. J. Virol. 74, 42–48 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wadell, G. Hemagglutination with adenovirus serotypes belonging to Rosen's subgroups II and 3. Proc. Soc. Exp. Biol. Med. 132, 413–421 (1969).

    CAS  PubMed  Google Scholar 

  89. Burmeister, W. P., Guilligay, D., Cusack, S., Wadell, G. & Arnberg, N. Crystal structure of species D adenovirus fiber knobs and their sialic acid binding sites. J. Virol. 78, 7727–7736 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Spjut, S. et al. A potent trivalent sialic acid inhibitor of adenovirus type 37 infection of human corneal cells. Angew. Chem. Int. Ed. Engl. 50, 6519–6521 (2011). This paper reports the development of a multivalent inhibitor of viral infection that was inspired by the crystal structure of the Ad37 fibre knob in complex with its carbohydrate receptor; the inhibitor is more potent than monovalent sialic acid.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Yeager, M., Dryden, K. A., Olson, N. H., Greenberg, H. B. & Baker, T. S. Three-dimensional structure of rhesus rotavirus by cryoelectron microscopy and image reconstruction. J. Cell Biol. 110, 2133–2144 (1990).

    CAS  PubMed  Google Scholar 

  92. Fiore, L., Greenberg, H. B. & Mackow, E. R. The VP8 fragment of VP4 is the rhesus rotavirus hemagglutinin. Virology 181, 553–563 (1991).

    CAS  PubMed  Google Scholar 

  93. Denisova, E. et al. Rotavirus capsid protein VP5* permeabilizes membranes. J. Virol. 73, 3147–3153 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Dormitzer, P. R., Sun, Z. Y., Wagner, G. & Harrison, S. C. The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J. 21, 885–897 (2002). This study identifies the sialic acid-binding site of rhesus rotavirus and defines residues that are required for this glycan interaction.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kraschnefski, M. J. et al. Effects on sialic acid recognition of amino acid mutations in the carbohydrate-binding cleft of the rotavirus spike protein. Glycobiology 19, 194–200 (2009).

    CAS  PubMed  Google Scholar 

  96. Blanchard, H., Yu, X., Coulson, B. S. & von Itzstein, M. Insight into host cell carbohydrate-recognition by human and porcine rotavirus from crystal structures of the virion spike associated carbohydrate-binding domain (VP8*). J. Mol. Biol. 367, 1215–1226 (2007).

    CAS  PubMed  Google Scholar 

  97. Yu, X. et al. Structural basis of rotavirus strain preference toward N-acetyl- or N-glycolylneuraminic acid-containing receptors. J. Virol. 86, 13456–13466 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Monnier, N. et al. High-resolution molecular and antigen structure of the VP8* core of a sialic acid-independent human rotavirus strain. J. Virol. 80, 1513–1523 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Haselhorst, T. et al. Recognition of the GM3 ganglioside glycan by Rhesus rotavirus particles. Angew. Chem. Int. Ed. Engl. 50, 1055–1058 (2011).

    CAS  PubMed  Google Scholar 

  100. Haselhorst, T. et al. Sialic acid dependence in rotavirus host cell invasion. Nature Chem. Biol. 5, 91–93 (2009).

    CAS  Google Scholar 

  101. Sowmyanarayanan, T. V. et al. Severity of rotavirus gastroenteritis in Indian children requiring hospitalization. Vaccine 30 (Suppl. 1), 167–172 (2012).

    Google Scholar 

  102. Huang, P. et al. Spike protein VP8* of human rotavirus recognizes histo-blood group antigens in a type-specific manner. J. Virol. 86, 4833–4843 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu, Y. et al. Rotavirus VP8*: phylogeny, host range, and interaction with histo-blood group antigens. J. Virol. 86, 9899–9910 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Martinez, M. A., Lopez, S., Arias, C. F. & Isa, P. Gangliosides have a functional role during rotavirus cell entry. J. Virol. 87, 1115–1122 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Yolken, R. H., Willoughby, R., Wee, S. B., Miskuff, R. & Vonderfecht, S. Sialic acid glycoproteins inhibit in vitro and in vivo replication of rotaviruses. J. Clin. Invest. 79, 148–154 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Kaufmann, J. K. & Nettelbeck, D. M. Virus chimeras for gene therapy, vaccination, and oncolysis: adenoviruses and beyond. Trends Mol. Med. 18, 365–376 (2012).

    CAS  PubMed  Google Scholar 

  107. Russell, S. J., Peng, K. W. & Bell, J. C. Oncolytic virotherapy. Nature Biotech. 30, 658–670 (2012).

    CAS  Google Scholar 

  108. von Itzstein, M. et al. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363, 418–423 (1993).

    CAS  PubMed  Google Scholar 

  109. Kim, C. U. et al. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J. Am. Chem. Soc. 119, 681–690 (1997).

    CAS  PubMed  Google Scholar 

  110. Russell, R. J. et al. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443, 45–49 (2006).

    CAS  PubMed  Google Scholar 

  111. Kim, J. H. et al. Mechanism-based covalent neuraminidase inhibitors with broad-spectrum influenza antiviral activity. Science 340, 71–75 (2013).

    CAS  PubMed  Google Scholar 

  112. Takemoto, D. K., Skehel, J. J. & Wiley, D. C. A surface plasmon resonance assay for the binding of influenza virus hemagglutinin to its sialic acid receptor. Virology 217, 452–458 (1996).

    CAS  PubMed  Google Scholar 

  113. Matrosovich, M. & Klenk, H. D. Natural and synthetic sialic acid-containing inhibitors of influenza virus receptor binding. Rev. Med. Virol. 13, 85–97 (2003).

    CAS  PubMed  Google Scholar 

  114. Hendricks, G. L. et al. Sialylneolacto-N-tetraose c (LSTc)-bearing liposomal decoys capture influenza A virus. J. Biol. Chem. 288, 8061–8073 (2013). This study shows that liposomes that are coated with LSTc bind to influenza virus and function as antiviral agents.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Malakhov, M. P. et al. Sialidase fusion protein as a novel broad-spectrum inhibitor of influenza virus infection. Antimicrob. Agents Chemother. 50, 1470–1479 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Belser, J. A. et al. DAS181, a novel sialidase fusion protein, protects mice from lethal avian influenza H5N1 virus infection. J. Infect. Dis. 196, 1493–1499 (2007).

    CAS  PubMed  Google Scholar 

  117. Wathen, M. W., Barro, M. & Bright, R. A. Antivirals in seasonal and pandemic influenza — future perspectives. Influenza Other Respir. Viruses 7 (Suppl. 1), 76–80 (2013).

    CAS  PubMed  Google Scholar 

  118. Hashiro, G., Loh, P. C. & Yau, J. T. The preferential cytotoxicity of reovirus for certain transformed cell lines. Arch. Virol. 54, 307–315 (1977).

    CAS  PubMed  Google Scholar 

  119. Norman, K. L., Hirasawa, K., Yang, A. D., Shields, M. A. & Lee, P. W. Reovirus oncolysis: the Ras/RalGEF/p38 pathway dictates host cell permissiveness to reovirus infection. Proc. Natl Acad. Sci. USA 101, 11099–11104 (2004).

    CAS  PubMed  Google Scholar 

  120. Strong, J. E., Coffey, M. C., Tang, D., Sabinin, P. & Lee, P. W. The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J. 17, 3351–3362 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Coffey, M. C., Strong, J. E., Forsyth, P. A. & Lee, P. W. Reovirus therapy of tumors with activated Ras pathway. Science 282, 1332–1334 (1998).

    CAS  PubMed  Google Scholar 

  122. Gollamudi, R. et al. Intravenous administration of Reolysin, a live replication competent RNA virus is safe in patients with advanced solid tumors. Invest. New Drugs 28, 641–649 (2009).

    PubMed  Google Scholar 

  123. Vidal, L. et al. A phase I study of intravenous oncolytic reovirus type 3 Dearing in patients with advanced cancer. Clin. Cancer. Res. 14, 7127–7137 (2008).

    CAS  PubMed  Google Scholar 

  124. Sahin, E., Egger, M., McMasters, K. & Zhou, H. Development of oncolytic reovirus for cancer therapy. J. Cancer Ther. 4, 1100–1115 (2013).

    Google Scholar 

  125. Kyula, J. N., Roulstone, V., Karapanagiotou, E. M., Melcher, A. A. & Harrington, K. J. Oncolytic reovirus type 3 (Dearing) as a novel therapy in head and neck cancer. Expert Opin. Biol. Ther. 12, 1669–1678 (2012).

    CAS  PubMed  Google Scholar 

  126. Raval, G. et al. TNF-α induction of GM2 expression on renal cell carcinomas promotes T cell dysfunction. J. Immunol. 178, 6642–6652 (2007).

    CAS  PubMed  Google Scholar 

  127. Harduin-Lepers, A. et al. Sialyltransferases functions in cancers. Frontiers Biosci. 4, 499–515 (2012).

    Google Scholar 

  128. Kim, M. et al. Attenuated reovirus displays oncolysis with reduced host toxicity. Br. J. Cancer 104, 290–299 (2011).

    CAS  PubMed  Google Scholar 

  129. Shinya, K. et al. Avian flu: influenza virus receptors in the human airway. Nature 440, 435–436 (2006).

    CAS  PubMed  Google Scholar 

  130. Baum, L. G. & Paulson, J. C. Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity. Acta Histochem. Suppl. 40, 35–38 (1990).

    CAS  PubMed  Google Scholar 

  131. Walther, T. et al. Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection. PLoS Pathog. 9, e1003223 (2013). The authors use glycomics approaches to improve understanding of the glycome on human lung tissue and compare these findings with results from traditional glycan array experiments.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Comelli, E. M. et al. A focused microarray approach to functional glycomics: transcriptional regulation of the glycome. Glycobiology 16, 117–131 (2006).

    CAS  PubMed  Google Scholar 

  133. Song, X. et al. Shotgun glycomics: a microarray strategy for functional glycomics. Nature Meth. 8, 85–90 (2011).

    CAS  Google Scholar 

  134. Byrd-Leotis, L. et al. Shotgun glycomics of pig lung identifies natural endogenous receptors for influenza viruses. Proc. Natl Acad. Sci. USA 111, E2241–E2250 (2014). This study demonstrates how shotgun glycomics can be used to identify influenza virus receptors.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work was supported by US Public Health Service awards R01 AI76983 and R37 AI38296 and the Elizabeth B. Lamb Center for Pediatric Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thilo Stehle or Terence S. Dermody.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Glycans

A nonspecific term for a polysaccharide or polymeric carbohydrate.

α-linked

A term used to describe a Neu5Ac that is incorporated into a polysaccharide via a glycosidic bond in which the alpha anomer, or C1 carbon, of Neu5Ac is in the axial position on the opposite side of the plane of the C6 carbon.

Lectins

Proteins, usually of plant origin, that bind to carbohydrates on the surface of animal cells; they also agglutinate red blood cells.

Neuraminidases

Enzymes, usually of microbial origin, that catalyse the removal of terminal sialic acids on the surface of cells or microorganisms.

Gangliosides

A type of glycolipid, commonly composed of a ceramide tail and a glycan portion that contains at least one sialic acid moiety.

Serotypes

A subclassification of a virus species that shares antigens and for which antibodies are cross-reactive.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stencel-Baerenwald, J., Reiss, K., Reiter, D. et al. The sweet spot: defining virus–sialic acid interactions. Nat Rev Microbiol 12, 739–749 (2014). https://doi.org/10.1038/nrmicro3346

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro3346

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing