Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Viral apoptotic mimicry

Abstract

As opportunistic pathogens, viruses have evolved many elegant strategies to manipulate host cells for infectious entry and replication. Viral apoptotic mimicry, defined by the exposure of phosphatidylserine — a marker for apoptosis — on the pathogen surface, is emerging as a common theme used by enveloped viruses to promote infection. Focusing on the four best described examples (vaccinia virus, dengue virus, Ebola virus and pseudotyped lentivirus), we summarize our current understanding of apoptotic mimicry as a mechanism for virus entry, binding and immune evasion. We also describe recent examples of non-enveloped viruses that use this mimicry strategy, and discuss future directions and how viral apoptotic mimicry could be targeted therapeutically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classic apoptotic mimicry.
Figure 2: Non-classic apoptotic mimicry.
Figure 3: Viral apoptotic mimicry and immune evasion.

Similar content being viewed by others

References

  1. Benedict, C. A., Norris, P. S. & Ware, C. F. To kill or be killed: viral evasion of apoptosis. Nat. Immunol. 3, 1013–1018 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Poon, I. K., Lucas, C. D., Rossi, A. G. & Ravichandran, K. S. Apoptotic cell clearance: basic biology and therapeutic potential. Nat. Rev. Immunol. 14, 166–180 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Erwig, L. P. & Henson, P. M. Immunological consequences of apoptotic cell phagocytosis. Am. J. Pathol. 171, 2–8 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fadok, V. A., de Cathelineau, A., Daleke, D. L., Henson, P. M. & Bratton, D. L. Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J. Biol. Chem. 276, 1071–1077 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Segawa, K. et al. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science 344, 1164–1168 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Hochreiter-Hufford, A. & Ravichandran, K. S. Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb. Perspect. Biol. 5, a008748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Voll, R. E. et al. Immunosuppressive effects of apoptotic cells. Nature 390, 350–351 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Cvetanovic, M. & Ucker, D. S. Innate immune discrimination of apoptotic cells: repression of proinflammatory macrophage transcription is coupled directly to specific recognition. J. Immunol. 172, 880–889 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Kim, S., Elkon, K. B. & Ma, X. Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells. Immunity 21, 643–653 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Erwig, L. P. & Henson, P. M. Clearance of apoptotic cells by phagocytes. Cell Death Differ. 15, 243–250 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Finnemann, S. C., Bonilha, V. L., Marmorstein, A. D. & Rodriguez-Boulan, E. Phagocytosis of rod outer segments by retinal pigment epithelial cells requires αvβ5 integrin for binding but not for internalization. Proc. Natl Acad. Sci. USA 94, 12932–12937 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Wood, W. et al. Mesenchymal cells engulf and clear apoptotic footplate cells in macrophageless PU.1 null mouse embryos. Development 127, 5245–5252 (2000).

    CAS  PubMed  Google Scholar 

  13. Vanlandschoot, P. & Leroux-Roels, G. Viral apoptotic mimicry: an immune evasion strategy developed by the hepatitis B virus? Trends Immunol. 24, 144–147 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Bhattacharyya, S. et al. Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors. Cell Host Microbe 14, 136–147 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jemielity, S. et al. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLoS Pathog. 9, e1003232 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kondratowicz, A. S. et al. T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. Proc. Natl Acad. Sci. USA 108, 8426–8431 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Meertens, L. et al. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe 12, 544–557 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mercer, J. & Helenius, A. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320, 531–535 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Moller-Tank, S., Kondratowicz, A. S., Davey, R. A., Rennert, P. D. & Maury, W. Role of the phosphatidylserine receptor TIM-1 in enveloped-virus entry. J. Virol. 87, 8327–8341 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morizono, K. et al. The soluble serum protein Gas6 bridges virion envelope phosphatidylserine to the TAM receptor tyrosine kinase Axl to mediate viral entry. Cell Host Microbe 9, 286–298 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shimojima, M., Stroher, U., Ebihara, H., Feldmann, H. & Kawaoka, Y. Identification of cell surface molecules involved in dystroglycan-independent Lassa virus cell entry. J. Virol. 86, 2067–2078 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moller-Tank, S. & Maury, W. Phosphatidylserine receptors: enhancers of enveloped virus entry and infection. Virology 468–470, 565–580 (2014).

  23. Mazzon, M. & Mercer, J. Lipid interactions during virus entry and infection. Cell. Microbiol. 16, 1493–1502 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mukhopadhyay, S., Kuhn, R. J. & Rossmann, M. G. A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol. 3, 13–22 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Kay, J. G., Koivusalo, M., Ma, X., Wohland, T. & Grinstein, S. Phosphatidylserine dynamics in cellular membranes. Mol. Biol. Cell 23, 2198–2212 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Leventis, P. A. & Grinstein, S. The distribution and function of phosphatidylserine in cellular membranes. Annu. Rev. Biophys. 39, 407–427 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Chlanda, P., Carbajal, M. A., Cyrklaff, M., Griffiths, G. & Krijnse-Locker, J. Membrane rupture generates single open membrane sheets during vaccinia virus assembly. Cell Host Microbe 6, 81–90 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Maruri-Avidal, L., Weisberg, A. S. & Moss, B. Direct formation of vaccinia virus membranes from the endoplasmic reticulum in the absence of the newly characterized L2-interacting protein A30.5. J. Virol. 87, 12313–12326 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pike, L. J., Han, X., Chung, K. N. & Gross, R. W. Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry 41, 2075–2088 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Pike, L. J., Han, X. & Gross, R. W. Epidermal growth factor receptors are localized to lipid rafts that contain a balance of inner and outer leaflet lipids: a shotgun lipidomics study. J. Biol. Chem. 280, 26796–26804 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Soares, M. M., King, S. W. & Thorpe, P. E. Targeting inside-out phosphatidylserine as a therapeutic strategy for viral diseases. Nat. Med. 14, 1357–1362 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou, Y., Frey, T. K. & Yang, J. J. Viral calciomics: interplays between Ca2+ and virus. Cell Calcium 46, 1–17 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bratton, D. L. et al. Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J. Biol. Chem. 272, 26159–26165 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Mercer, J., Schelhaas, M. & Helenius, A. Virus entry by endocytosis. Annu. Rev. Biochem. 79, 803–833 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Doherty, G. J. & McMahon, H. T. Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857–902 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Mercer, J. & Helenius, A. Virus entry by macropinocytosis. Nat. Cell Biol. 11, 510–520 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Mercer, J. & Helenius, A. Gulping rather than sipping: macropinocytosis as a way of virus entry. Curr. Opin. Microbiol. 15, 490–499 (2012).

    Article  PubMed  Google Scholar 

  38. Ichihashi, Y. & Oie, M. The activation of vaccinia virus infectivity by the transfer of phosphatidylserine from the plasma membrane. Virology 130, 306–317 (1983).

    Article  CAS  PubMed  Google Scholar 

  39. Laliberte, J. P. & Moss, B. Appraising the apoptotic mimicry model and the role of phospholipids for poxvirus entry. Proc. Natl Acad. Sci. USA 106, 17517–17521 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Frei, A. P. et al. Direct identification of ligand-receptor interactions on living cells and tissues. Nat. Biotech. 30, 997–1001 (2012).

    Article  CAS  Google Scholar 

  41. Schmidt, F. I., Bleck, C. K., Helenius, A. & Mercer, J. Vaccinia extracellular virions enter cells by macropinocytosis and acid-activated membrane rupture. EMBO J. 30, 3647–3661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nanbo, A. et al. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog. 6, e1001121 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saeed, M. F., Kolokoltsov, A. A., Albrecht, T. & Davey, R. A. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog. 6, e1001110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shimojima, M. et al. Tyro3 family-mediated cell entry of Ebola and Marburg viruses. J. Virol. 80, 10109–10116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hunt, C. L., Kolokoltsov, A. A., Davey, R. A. & Maury, W. The Tyro3 receptor kinase Axl enhances macropinocytosis of Zaire ebolavirus. J. Virol. 85, 334–347 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Gould, E. A. & Solomon, T. Pathogenic flaviviruses. Lancet 371, 500–509 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Grove, J. & Marsh, M. The cell biology of receptor-mediated virus entry. J. Cell Biol. 195, 1071–1082 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shimojima, M. & Kawaoka, Y. Cell surface molecules involved in infection mediated by lymphocytic choriomeningitis virus glycoprotein. J. Vet. Med. Sci. 74, 1363–1366 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cao, W. et al. Identification of α-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282, 2079–2081 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Jae, L. T. et al. Virus entry. Lassa virus entry requires a trigger-induced receptor switch. Science 344, 1506–1510 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kunz, S. et al. Posttranslational modification of α-dystroglycan, the cellular receptor for arenaviruses, by the glycosyltransferase LARGE is critical for virus binding. J. Virol. 79, 14282–14296 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Morizono, K. & Chen, I. S. Role of phosphatidylserine receptors in enveloped virus infection. J. Virol. 88, 4275–4290 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Drayman, N. et al. Pathogens use structural mimicry of native host ligands as a mechanism for host receptor engagement. Cell Host Microbe 14, 63–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Kaplan, G. et al. Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus. EMBO J. 15, 4282–4296 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Feng, Z. et al. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature 496, 367–371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen, Y. H. et al. Phosphatidylserine vesicles enable efficient en bloc transmission of enteroviruses. Cell 160, 619–630 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shimojima, M., Ikeda, Y. & Kawaoka, Y. The mechanism of Axl-mediated Ebola virus infection. J. Infect. Dis. 196, S259–S263 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Rothlin, C. V., Ghosh, S., Zuniga, E. I., Oldstone, M. B. & Lemke, G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131, 1124–1136 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Nakahashi-Oda, C., Tahara-Hanaoka, S., Honda, S., Shibuya, K. & Shibuya, A. Identification of phosphatidylserine as a ligand for the CD300a immunoreceptor. Biochem. Biophys. Res. Commun. 417, 646–650 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Simhadri, V. R. et al. Human CD300a binds to phosphatidylethanolamine and phosphatidylserine, and modulates the phagocytosis of dead cells. Blood 119, 2799–2809 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nakahashi-Oda, C. et al. Apoptotic cells suppress mast cell inflammatory responses via the CD300a immunoreceptor. J. Exp. Med. 209, 1493–1503 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu, L. et al. Vaccinia virus induces strong immunoregulatory cytokine production in healthy human epidermal keratinocytes: a novel strategy for immune evasion. J. Virol. 79, 7363–7370 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kinchen, J. M. A model to die for: signaling to apoptotic cell removal in worm, fly and mouse. Apoptosis 15, 998–1006 (2010).

    Article  PubMed  Google Scholar 

  64. Kinchen, J. M. & Ravichandran, K. S. Identification of two evolutionarily conserved genes regulating processing of engulfed apoptotic cells. Nature 464, 778–782 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kariolis, M. S. et al. An engineered Axl 'decoy receptor' effectively silences the Gas6–Axl signaling axis. Nat. Chem. Biol. 10, 977–983 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Verma, A., Warner, S. L., Vankayalapati, H., Bearss, D. J. & Sharma, S. Targeting Axl and Mer kinases in cancer. Mol. Cancer Ther. 10, 1763–1773 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Shibata, T. et al. Axl receptor blockade ameliorates pulmonary pathology resulting from primary viral infection and viral exacerbation of asthma. J. Immunol. 192, 3569–3581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, M. et al. TIM-family proteins inhibit HIV-1 release. Proc. Natl Acad. Sci. USA 111, E3699–E3707 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Reed, J. C. Dysregulation of apoptosis in cancer. J. Clin. Oncol. 17, 2941–2953 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Fadok, V. A. et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148, 2207–2216 (1992).

    CAS  PubMed  Google Scholar 

  71. Borrego, F. The CD300 molecules: an emerging family of regulators of the immune system. Blood 121, 1951–1960 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lemke, G. & Rothlin, C. V. Immunobiology of the TAM receptors. Nat. Rev. Immunol. 8, 327–336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hanayama, R. et al. Identification of a factor that links apoptotic cells to phagocytes. Nature 417, 182–187 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Hoffmann, P. R. et al. Phosphatidylserine (PS) induces PS receptor-mediated macropinocytosis and promotes clearance of apoptotic cells. J. Cell Biol. 155, 649–659 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nakaya, M., Tanaka, M., Okabe, Y., Hanayama, R. & Nagata, S. Opposite effects of rho family GTPases on engulfment of apoptotic cells by macrophages. J. Biol. Chem. 281, 8836–8842 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Zhou, Z. & Yu, X. Phagosome maturation during the removal of apoptotic cells: receptors lead the way. Trends Cell Biol. 18, 474–485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fadok, V. A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J. Clin. Invest. 101, 890–898 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Birge, R. B. & Ucker, D. S. Innate apoptotic immunity: the calming touch of death. Cell Death Differ. 15, 1096–1102 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Moller-Tank, S., Albritton, L. M., Rennert, P. D. & Maury, W. Characterizing functional domains for TIM-mediated enveloped virus entry. J. Virol. 88, 6702–6713 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Feigelstock, D., Thompson, P., Mattoo, P. & Kaplan, G. G. Polymorphisms of the hepatitis A virus cellular receptor 1 in African green monkey kidney cells result in antigenic variants that do not react with protective monoclonal antibody 190/4. J. Virol. 72, 6218–6222 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Silberstein, E., Dveksler, G. & Kaplan, G. G. Neutralization of hepatitis A virus (HAV) by an immunoadhesin containing the cysteine-rich region of HAV cellular receptor-1. J. Virol. 75, 717–725 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to all whose important contributions could not be cited owing to space constraints. A.A. is supported by grants from the Fondation pour la Recherche Médicale, the US National Institutes of Health (grant R01 N°AI101400), and the French Agence Nationale de la Recherche (grant TIMTAMDEN CE2014 and the Investissements d'Avenir programme reference ANR-10-IHUB -0002). J.M. is supported by the UK Medical Research Council (MRC) core funding to the MRC Laboratory for Molecular Cell Biology, University College London.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Amara or Jason Mercer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amara, A., Mercer, J. Viral apoptotic mimicry. Nat Rev Microbiol 13, 461–469 (2015). https://doi.org/10.1038/nrmicro3469

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro3469

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing