Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi

Key Points

  • Extracellular vesicle (EV) research in Gram-positive bacteria, mycobacteria and fungi was neglected until recently, owing to the presumption that vesicles could not traverse the thick cell walls found in these organisms.

  • EVs are now understood to be produced by all types of microorganism, including those with thick cell walls, and are biologically active.

  • EVs from bacteria, mycobacteria and fungi contain virulence factors, such as toxins, that are involved in pathogenesis and elicit strong host immune responses. For example, Cryptococcus neoformans EVs carry the capsular polysaccharide glucuronoxylomannan, which is an important virulence factor.

  • Interaction of EVs with the host is specific to the microorganism from which the EVs were produced and is based on the lipid content and cargo of the EVs.

  • Research into EVs produced by microorganisms with thick cell walls is a very young field. By learning how these microorganisms use EVs, we hope that researchers will gain insight into pathogenesis, therapeutics and vaccines.

Abstract

Extracellular vesicles (EVs) are produced by all domains of life. In Gram-negative bacteria, EVs are produced by the pinching off of the outer membrane; however, how EVs escape the thick cell walls of Gram-positive bacteria, mycobacteria and fungi is still unknown. Nonetheless, EVs have been described in a variety of cell-walled organisms, including Staphylococcus aureus, Mycobacterium tuberculosis and Cryptococcus neoformans. These EVs contain varied cargo, including nucleic acids, toxins, lipoproteins and enzymes, and have important roles in microbial physiology and pathogenesis. In this Review, we describe the current status of vesiculogenesis research in thick-walled microorganisms and discuss the cargo and functions associated with EVs in these species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell wall structure of Gram-negative bacteria, Gram-positive bacteria, mycobacteria and fungi.
Figure 2: Extracellular vesicle formation and release: three non-mutually exclusive hypotheses.
Figure 3: Extracellular vesicle function.

Similar content being viewed by others

References

  1. Rodrigues, M. L. et al. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot. Cell 7, 58–67 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Albuquerque, P. C. et al. Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cell. Microbiol. 10, 1695–1710 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee, E. et al. Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 9, 5425–5436 (2009). This article is the first extensive proteomic study of EVs produced by Gram-positive bacteria.

    Article  CAS  PubMed  Google Scholar 

  4. Rivera, J. et al. Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proc. Natl Acad. Sci. 107, 19002–19007 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gurung, M. et al. Staphylococcus aureus produces membrane-derived vesicles that induce host cell death. PLoS ONE 6, e27958 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Prados-Rosales, R. et al. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J. Clin. Invest. 121, 1471–1483 (2011). This report is the first to describe the production of EVs in the two most medically important species of mycobacteria, M. tuberculosis and M. bovis BCG, stating that EVs from pathogenic strains of mycobacteria concentrate lipoproteins and modulate the immune response in a TLR2-dependent manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, J. et al. Staphylococcus aureus extracellular vesicles carry biologically active β-lactamase. Antimicrob. Agents Chemother. 57, 2589–2595 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee, J. H. et al. Transcription factor σB plays an important role in the production of extracellular membrane-derived vesicles in Listeria monocytogenes. PLoS ONE 8, e73196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Olaya-Abril, A. et al. Characterization of protective extracellular membrane-derived vesicles produced by Streptococcus pneumoniae. J. Proteomics 106, 46–60 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Brown, L., Kessler, A., Cabezas-Sanchez, P., Luque-Garcia, J. L. & Casadevall, A. Extracellular vesicles produced by the Gram-positive bacterium Bacillus subtilis are disrupted by the lipopeptide surfactin. Mol. Microbiol. 93, 183–198 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang, Y., Kong, Q., Roland, K. L. & Curtiss, R. Membrane vesicles of Clostridium perfringens type A strains induce innate and adaptive immunity. Int. J. Med. Microbiol. 304, 431–443 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rodrigues, M. L., Nakayasu, E. S., Almeida, I. C. & Nimrichter, L. The impact of proteomics on the understanding of functions and biogenesis of fungal extracellular vesicles. J. Proteomics 97, 177–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Deatherage, B. L. & Cookson, B. T. Membrane vesicle release in bacteria, eukaryotes and archaea: a conserved yet underappreciated aspect of microbial life. Infect. Immun. 80, 1948–1957 (2012). This review extensively covers EV biogenesis and function in bacteria, eukaryotes and archaea.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bishop, D. G. & Work, E. An extracellular glycolipid produced by Escherichia coli grown under lysine-limiting conditions. Biochem. J. 96, 567–576 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Knox, K. W., Vesk, M. & Work, E. Relation between excreted lipopolysaccharide complexes and surface structures of a lysine-limited culture of Escherichia coli. J. Bacteriol. 92, 1206–1217 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Work, E., Knox, K. W. & Vesk, M. The chemistry and electron microscopy of an extracellular lipopolysaccharide from Escherichia coli. Ann. N. Y. Acad. Sci. 133, 438–449 (1966). This paper reports some of the first TEM images of what have since been identified as OMVs from Gram-negative bacteria.

    Article  CAS  PubMed  Google Scholar 

  17. Knox, K. W., Cullen, J. & Work, E. An extracellular lipopolysaccharide–phospholipid–protein complex produced by Escherichia coli grown under lysine-limiting conditions. Biochem. J. 103, 192–201 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takeo, K., Uesaka, I., Uehira, K. & Nishiura, M. Fine structure of Cryptococcus neoformans grown in vitro as observed by freeze-etching. J. Bacteriol. 113, 1442–1448 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dorward, D. W. & Garon, C. F. DNA is packaged within membrane-derived vesicles of Gram-negative but not Gram-positive bacteria. Appl. Environ. Microbiol. 56, 1960–1962 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Scwechheimer, C. & Kuehn, M. Outer membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol. http://dx.doi.org/10.1038/nrmicro3525, (2015).

  21. Kuehn, M. J. & Kesty, N. C. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 19, 2645–2655 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Schooling, S. R. & Beveridge, T. J. Membrane vesicles: an overlooked component of the matrices of biofilms. J. Bacteriol. 188, 5945–5957 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gyorgy, B. et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci. 68, 2667–2688 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Andaloussi, S. E. L., Mager, I., Breakefield, X. O. & Wood, M. J. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12, 347–357 (2013).

    Article  CAS  Google Scholar 

  25. Acevedo, R. et al. Bacterial outer membrane vesicles and vaccine applications. Front. Immunol. 5, 121 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beveridge, T. J. Structures of Gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 181, 4725–4733 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ellis, T. N. & Kuehn, M. J. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol. Mol. Biol. Rev. 74, 81–94 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kulp, A. & Kuehn, M. J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64, 163–184 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Costerton, J. W., Ingram, J. M. & Cheng, K. J. Structure and function of the cell envelope of Gram-negative bacteria. Bacteriol. Rev. 38, 87–110 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Schertzer, J. W. & Whiteley, M. A bilayer-couple model of bacterial outer membrane vesicle biogenesis. mBio 3, e00297-11 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kulkarni, H. M. & Jagannadham, M. V. Biogenesis and multifaceted roles of outer membrane vesicles from Gram-negative bacteria. Microbiology 160, 2109–2121 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Shockman, G. D. & Barrett, J. F. Structure, function, and assembly of cell walls of Gram-positive bacteria. Annu. Rev. Microbiol. 37, 501–527 (1983).

    Article  CAS  PubMed  Google Scholar 

  33. Brennan, P. J. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis 83, 91–97 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Bowman, S. M. & Free, S. J. The structure and synthesis of the fungal cell wall. Bioessays 28, 799–808 (2006).

    Article  PubMed  Google Scholar 

  35. Free, S. J. Fungal cell wall organization and biosynthesis. Adv. Genet. 81, 33–82 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Rodrigues, M. L. et al. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot. Cell 6, 48–59 (2007). This study definitively identifies and characterizes EVs from fungi.

    Article  CAS  PubMed  Google Scholar 

  37. Marsollier, L. et al. Impact of Mycobacterium ulcerans biofilm on transmissibility to ecological niches and Buruli ulcer pathogenesis. PLoS Pathog. 3, e62 (2007). This work associates the toxin mycolactone with EVs and is the first research into EVs in mycobacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Prados-Rosales, R., Brown, L., Casadevall, A., Montalvo-Quirós, S. & Luque-Garcia, J. L. Isolation and identification of membrane vesicle-associated proteins in Gram-positive bacteria and mycobacteria. MethodsX 1, 124–129 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tjalsma, H. et al. Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol. Mol. Biol. Rev. 68, 207–233 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ligon, L. S., Hayden, J. D. & Braunstein, M. The ins and outs of Mycobacterium tuberculosis protein export. Tuberculosis 92, 121–132 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Delic, M. et al. The secretory pathway: exploring yeast diversity. FEMS Microbiol. Rev. 37, 872–914 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Tjalsma, H., Bolhuis, A., Jongbloed, J. D., Bron, S. & van Dijl, J. M. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol. Mol. Biol. Rev. 64, 515–547 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gomez, M., Johnson, S. & Gennaro, M. L. Identification of secreted proteins of Mycobacterium tuberculosis by a bioinformatic approach. Infect. Immun. 68, 2323–2327 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vallejo, M. C. et al. Vesicle and vesicle-free extracellular proteome of Paracoccidioides brasiliensis: comparative analysis with other pathogenic fungi. J. Proteome Res. 11, 1676–1685 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sorgo, A. G., Heilmann, C. J., Brul, S., de Koster, C. G. & Klis, F. M. Beyond the wall: Candida albicans secret(e)s to survive. FEMS Microbiol. Lett. 338, 10–17 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Anderson, J., Mihalik, R. & Soll, D. R. Ultrastructure and antigenicity of the unique cell wall pimple of the Candida opaque phenotype. J. Bacteriol. 172, 224–235 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vargas, G. et al. Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cell. Microbiol. 17, 389–407 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Schrempf, H., Koebsch, I., Walter, S., Engelhardt, H. & Meschke, H. Extracellular Streptomyces vesicles: amphorae for survival and defence. Microb. Biotechnol. 4, 286–299 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hong, S. W. et al. Extracellular vesicles derived from Staphylococcus aureus induce atopic dermatitis-like skin inflammation. Allergy 66, 351–359 (2011). This investigation shows that S. aureus EVs are biologically active and cause atopic dermatitis.

    Article  CAS  PubMed  Google Scholar 

  50. Rath, P. et al. Genetic regulation of vesiculogenesis and immunomodulation in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 110, E4790–E4797 (2013). This article describes the first gene shown to regulate vesiculogenesis in M. tuberculosis (virR ); a mutant deficient in VirR overproduces EVs and is attenuated in virulence, suggesting that vesiculogenesis is important for Mycobacterium spp. pathogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thay, B., Wai, S. N. & Oscarsson, J. Staphylococcus aureus α-toxin-dependent induction of host cell death by membrane-derived vesicles. PLoS ONE 8, e54661 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Prados-Rosales, R. et al. Role for Mycobacterium tuberculosis membrane vesicles in iron acquisition. J. Bacteriol. 196, 1250–1256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liao, S. et al. Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. J. Bacteriol. 196, 2355–2366 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Prados-Rosales, R. et al. Mycobacterial membrane vesicles administered systemically in mice induce a protective immune response to surface compartments of Mycobacterium tuberculosis. mBio 5, e01921-14 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wolf, J. M., Rivera, J. & Casadevall, A. Serum albumin disrupts Cryptococcus neoformans and Bacillus anthracis extracellular vesicles. Cell. Microbiol. 14, 762–773 (2012). This study shows that EVs from Gram-positive bacteria and fungi can be disrupted by albumin.

    Article  CAS  PubMed  Google Scholar 

  56. Hristov, M., Erl, W., Linder, S. & Weber, P. C. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood 104, 2761–2766 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Oliveira, D. L. et al. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis. PLoS ONE 5, e11113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vallejo, M. C. et al. The pathogenic fungus Paracoccidioides brasiliensis exports extracellular vesicles containing highly immunogenic α-galactosyl epitopes. Eukaryot. Cell 10, 343–351 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vallejo, M. C. et al. Lipidomic analysis of extracellular vesicles from the pathogenic phase of Paracoccidioides brasiliensis. PLoS ONE 7, e39463 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Klis, F. M., de Koster, C. G. & Brul, S. Cell wall-related bionumbers and bioestimates of Saccharomyces cerevisiae and Candida albicans. Eukaryot. Cell 13, 2–9 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Doering, T. L. How sweet it is! Cell wall biogenesis and polysaccharide capsule formation in Cryptococcus neoformans. Annu. Rev. Microbiol. 63, 223–247 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gow, N. A. & Hube, B. Importance of the Candida albicans cell wall during commensalism and infection. Curr. Opin. Microbiol. 15, 406–412 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Levin, D. E. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189, 1145–1175 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. de Souza Pereira, R. & Geibel, J. Direct observation of oxidative stress on the cell wall of Saccharomyces cerevisiae strains with atomic force microscopy. Mol. Cell. Biochem. 201, 17–24 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Jacobson, E. S. & Ikeda, R. Effect of melanization upon porosity of the cryptococcal cell wall. Med. Mycol. 43, 327–333 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Wolf, J., Espadas-Moreno, J., Luque-Garcia, J. L. & Casadevall, A. Interaction of Cryptococcus neoformans extracellular vesicles with the cell wall. Eukaryot. Cell 13, 1484–1493 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kopecka, M., Yamaguchi, M., Gabriel, M., Takeo, K. & Svoboda, A. Morphological transitions during the cell division cycle of Cryptococcus neoformans as revealed by transmission electron microscopy of ultrathin sections and freeze-substitution. Scripta Med. 73, 369–380 (2000).

    Google Scholar 

  68. McBroom, A. J., Johnson, A. P., Vemulapalli, S. & Kuehn, M. J. Outer membrane vesicle production by Escherichia coli is independent of membrane instability. J. Bacteriol. 188, 5385–5392 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ollinger, J., Bowen, B., Wiedmann, M., Boor, K. J. & Bergholz, T. M. Listeria monocytogenes σB modulates PrfA-mediated virulence factor expression. Infect. Immun. 77, 2113–2124 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Parida, S. K. et al. Internalin B is essential for adhesion and mediates the invasion of Listeria monocytogenes into human endothelial cells. Mol. Microbiol. 28, 81–93 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Nicola, A. M., Frases, S. & Casadevall, A. Lipophilic dye staining of Cryptococcus neoformans extracellular vesicles and capsule. Eukaryot. Cell 8, 1373–1380 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. da Silva, R. P. et al. Extracellular vesicle-mediated export of fungal RNA. Sci. Rep. 5, 7763 (2015).

    Article  CAS  Google Scholar 

  73. Dubois, J. Y. et al. Immunity to the bacteriocin sublancin 168 Is determined by the SunI (YolF) protein of Bacillus subtilis. Antimicrob. Agents Chemother. 53, 651–661 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Rossi, J., Bischoff, M., Wada, A. & Berger-Bachi, B. MsrR, a putative cell envelope-associated element involved in Staphylococcus aureus sarA attenuation. Antimicrob. Agents Chemother. 47, 2558–2564 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bantel, H. et al. α-toxin is a mediator of Staphylococcus aureus-induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling. J. Cell Biol. 155, 637–648 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Casadevall, A., Rosas, A. L. & Nosanchuk, J. D. Melanin and virulence in Cryptococcus neoformans. Curr. Opin. Microbiol. 3, 354–358 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Zhu, X. & Williamson, P. R. Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Res. 5, 1–10 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Eisenman, H. C. et al. Cryptococcus neoformans laccase catalyses melanin synthesis from both D- and L-DOPA. Microbiology 153, 3954–3962 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Khajo, A. et al. Protection of melanized Cryptococcus neoformans from lethal dose γ irradiation involves changes in melanin's chemical structure and paramagnetism. PLoS ONE 6, e25092 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Portnoy, D. A., Jacks, P. S. & Hinrichs, D. J. Role of hemolysin for the intracellular growth of Listeria monocytogenes. J. Exp. Med. 167, 1459–1471 (1988).

    Article  CAS  PubMed  Google Scholar 

  81. Cossart, P. et al. Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation. Infect. Immun. 57, 3629–3636 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hirst, R. A. et al. Streptococcus pneumoniae deficient in pneumolysin or autolysin has reduced virulence in meningitis. J. Infect. Dis. 197, 744–751 (2008).

    Article  PubMed  Google Scholar 

  83. Wai, S. N. et al. Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell 115, 25–35 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Smith, H., Keppie, J. & Stanley, J. L. The chemical basis of the virulence of Bacillus anthracis. V. The specific toxin produced by B. anthracis in vivo. Br. J. Exp. Pathol. 36, 460–472 (1955).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mosser, E. M. & Rest, R. F. The Bacillus anthracis cholesterol-dependent cytolysin, Anthrolysin O, kills human neutrophils, monocytes and macrophages. BMC Microbiol. 6, 56 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Macfarlane, M. G. & Knight, B. C. The biochemistry of bacterial toxins: the lecithinase activity of Cl. welchii toxins. Biochem. J. 35, 884–902 (1941).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Keyburn, A., Bannam, T., Moore, R. & Rood, J. NetB, a pore-forming toxin from necrotic enteritis strains of Clostridium perfringens. Toxins 2, 1913–1927 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Snyder, D. S. & Small, P. L. Uptake and cellular actions of mycolactone, a virulence determinant for Mycobacterium ulcerans. Microb. Pathog. 34, 91–101 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Oliveira, D. L. et al. Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions. Infect. Immun. 78, 1601–1609 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Monari, C. et al. Cryptococcus neoformans capsular glucuronoxylomannan induces expression of fas ligand in macrophages. J. Immunol. 174, 3461–3468 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Monari, C. et al. Glucuronoxylomannan, a microbial compound, regulates expression of costimulatory molecules and production of cytokines in macrophages. J. Infect. Dis. 191, 127–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Drage, M. G. et al. TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. Cell. Immunol. 258, 29–37 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Huang, S. H. et al. Cryptococcus neoformans-derived microvesicles enhance the pathogenesis of fungal brain infection. PLoS ONE 7, e48570 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bansal, K. et al. PIM2 Induced COX-2 and MMP-9 expression in macrophages requires PI3K and Notch1 signaling. PLoS ONE 4, e4911 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bryers, J. D. Medical biofilms. Biotechnol. Bioeng. 100, 1–18 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Robertson, E. J., Wolf, J. M. & Casadevall, A. EDTA inhibits biofilm formation, extracellular vesicular secretion, and shedding of the capsular polysaccharide glucuronoxylomannan by Cryptococcus neoformans. Appl. Environ. Microbiol. 78, 7977–7984 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Eisenman, H. C., Frases, S., Nicola, A. M., Rodrigues, M. L. & Casadevall, A. Vesicle-associated melanization in Cryptococcus neoformans. Microbiology 155, 3860–3867 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Walker, C. A. et al. Melanin externalization in Candida albicans depends on cell wall chitin structures. Eukaryot. Cell 9, 1329–1342 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Choi, D. S., Kim, D. K., Kim, Y. K. & Gho, Y. S. Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics 13, 1554–1571 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Kim, D. K. et al. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J. Extracell. Vesicles 2, 20384 (2013).

    Article  CAS  Google Scholar 

  101. Choi, D. S., Kim, D. K., Kim, Y. K. & Gho, Y. S. Proteomics of extracellular vesicles: exosomes and ectosomes. Mass Spectrom. Rev. 34, 474–490 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Kim, D. K. et al. EVpedia: a community web portal for extracellular vesicles research. Bioinformatics 31, 933–939 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Fernandez, S. et al. A proteoliposome formulation derived from Bordetella pertussis induces protection in two murine challenge models. BMC Immunol. 14, S8 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Holst, J. et al. Properties and clinical performance of vaccines containing outer membrane vesicles from Neisseria meningitidis. Vaccine 27 (Suppl. 2), B3–B12 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Kadurugamuwa, J. L. & Beveridge, T. J. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J. Bacteriol. 177, 3998–4008 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kadurugamuwa, J. L. & Beveridge, T. J. Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J. Bacteriol. 178, 2767–2774 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mashburn-Warren, L. M. & Whiteley, M. Special delivery: vesicle trafficking in prokaryotes. Mol. Microbiol. 61, 839–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Kolling, G. L. & Matthews, K. R. Export of virulence genes and Shiga toxin by membrane vesicles of Escherichia coli O157:H7. Appl. Environ. Microbiol. 65, 1843–1848 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Mashburn, L. M. & Whiteley, M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437, 422–425 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Bomberger, J. M. et al. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog. 5, e1000382 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bernheimer, A. W. & Avigad, L. S. Nature and properties of a cytolytic agent produced by Bacillus subtilis. J. Gen. Microbiol. 61, 361–369 (1970).

    Article  CAS  PubMed  Google Scholar 

  112. Heerklotz, H. & Seelig, J. Detergent-like action of the antibiotic peptide surfactin on lipid membranes. Biophys. J. 81, 1547–1554 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Carrillo, C., Teruel, J. A., Aranda, F. J. & Ortiz, A. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim. Biophys. Acta 1611, 91–97 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Nakano, M. M., Marahiel, M. A. & Zuber, P. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J. Bacteriol. 170, 5662–5668 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Quadri, L. E. et al. Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. Biochemistry 170, 1585–1595 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

A.C. was supported by the US National Institutes of Health (awards 5R01HL059842, 5R01AI033774, 5R37AI033142 and 5R01AI052733). R.P.-R. was supported in part by the US National Institutes of Health (award 1R21AI115091).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rafael Prados-Rosales or Arturo Casadevall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

EVpedia

PowerPoint slides

Glossary

Virulence factors

Products that are important for infection by and survival of a pathogen. These factors can include adhesins, DNA, toxins and other molecules.

Biofilms

Surface-dwelling bacterial cultures that are highly resistant to disruption and removal. Biofilms can consist of a single species or a community of multiple microorganisms.

Cell wall

The rigid structure that surrounds a microorganism and has a role in cell shape and homeostasis.

Melanin

A pigmented molecule derived from laccase-assisted oxidation of dihydroxy phenol compounds. Melanin can protect cells against oxidative damage.

Multivesicular bodies

(MVBs). A subset of endosomes that contain membrane-bound intraluminal vesicles that originate by budding into the MVB. Typically, MVBs fuse with the cell membrane to release the intraluminal vesicles into the extracellular space.

B-band lipopolysaccharide

(B-band LPS). LPS that is highly charged at neutral pH owing to the presence of a large number of phosphate groups and long O side chains, in contrast to Aband LPS.

Siderophores

Iron-scavenging molecules produced by microorganisms. Some microorganisms can also steal siderophores from other microorganisms in order to obtain iron.

Basidiomycetes

Filamentous fungi that reproduce sexually via the formation of specialized cells called basidia, which bear external spores called basidiospores. Some basidiomycetes can also reproduce asexually.

Ascomycetes

Fungi that, when reproducing sexually, form a structure called an ascus in which the spores are formed. Some ascomycetes can also reproduce asexually.

Extracellular DNA

(eDNA). DNA that is present in the extracellular milieu and might function in intercellular communication. eDNA can also be a structural component of biofilms and neutrophil extracellular traps.

Penicillin-binding proteins

Proteins that are essential for bacterial cell wall biogenesis and also have the capacity to bind to penicillin.

Glucuronoxylomannan

(GXM). A polysaccharide that is produced by the pathogenic fungus Cryptococcus neoformans and is a major component of the cellular capsule.

Cytolysin

A toxin with the ability to lyse cells.

Mycolactone

A macrolide toxin that is produced by a group of mycobacteria and causes Buruli ulcers in humans. It is required for virulence, is cytotoxic and blocks the translocation of immune proteins into the endoplasmic reticulum as a mechanism of immunosuppression.

Cholesterol microdomains

Lipid domains in the cellular lipid bilayer that are enriched in cholesterol.

T helper 2 cell

(TH2 cells). A subset of CD4+ T cells that is of paramount importance for host defence against extracellular pathogens. TH2 cells secrete the cytokines interleukin-4 (IL-4), IL-5, IL-6, IL-9, IL-10 and IL-13, leading to strong antibody responses.

TH1 cell

A subset of CD4+ effector T cells that is required for host defence against intracellular viral and bacterial pathogens. TH1 cells secrete cytokines such as interferon-γ (IFNγ), interleukin-2 (IL-2), IL-10 and lymphotoxin, promoting macrophage activation, nitric oxide production and cytotoxic T lymphocyte proliferation.

Granulomatous inflammation

The aggregation of mononuclear inflammatory cells, which can be accompanied by the infiltration of other leukocytes or by necrosis.

Koch phenomenon

A rapid inflammatory response that develops to a reinfection with Mycobacterium tuberculosis and that is marked by necrotic lesions. The response is caused by hypersensitivity to products of the tubercle bacillus.

Proteoliposomes

Synthetic liposomes with proteins embedded into the lipid bilayer.

Lipidic nanovesicles

Nanoscale lipid-bilayer spheres or liposomes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, L., Wolf, J., Prados-Rosales, R. et al. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol 13, 620–630 (2015). https://doi.org/10.1038/nrmicro3480

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro3480

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology