Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Novel vaccine vectors for HIV-1

A Corrigendum to this article was published on 12 October 2017

This article has been updated

Abstract

The ultimate solution to the global HIV-1 epidemic will probably require the development of a safe and effective vaccine. Multiple vaccine platforms have been evaluated in preclinical and clinical trials, but given the disappointing results of clinical efficacy studies so far, novel vaccine approaches are needed. In this Opinion article, we discuss the scientific basis and clinical potential of novel adenovirus and cytomegalovirus vaccine vectors for HIV-1 as two contrasting but potentially complementary vector approaches. Both of these vector platforms have demonstrated partial protection against stringent simian immunodeficiency virus challenges in rhesus monkeys using different immunological mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Partial protection against acquisition of SIVmac251 and SHIV–SF162P3 infection by Ad26-based vaccines.
Figure 2: Unique efficacy of RhCMV/SIV vector vaccination against rectal mucosal challenge with the highly pathogenic SIVmac239 virus.

Similar content being viewed by others

Change history

  • 12 October 2017

    On page 768 of the article, the text has been changed to clarify that all vaccinated and control animals were challenged until documentation of SIV infection by virological and/or immunological criteria. Furthermore, on page 768, the text has been changed to specify both the number of vaccinated controllers shown in Figure 2 after intrarectal challenge as well as the number of controllers after both intrarectal and intravaginal challenge. Finally, the legend of Figure 2 has been changed to clarify that the graph shows intrarectal SIVmac239 challenge of monkeys that have either been vaccinated twice with a strain 68-1 RhCMV/SIV vector (week 0 and week 14; n = 36) or once with these vectors (week 0) and were then vaccinated at week 14 with Ad5 vectors (n = 12). Changes have been made to both the HTML and PDF versions of the article. The authors apologize to readers for any confusion caused.

References

  1. Barouch, D. H. The quest for an HIV-1 vaccine — moving forward. N. Engl. J. Med. 369, 2073–2076 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fauci, A. S. & Marston, H. D. Ending AIDS — is an HIV vaccine necessary? N. Engl. J. Med. 370, 495–498 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Buchbinder, S. P. et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372, 1881–1893 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Flynn, N. M. et al. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J. Infect. Dis. 191, 654–665 (2005).

    Article  PubMed  Google Scholar 

  5. Gray, G. E. et al. Safety and efficacy of the HVTN 503/Phambili study of a clade-B-based HIV-1 vaccine in South Africa: a double-blind, randomised, placebo-controlled test-of-concept phase 2b study. Lancet Infect. Dis. 11, 507–515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hammer, S. M. et al. Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. N. Engl. J. Med. 369, 2083–2092 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pitisuttithum, P. et al. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J. Infect. Dis. 194, 1661–1671 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Rerks-Ngarm, S. et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361, 2209–2220 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Shiver, J. W. & Emini, E. A. Recent advances in the development of HIV-1 vaccines using replication-incompetent adenovirus vectors. Annu. Rev. Med. 55, 355–372 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Shiver, J. W. et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 415, 331–335 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Casimiro, D. R. et al. Attenuation of simian immunodeficiency virus SIVmac239 infection by prophylactic immunization with DNA and recombinant adenoviral vaccine vectors expressing Gag. J. Virol. 79, 15547–15555 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilson, N. A. et al. Vaccine-induced cellular immune responses reduce plasma viral concentrations after repeated low-dose challenge with pathogenic simian immunodeficiency virus SIVmac239. J. Virol. 80, 5875–5885 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Benlahrech, A. et al. Adenovirus vector vaccination induces expansion of memory CD4 T cells with a mucosal homing phenotype that are readily susceptible to HIV-1. Proc. Natl Acad. Sci. USA 106, 19940–19945 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hutnick, N. A. et al. Baseline Ad5 serostatus does not predict Ad5 HIV vaccine-induced expansion of adenovirus-specific CD4+ T cells. Nature Med. 15, 876–878 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. McElrath, M. J. et al. HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case-cohort analysis. Lancet 372, 1894–1905 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. O'Brien, K. L. et al. Adenovirus-specific immunity after immunization with an Ad5 HIV-1 vaccine candidate in humans. Nature Med. 15, 873–875 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Letvin, N. L. et al. Immune and genetic correlates of vaccine protection against mucosal infection by SIV in monkeys. Sci. Transl. Med. 3, ra36 (2011).

    Article  Google Scholar 

  18. Lopker, M. et al. Heterogeneity in neutralization sensitivities of viruses comprising the simian immunodeficiency virus SIVsmE660 isolate and vaccine challenge stock. J. Virol. 87, 5477–5492 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barouch, D. H. et al. International seroepidemiology of adenovirus serotypes 5, 26, 35, and 48 in pediatric and adult populations. Vaccine 29, 5203–5209 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mast, T. C. et al. International epidemiology of human pre-existing adenovirus (Ad) type-5, type-6, type-26 and type-36 neutralizing antibodies: correlates of high Ad5 titers and implications for potential HIV vaccine trials. Vaccine 28, 950–957 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Abbink, P. et al. Comparative seroprevalence and immunogenicity of six rare serotype recombinant adenovirus vaccine vectors from subgroups B and D. J. Virol. 81, 4654–4663 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baden, L. R. et al. First-in-human evaluation of the safety and immunogenicity of a recombinant adenovirus serotype 26 HIV-1 Env vaccine (IPCAVD 001). J. Infect. Dis. 207, 240–247 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Barouch, D. H. et al. Characterization of humoral and cellular immune responses elicited by a recombinant adenovirus serotype 26 HIV-1 Env vaccine in healthy adults (IPCAVD 001). J. Infect. Dis. 207, 248–256 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Creech, C. B. et al. Randomized, placebo-controlled trial to assess the safety and immunogenicity of an adenovirus type 35-based circumsporozoite malaria vaccine in healthy adults. Hum. vaccin. Immunother. 9, 2548–2557 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Keefer, M. C. et al. A phase I double blind, placebo-controlled, randomized study of a multigenic HIV-1 adenovirus subtype 35 vector vaccine in healthy uninfected adults. PLoS ONE 7, e41936 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vogels, R. et al. Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: efficient human cell infection and bypass of preexisting adenovirus immunity. J. Virol. 77, 8263–8271 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Antrobus, R. D. et al. Clinical assessment of a novel recombinant simian adenovirus ChAdOx1 as a vectored vaccine expressing conserved Influenza A antigens. Mol. Ther. 22, 668–674 (2013).

    Article  PubMed  Google Scholar 

  28. Barnes, E. et al. Novel adenovirus-based vaccines induce broad and sustained T cell responses to HCV in man. Sci. Transl. Med. 4, ra111 (2012).

    Article  Google Scholar 

  29. Colloca, S. et al. Vaccine vectors derived from a large collection of simian adenoviruses induce potent cellular immunity across multiple species. Sci. Transl. Med. 4, ra112 (2012).

    Article  Google Scholar 

  30. O'Hara, G. A. et al. Clinical assessment of a recombinant simian adenovirus ChAd63: a potent new vaccine vector. J. Infect. Dis. 205, 772–781 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, H. et al. Adenovirus serotype 26 utilizes CD46 as a primary cellular receptor and only transiently activates T lymphocytes following vaccination of rhesus monkeys. J. Virol. 86, 10862–10865 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Waddington, S. N. et al. Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 132, 397–409 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Perreau, M. et al. The number of Toll-like receptor 9-agonist motifs in the adenovirus genome correlates with induction of dendritic cell maturation by adenovirus immune complexes. J. Virol. 86, 6279–6285 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Quinn, K. M. et al. Comparative analysis of the magnitude, quality, phenotype, and protective capacity of simian immunodeficiency virus gag-specific CD8+ T cells following human-, simian-, and chimpanzee-derived recombinant adenoviral vector immunization. J. Immunol. 190, 2720–2735 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Teigler, J. E., Iampietro, M. J. & Barouch, D. H. Vaccination with adenovirus serotypes 35, 26, and 48 elicits higher levels of innate cytokine responses than adenovirus serotype 5 in rhesus monkeys. J. Virol. 86, 9590–9598 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Penaloza-MacMaster, P. et al. Alternative serotype adenovirus vaccine vectors elicit memory T cells with enhanced anamnestic capacity compared to Ad5 vectors. J. Virol. 87, 1373–1384 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tan, W. G. et al. Comparative analysis of simian immunodeficiency virus gag-specific effector and memory CD8+ T cells induced by different adenovirus vectors. J. Virol. 87, 1359–1372 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, J. et al. Magnitude and phenotype of cellular immune responses elicited by recombinant adenovirus vectors and heterologous prime–boost regimens in rhesus monkeys. J. Virol. 82, 4844–4852 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barouch, D. H. et al. Vaccine protection against acquisition of neutralization-resistant SIV challenges in rhesus monkeys. Nature 482, 89–93 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barouch, D. H. et al. Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune responses in rhesus monkeys. Nature Med. 16, 319–323 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Fischer, W. et al. Polyvalent vaccines for optimal coverage of potential T-cell epitopes in global HIV-1 variants. Nature Med. 13, 100–106 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Santra, S. et al. Mosaic vaccines elicit CD8+ T lymphocyte responses that confer enhanced immune coverage of diverse HIV strains in monkeys. Nature Med. 16, 324–328 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Barouch, D. H. et al. Protective efficacy of a global HIV-1 mosaic vaccine against heterologous SHIV challenges in rhesus monkeys. Cell 155, 531–539 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Baden, L. R. et al. Induction of HIV-1-specific mucosal immune responses following intramuscular recombinant adenovirus serotype 26 HIV-1 vaccination of humans. J. Infect. Dis. http://dx.doi.org/10.1093/infdis/jiu485 (2014).

  45. Hansen, S. G. et al. Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 473, 523–527 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hansen, S. G. et al. Immune clearance of highly pathogenic SIV infection. Nature 502, 100–104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hansen, S. G. et al. Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nature Med. 15, 293–299 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Hansen, S. G. et al. Evasion of CD8+ T cells is critical for superinfection by cytomegalovirus. Science 328, 102–106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hansen, S. G. et al. Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science 340, 1237874 (2013).

    Article  PubMed  Google Scholar 

  50. Bannard, O., Kraman, M. & Fearon, D. Pathways of memory CD8+ T-cell development. Eur. J. Immunol. 39, 2083–2087 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Genesca, M., McChesney, M. B. & Miller, C. J. Antiviral CD8+ T cells in the genital tract control viral replication and delay progression to AIDS after vaginal SIV challenge in rhesus macaques immunized with virulence attenuated SHIV 89.6. J. Intern. Med. 265, 67–77 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Picker, L. J. et al. IL-15 induces CD4 effector memory T cell production and tissue emigration in nonhuman primates. J. Clin. Invest. 116, 1514–1524 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pitcher, C. J. et al. Development and homeostasis of T cell memory in rhesus macaque. J. Immunol. 168, 29–43 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Grossman, Z., Meier-Schellersheim, M., Paul, W. E. & Picker, L. J. Pathogenesis of HIV infection: what the virus spares is as important as what it destroys. Nature Med. 12, 289–295 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Champagne, P. et al. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410, 106–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Gauduin, M. C. et al. Induction of a virus-specific effector-memory CD4+ T cell response by attenuated SIV infection. J. Exp. Med. 203, 2661–2672 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kern, F. et al. Distribution of human CMV-specific memory T cells among the CD8pos. subsets defined by CD57, CD27, and CD45 isoforms. Eur. J. Immunol. 29, 2908–2915 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Picker, L. J., Hansen, S. G. & Lifson, J. D. New paradigms for HIV/AIDS vaccine development. Annu. Rev. Med. 63, 95–111 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Fruh, K., Malouli, D., Oxford, K. L. & Barry, P. A. in Cytomegalovirus Vol. 2. (ed. Reddehase,M. J.) (Caister Academic Press, 2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan H. Barouch.

Ethics declarations

Competing interests

L.J.P and Oregon Health and Science University (OHSU) have a significant financial interest in TomegaVax, Inc., which is a company that may have a commercial interest in the results of this research and technology. The potential individual and institutional conflicts of interest have been reviewed and managed by OHSU. D.H.B. is a named co-inventor on various vector and antigen patents.

PowerPoint slides

Glossary

Anamnestic response

The enhanced immune response that occurs against an antigen as a result of previous host exposure to a related antigen.

CD46

A ubiquitously expressed type-1 transmembrane protein that functions to regulate complement. It functions as a receptor for vaccine strains of measles virus and some adenovirus serotypes.

Central memory T cell

(TCM cell). An antigen-experienced resting T cell that expresses cell surface receptors that are required for homing to secondary lymphoid organs. These cells are generally long-lived and can function as the precursors for effector T cells during recall responses.

Coxsackie and adenovirus receptor

(CAR). An immunoglobulin-like transmembrane cell adhesion protein that is used by some coxsackievirus and adenovirus species as a receptor.

Effector memory T cell

(TEM cell). An antigen-experienced T cell that maintains effector differentiation, resides in, or expresses cell surface receptors that are required for homing to, extra-lymphoid effector sites and that has limited expansion potential.

Elite controller

A patient infected with HIV whose immune system can limit viral RNA to below 50 copies per ml for at least 12 months in the absence of highly active antiretroviral therapy.

Heterologous prime–boost

Repeated immunization using different vaccines; it is used to stimulate a better immune response.

Neutralizing antibodies

Antibodies that block infectivity (for example, of a virus), usually by binding to the foreign particle (the virion) and incapacitating it in some way.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barouch, D., Picker, L. Novel vaccine vectors for HIV-1. Nat Rev Microbiol 12, 765–771 (2014). https://doi.org/10.1038/nrmicro3360

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro3360

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology