Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathogenic Escherichia coli

Key Points

  • In addition to being an important member of the normal intestinal microflora of humans and other mammals, the species Escherichia coli contains many pathotypes that cause a variety of diseases. At least six different pathotypes cause enteric disease, such as diarrhoea or dysentery, and other pathotypes cause extra-intestinal infections, including urinary tract infections and meningitis.

  • Virulence factors of E. coli can affect a wide range of eukaryotic cellular processes, including cell signalling, ion secretion, protein synthesis, mitosis, cytoskeletal function and mitochondrial function.

  • Virulence factors of pathogenic E. coli are frequently encoded on genetic elements such as plasmids, bacteriophage, transposons and pathogenicity islands that can be mobilized into different strains to create novel combinations of virulence factors.

  • The genomic structure of the E. coli pathotypes that have been sequenced so far show a striking mosaic pattern, with 2,000 genes present in 247 islands in one pathotype that are not present in K-12. Up to 0.53 MB of DNA present in K-12 can also be absent from pathogenic E. coli.

  • Genes that encode virulence factors of pathogenic E. coli are regulated by both pathotype-specific regulators that are absent from commensal E. coli, and by 'housekeeping' regulators that are present in commensal E. coli.

Abstract

Few microorganisms are as versatile as Escherichia coli. An important member of the normal intestinal microflora of humans and other mammals, E. coli has also been widely exploited as a cloning host in recombinant DNA technology. But E. coli is more than just a laboratory workhorse or harmless intestinal inhabitant; it can also be a highly versatile, and frequently deadly, pathogen. Several different E. coli strains cause diverse intestinal and extraintestinal diseases by means of virulence factors that affect a wide range of cellular processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathogenic schema of diarrhoeagenic E. coli.
Figure 2: Colonization factors of E. coli.
Figure 3: Attaching and effacing histopathology caused by EPEC and EHEC.
Figure 4: Pathogenesis of urinary tract infection caused by uropathogenic E. coli.
Figure 5: Contribution of mobile genetic elements to the evolution of pathogenic E. coli.
Figure 6: Expression of virulence factors in pathogenic E. coli utilizes regulators that are present only in pathogenic strains as well as regulators present in all E. coli strains, commensals and pathogens.

Similar content being viewed by others

References

  1. Sweeney, N. J. et al. The Escherichia coli K-12 gntP gene allows E. coli F-18 to occupy a distinct nutritional niche in the streptomycin-treated mouse large intestine. Infect. Immun. 64, 3497–3503 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nataro, J. P. & Kaper, J. B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11, 142–201 (1998). A comprehensive review of the pathogenesis, epidemiology, diagnosis and clinical aspects of diarrhoeagenic E. coli.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Russo, T. A. & Johnson, J. R. Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC. J. Infect. Dis. 181, 1753–1754 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Whittam, T. S. in Escherichia coli and Salmonella (eds Neidhardt, F. C. et al.) 2708–2720 (ASM Press, Washington DC, USA, 1996).

    Google Scholar 

  5. Cassels, F. J. & Wolf, M. K. Colonization factors of diarrheagenic E. coli and their intestinal receptors. J. Ind. Microbiol. 15, 214–226 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Keller, R. et al. Afa, a diffuse adherence fibrillar adhesin associated with enteropathogenic Escherichia coli. Infect. Immun. 70, 2681–2689 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tieng, V. et al. Binding of Escherichia coli adhesin AfaE to CD55 triggers cell-surface expression of the MHC class I-related molecule MICA. Proc. Natl Acad. Sci. USA 99, 2977–2982 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goldberg, M. B. & Theriot, J. A. Shigella flexneri surface protein IcsA is sufficient to direct actin-based motility. Proc. Natl Acad. Sci. USA 92, 6572–6576 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tapping, R. I., Akashi, S., Miyake, K., Godowski, P. J. & Tobias, P. S. Toll-like receptor 4, but not toll-like receptor 2, is a signaling receptor for Escherichia and Salmonella lipopolysaccharides. J. Immunol. 165, 5780–5787 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Sears, C. L. & Kaper, J. B. Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Microbiol. Rev. 60, 167–215 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Melton-Celsa, A. R. & O'Brien, A. D. in Escherichia coli O157:H7 and Other Shiga Toxin-Producing E. coli Strains (eds Kaper, J. B. & O'Brien, A. D.) 121–128 (ASM Press, Washington DC, USA, 1998).

    Google Scholar 

  13. De Rycke, J. & Oswald, E. Cytolethal distending toxin (CDT): a bacterial weapon to control host cell proliferation? FEMS Microbiol Lett. 203, 141–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Marches, O. et al. Enteropathogenic and enterohaemorrhagic Eschericha coli deliver a novel effector called Cif, which blocks cell cycle G2/M transition. Mol. Microbiol 50, 1553–1567 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Lerm, M. et al. Deamidation of Cdc42 and Rac by Escherichia coli cytotoxic necrotizing factor 1: activation of c-Jun N-terminal kinase in HeLa cells. Infect. Immun. 67, 496–503 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kenny, B. et al. Co-ordinate regulation of distinct host cell signalling pathways by multifunctional enteropathogenic Escherichia coli effector molecules. Mol. Microbiol. 44, 1095–1107 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Tauschek, M., Gorrell, R. J., Strugnell, R. A. & Robins-Browne, R. M. Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proc. Natl Acad. Sci. USA 99, 7066–7071 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Henderson, I. R., Navarro-Garcia, F. & Nataro, J. P. The great escape: structure and function of the autotransporter proteins. Trends Microbiol. 6, 370–378 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Hueck, C. J. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379–433 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Balakrishnan, L., Hughes, C. & Koronakis, V. Substrate-triggered recruitment of the TolC channel-tunnel during type I export of hemolysin by Escherichia coli. J. Mol. Biol. 313, 501–510 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. McDaniel, T. K., Jarvis, K. G., Donnenberg, M. S. & Kaper, J. B. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc. Natl Acad. Sci. USA 92, 1664–1668 (1995). The first description of a pathogenicity island in enteric E. coli pathotypes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jerse, A. E., Yu, J., Tall, B. D. & Kaper, J. B. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc. Natl Acad. Sci. USA 87, 7839–7843 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Higgins, L. M. et al. Role of bacterial intimin in colonic hyperplasia and inflammation. Science 285, 588–591 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Kenny, B. et al. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91, 511–520 (1997). The first report of a bacterium translocating its receptor into mammalian cells by a type III secretion system.

    Article  CAS  PubMed  Google Scholar 

  25. Muza-Moons, M. M., Koutsouris, A. & Hecht, G. Disruption of cell polarity by enteropathogenic Escherichia coli enables basolateral membrane proteins to migrate apically and to potentiate physiological consequences. Infect. Immun. 71, 7069–7078 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sinclair, J. F. & O'Brien, A. D. Cell surface-localized nucleolin is a eukaryotic receptor for the adhesin intimin-γ of enterohemorrhagic Escherichia coli O157:H7. J. Biol. Chem. 277, 2876–2885 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Kalman, D. et al. Enteropathogenic E. coli acts through WASP and Arp2/3 complex to form actin pedestals. Nature Cell Biol. 1, 389–391 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Campellone, K. G. & Leong, J. M. Tails of two Tirs: actin pedestal formation by enteropathogenic E. coli and enterohemorrhagic E. coli O157:H7. Curr. Opin. Microbiol. 6, 82–90 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Vallance, B. A. & Finlay, B. B. Exploitation of host cells by enteropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 97, 8799–8806 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sanger, J. M., Chang, R., Ashton, F., Kaper, J. B. & Sanger, J. W. Novel form of actin-based motility transports bacteria on the surface of infected cells. Cell Motil. Cytoskeleton 34, 279–287 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Crane, J. K., McNamara, B. P. & Donnenberg, M. S. Role of EspF in host cell death induced by enteropathogenic Escherichia coli. Cell Microbiol. 3, 197–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. McNamara, B. P. et al. Translocated EspF protein from enteropathogenic Escherichia coli disrupts host intestinal barrier function. J. Clin. Invest. 107, 621–629 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Klapproth, J. M. et al. A large toxin from pathogenic Escherichia coli strains that inhibits lymphocyte activation. Infect. Immun. 68, 2148–2155 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nicholls, L., Grant, T. H. & Robins-Browne, R. M. Identification of a novel genetic locus that is required for in vitro adhesion of a clinical isolate of enterohaemorrhagic Escherichia coli to epithelial cells. Mol. Microbiol. 35, 275–288 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Tobe, T. et al. Complete DNA sequence and structural analysis of the enteropathogenic Escherichia coli adherence factor plasmid. Infect. Immun. 67, 5455–5462 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Girón, J. A., Ho, A. S. Y. & Schoolnik, G. K. An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science 254, 710–713 (1991).

    Article  PubMed  Google Scholar 

  37. Trabulsi, L. R., Keller, R. & Tardelli Gomes, T. A. Typical and atypical enteropathogenic Escherichia coli. Emerg. Infect. Dis. 8, 508–513 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hecht, G. Microbes and microbial toxins: paradigms for microbial–mucosal interactions. VII. Enteropathogenic Escherichia coli: physiological alterations from an extracellular position. Am. J. Physiol Gastrointest. Liver Physiol. 281, G1–G7 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Frankel, G. et al. Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Mol. Microbiol. 30, 911–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Kenny, B. Mechanism of action of EPEC type III effector molecules. Int. J. Med. Microbiol. 291, 469–477 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Hecht, G. et al. Pathogenic Escherichia coli increase Cl secretion from intestinal epithelia by upregulating galanin-1 receptor expression. J. Clin. Invest. 104, 253–262 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Varma, J. K. et al. An outbreak of Escherichia coli O157 infection following exposure to a contaminated building. JAMA 290, 2709–2712 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Andreoli, S. P., Trachtman, H., Acheson, D. W., Siegler, R. L. & Obrig, T. G. Hemolytic uremic syndrome: epidemiology, pathophysiology, and therapy. Pediatr. Nephrol. 17, 293–298 (2002).

    Article  PubMed  Google Scholar 

  44. Jones, N. L. et al. Escherichia coli Shiga toxins induce apoptosis in epithelial cells that is regulated by the Bcl-2 family. Am. J. Physiol. Gastrointest. Liver Physiol. 278, G811–G819 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Reid, S. D., Herbelin, C. J., Bumbaugh, A. C., Selander, R. K. & Whittam, T. S. Parallel evolution of virulence in pathogenic Escherichia coli. Nature 406, 64–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Tatsuno, I. et al. toxB gene on pO157 of enterohemorrhagic Escherichia coli O157:H7 is required for full epithelial cell adherence phenotype. Infect. Immun. 69, 6660–6669 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Burland, V. et al. The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7. Nucleic Acids Res. 26, 4196–4204 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lathem, W. W. et al. StcE, a metalloprotease secreted by Escherichia coli O157:H7, specifically cleaves C1 esterase inhibitor. Mol. Microbiol. 45, 277–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Perna, N. T. et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529–533 (2001). The first reported genome sequence for a pathogenic E. coli strain.

    Article  CAS  PubMed  Google Scholar 

  50. Heimer, S. R. et al. Urease of enterohemorrhagic Escherichia coli: evidence for regulation by fur and a trans-acting factor. Infect. Immun. 70, 1027–1031 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wolf, M. K. Occurrence, distribution, and associations of O and H serogroups, colonization factor antigens, and toxins of enterotoxigenic Escherichia coli. Clin. Microbiol. Rev. 10, 569–584 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Spangler, B. D. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol. Rev. 56, 622–647 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Pizza, M. et al. Mucosal vaccines: non-toxic derivatives of LT and CT as mucosal adjuvants. Vaccine 19, 2534–2541 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Currie, M. G. et al. Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc. Natl Acad. Sci. USA 89, 947–951 (1992). This paper suggests that STa evolved as a molecular mimic of an endogenous ligand. This model is necessary, not only to understand ETEC pathogenesis and evolution, but also to provide a context for future studies of microbial evolution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dubreuil, J. D. Escherichia coli STb enterotoxin. Microbiology 143, 1783–1795 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Pitari, G. M. et al. Bacterial enterotoxins are associated with resistance to colon cancer. Proc. Natl Acad. Sci. USA 100, 2695–2699 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nataro, J. P., Steiner, T. S. & Guerrant, R. L. Enteroaggregative Escherichia coli. Emerg. Infect. Dis. 4, 251–261 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hicks, S., Candy, D. C. A. & Phillips, A. D. Adhesion of enteroaggregative Escherichia coli to pediatric intestinal mucosa in vitro. Infect. Immun. 64, 4751–4760 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Vial, P. A. et al. Characterization of enteroadherent-aggregative Escherichia coli, a putative agent of diarrheal disease. J. Infect. Dis. 158, 70–79 (1988).

    Article  CAS  PubMed  Google Scholar 

  60. Benjamin, P., Federman, M. & Wanke, C. A. Characterization of an invasive phenotype associated with enteroaggregative Escherichia coli. Infect. Immun. 63, 3417–3421 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Abe, C. M., Knutton, S., Pedroso, M. Z., Freymuller, E. & Gomes, T. A. An enteroaggregative Escherichia coli strain of serotype O111:H12 damages and invades cultured T84 cells and human colonic mucosa. FEMS Microbiol. Lett. 203, 199–205 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Czeczulin, J. R. et al. Aggregative adherence fimbria II, a second fimbrial antigen mediating aggregative adherence in enteroaggregative Escherichia coli. Infect. Immun. 65, 4135–4145 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nataro, J. P. et al. Aggregative adherence fimbriae I of enteroaggregative Escherichia coli mediate adherence to HEp-2 cells and hemagglutination of human erythrocytes. Infect. Immun. 60, 2297–2304 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nataro, J. P., Yikang, D., Yingkang, D. & Walker, K. AggR, a transcriptional activator of aggregative adherence fimbria I expression in enteroaggregative Escherichia coli. J. Bacteriol. 176, 4691–4699 (1994). Describes the emergence of AggR as a global regulator of virulence genes in EAEC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sheikh, J. et al. A novel dispersin protein in enteroaggregative Escherichia coli. J. Clin. Invest. 110, 1329–1337 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Steiner, T. S., Nataro, J. P., Poteet-Smith, C. E., Smith, J. A. & Guerrant, R. L. Enteroaggregative Escherichia coli expresses a novel flagellin that causes IL-8 release from intestinal epithelial cells. J. Clin. Invest 105, 1769–1777 (2000). The pathogenesis of EAEC is not completely understood, but inflammation might be an important component.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Henderson, I. R., Czeczulin, J., Eslava, C., Noriega, F. & Nataro, J. P. Characterization of Pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infect. Immun. 67, 5587–5596 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Noriega, F. R., Liao, F. M., Formal, S. B., Fasano, A. & Levine, M. M. Prevalence of Shigella enterotoxin 1 among Shigella clinical isolates of diverse serotypes. J. Infect. Dis. 172, 1408–1410 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Savarino, S. J. et al. Enteroaggregative Escherichia coli heat-stable enterotoxin 1 represents another subfamily of E. coli heat-stable toxin. Proc. Natl Acad. Sci. USA 90, 3093–3097 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Menard, L. P. & Dubreuil, J. D. Enteroaggregative Escherichia coli heat-stable enterotoxin 1 (EAST1): a new toxin with an old twist. Crit. Rev. Microbiol. 28, 43–60 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Navarro-Garcia, F. et al. In vitro effects of a high-molecular weight heat-labile enterotoxin from enteroaggregative Escherichia coli. Infect. Immun. 66, 3149–3154 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Jiang, Z. D., Greenberg, D., Nataro, J. P., Steffen, R. & DuPont, H. L. Rate of occurrence and pathogenic effect of enteroaggregative Escherichia coli virulence factors in international travelers. J. Clin. Microbiol. 40, 4185–4190 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wei, J. et al. Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect. Immun. 71, 2775–2786 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pupo, G. M., Lan, R. & Reeves, P. R. Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc. Natl Acad. Sci. USA 97, 10567–10572 (2000). This paper suggests that Shigella should be considered within the species Escherichia coli , and that their evolution represents adaptation to a specific pathogenetic niche, a phenomenon that has occurred on several occasions over many years.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sansonetti, P. Host–pathogen interactions: the seduction of molecular cross talk. Gut 50, Suppl. 3 S2–S8 (2002).

    Google Scholar 

  76. Zychlinsky, A., Prevost, M. C. & Sansonetti, P. J. Shigella flexneri induces apoptosis in infected macrophages. Nature 358, 167–169 (1992).

    Article  CAS  PubMed  Google Scholar 

  77. Buchrieser, C. et al. The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol. Microbiol. 38, 760–771 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Egile, C. et al. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin- based motility. J. Cell Biol. 146, 1319–1332 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sansonetti, P. J. et al. Caspase-1 activation of IL-1β and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity. 12, 581–590 (2000). The pathogenesis of Shigella infection represents a complex manipulation of the immune response, in ways that are beneficial to both pathogen and host.

    Article  CAS  PubMed  Google Scholar 

  80. Tran Van Nhieu, G., Bourdet-Sicard, R., Dumenil, G., Blocker, A. & Sansonetti, P. J. Bacterial signals and cell responses during Shigella entry into epithelial cells. Cell. Microbiol. 2, 187–193 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Niebuhr, K. et al. Conversion of PtdIns(4,5)P2 into PtdIns5P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J. 21, 5069–5078 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Scaletsky, I. C. et al. Diffusely adherent Escherichia coli as a cause of acute diarrhea in young children in northeast Brazil: a case-control study. J. Clin. Microbiol. 40, 645–648 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bilge, S. S., Clausen, C. R., Lau, W. & Moseley, S. L. Molecular characterization of a fimbrial adhesin, F1845, mediating diffuse adherence of diarrhea-associated Escherichia coli to HEp-2 cells. J. Bacteriol. 171, 4281–4289 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hasan, R. J. et al. Structure–function analysis of decayaccelerating factor: identification of residues important for binding of the Escherichia coli Dr adhesin and complement regulation. Infect. Immun. 70, 4485–4493 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bernet-Camard, M. F., Coconnier, M. H., Hudault, S. & Servin, A. L. Pathogenicity of the diffusely adhering strain Escherichia coli C1845: F1845 adhesin-decay accelerating factor interaction, brush border microvillus injury, and actin disassembly in cultured human intestinal epithelial cells. Infect. Immun. 64, 1918–1928 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Peiffer, I., Servin, A. L. & Bernet-Camard, M. F. Piracy of decay-accelerating factor (CD55) signal transduction by the diffusely adhering strain Escherichia coli C1845 promotes cytoskeletal F-actin rearrangements in cultured human intestinal INT407 cells. Infect. Immun. 66, 4036–4042 (1998). DAEC exhibits a unique pathogenetic scheme that includes cytoskeletal sabotage.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Peiffer, I., Bernet-Camard, M. F., Rousset, M. & Servin, A. L. Impairments in enzyme activity and biosynthesis of brush border-associated hydrolases in human intestinal Caco-2/TC7 cells infected by members of the Afa/Dr family of diffusely adhering Escherichia coli. Cell. Microbiol. 3, 341–357 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Phillips, I. et al. Epidemic multiresistant Escherichia coli infection in West Lambeth Health District. Lancet 1, 1038–1041 (1988).

    Article  CAS  PubMed  Google Scholar 

  89. Manges, A. R. et al. Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. N. Engl. J. Med. 345, 1007–1013 (2001). This work identified specific clonal groups of E. coli that cause widespread antibiotic resistant bacteria.

    Article  CAS  PubMed  Google Scholar 

  90. Nowicki, B., Svanborg-Eden, C., Hull, R. & Hull, S. Molecular analysis and epidemiology of the Dr hemagglutinin of uropathogenic Escherichia coli. Infect. Immun. 57, 446–451 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Johnson, J. R. Virulence factors in Escherichia coli urinary tract infection. Clin. Microbiol. Rev. 4, 80–128 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Johnson, J. R. & Stell, A. L. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J. Infect. Dis. 181, 261–272 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Welch, R. A. et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 99, 17020–17024 (2002). The first complete nucleotide sequence of a representative uropathogenic strain of E. coli and shows that EHEC, UPEC and E. coli K-12 share only 39.2% of the combined set of predicted proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bahrani-Mougeot, F. K. et al. Type 1 fimbriae and extracellular polysaccharides are preeminent uropathogenic Escherichia coli virulence determinants in the murine urinary tract. Mol. Microbiol. 45, 1079–1093 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Gunther, N. W., Lockatell, V., Johnson, D. E. & Mobley, H. L. In vivo dynamics of type 1 fimbria regulation in uropathogenic Escherichia coli during experimental urinary tract infection. Infect. Immun. 69, 2838–2846 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Connell, I. et al. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc. Natl Acad. Sci. USA 93, 9827–9832 (1996). Demonstrates that type 1 fimbriae satisfies molecular Koch's postulates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mulvey, M. A. et al. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282, 1494–1497 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Anderson, G. G. et al. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301, 105–107 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Svanborg-Eden, C. & Hansson, H. A. Escherichia coli pili as possible mediators of attachment to human urinary tract epithelial cells. Infect. Immun. 21, 229–237 (1978).

    Google Scholar 

  100. Korhonen, T. K., Virkola, R. & Holthofer, H. Localization of binding sites for purified Escherichia coli P fimbriae in the human kidney. Infect. Immun. 54, 328–332 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Trifillis, A. L. et al. Binding to and killing of human renal epithelial cells by hemolytic P-fimbriated E. coli. Kidney Int. 46, 1083–1091 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. Uhlen, P. et al. α-haemolysin of uropathogenic E. coli induces Ca2+ oscillations in renal epithelial cells. Nature 405, 694–697 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Guyer, D. M., Henderson, I. R., Nataro, J. P. & Mobley, H. L. Identification of Sat, an autotransporter toxin produced by uropathogenic Escherichia coli. Mol. Microbiol. 38, 53–66 (2000). Describes the identification of a new toxin of uropathogenic E. coli

    Article  CAS  PubMed  Google Scholar 

  104. Unhanand, M., Mustafa, M. M., McCracken, G. H. Jr & Nelson, J. D. Gram-negative enteric bacillary meningitis: a twenty-one-year experience. J. Pediatr. 122, 15–21 (1993).

    Article  CAS  PubMed  Google Scholar 

  105. Dawson, K. G., Emerson, J. C. & Burns, J. L. Fifteen years of experience with bacterial meningitis. Pediatr. Infect. Dis. J. 18, 816–822 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Stoll, B. J. et al. Changes in pathogens causing early-onset sepsis in very-low-birth-weight infants. N. Engl. J. Med. 347, 240–247 (2002).

    Article  PubMed  Google Scholar 

  107. Dietzman, D. E., Fischer, G. W. & Schoenknecht, F. D. Neonatal Escherichia coli septicemia-bacterial counts in blood. J. Pediatr. 85, 128–130 (1974).

    Article  CAS  PubMed  Google Scholar 

  108. Stins, M. F., Badger, J. L. & Kim, K. S. Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microb. Pathog. 30, 19–28 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Stins, M. F., Nemani, P. V., Wass, C. & Kim, K. S. Escherichia coli binding to and invasion of brain microvascular endothelial cells derived from humans and rats of different ages. Infect. Immun. 67, 5522–5525 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kim, K. S. et al. The K1 capsule is the critical determinant in the development of Escherichia coli meningitis in the rat. J. Clin. Invest. 90, 897–905 (1992). Recognition of the importance of capsule for virulence of MNEC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rode, C. K., Melkerson-Watson, L. J., Johnson, A. T. & Bloch, C. A. Type-specific contributions to chromosome size differences in Escherichia coli. Infect. Immun. 67, 230–236 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Bonacorsi, S. P. et al. Identification of regions of the Escherichia coli chromosome specific for neonatal meningitis-associated strains. Infect. Immun. 68, 2096–2101 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Badger, J. L., Wass, C. A., Weissman, S. J. & Kim, K. S. Application of signature-tagged mutagenesis for identification of Escherichia coli K1 genes that contribute to invasion of human brain microvascular endothelial cells. Infect. Immun. 68, 5056–5061 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Parkkinen, J., Korhonen, T. K., Pere, A., Hacker, J. & Soinila, S. Binding sites in the rat brain for Escherichia coli S fimbriae associated with neonatal meningitis. J. Clin. Invest 81, 860–865 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Prasadarao, N. V., Wass, C. A. & Kim, K. S. Endothelial cell GlcNAc β,1-4GlcNAc epitopes for outer membrane protein A enhance traversal of Escherichia coli across the blood–brain barrier. Infect. Immun. 64, 154–160 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kim, K. S. Escherichia coli translocation at the blood–brain barrier. Infect. Immun. 69, 5217–5222 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Badger, J. L. & Kim, K. S. Environmental growth conditions influence the ability of Escherichia coli K1 to invade brain microvascular endothelial cells and confer serum resistance. Infect. Immun. 66, 5692–5697 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Hoffman, J. A., Wass, C., Stins, M. F. & Kim, K. S. The capsule supports survival but not traversal of Escherichia coli K1 across the blood–brain barrier. Infect. Immun. 67, 3566–3570 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Reddy, M. A., Wass, C. A., Kim, K. S., Schlaepfer, D. D. & Prasadarao, N. V. Involvement of focal adhesion kinase in Escherichia coli invasion of human brain microvascular endothelial cells. Infect. Immun. 68, 6423–6430 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Khan, M. A. & Isaacson, R. E. Identification of Escherichia coli genes that are specifically expressed in a murine model of septicemic infection. Infect. Immun. 70, 3404–3412 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Darfeuille-Michaud, A. Adherent-invasive Escherichia coli: a putative new E. coli pathotype associated with Crohn's disease. Int. J. Med. Microbiol. 292, 185–193 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Panigrahi, P., Bamford, P., Horvath, K., Morris, J. G. Jr & Gewolb, I. H. Escherichia coli transcytosis in a Caco-2 cell model: implications in neonatal necrotizing enterocolitis. Pediatr. Res. 40, 415–421 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. De Rycke, J., Milon, A. & Oswald, E. Necrotoxic Escherichia coli (NTEC): two emerging categories of human and animal pathogens. Vet. Res. 30, 221–233 (1999).

    CAS  PubMed  Google Scholar 

  124. Elliott, S. J. et al. Characterization of the roles of hemolysin and other toxins in enteropathy caused by α-hemolytic Escherichia coli linked to human diarrhea. Infect. Immun. 66, 2040–2051 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Toth, I., Herault, F., Beutin, L. & Oswald, E. Production of cytolethal distending toxins by pathogenic Escherichia coli strains isolated from human and animal sources: establishment of the existence of a new cdt variant (type IV). J. Clin. Microbiol. 41, 4285–4291 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Janka, A. et al. Cytolethal distending toxin gene cluster in enterohemorrhagic Escherichia coli O157:H- and O157:H7: characterization and evolutionary considerations. Infect. Immun. 71, 3634–3638 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Otto, B. R., van Dooren, S. J., Dozois, C. M., Luirink, J. & Oudega, B. Escherichia coli hemoglobin protease autotransporter contributes to synergistic abscess formation and heme-dependent growth of Bacteroides fragilis. Infect. Immun. 70, 5–10 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. McVeigh, A. et al. IS 1414, an Escherichia coli insertion sequence with a heat-stable enterotoxin gene embedded in a transposase-like gene. Infect. Immun. 68, 5710–5715 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hacker, J. & Kaper, J. B. Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54, 641–679 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Dobrindt, U. et al. Genetic structure and distribution of four pathogenicity islands (PAI I(536) to PAI IV(536)) of uropathogenic Escherichia coli strain 536. Infect. Immun. 70, 6365–6372 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tauschek, M., Strugnell, R. A. & Robins-Browne, R. M. Characterization and evidence of mobilization of the LEE pathogenicity island of rabbit-specific strains of enteropathogenic Escherichia coli. Mol. Microbiol. 44, 1533–1550 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Torres, A. G. & Kaper, J. B. Pathogenicity islands of intestinal E. coli. Curr. Top. Microbiol. Immunol. 264, 31–48 (2002).

    CAS  PubMed  Google Scholar 

  133. Ingersoll, M., Groisman, E. A. & Zychlinsky, A. Pathogenicity islands of Shigella. Curr. Top. Microbiol. Immunol. 264, 49–65 (2002).

    CAS  PubMed  Google Scholar 

  134. Redford, P. & Welch, R. A. Extraintestinal Escherichia coli as a model system for the study of pathogenicity islands. Curr. Top. Microbiol. Immunol. 264, 15–30 (2002).

    CAS  PubMed  Google Scholar 

  135. Schubert, S., Cuenca, S., Fischer, D. & Heesemann, J. High-pathogenicity island of Yersinia pestis in enterobacteriaceae isolated from blood cultures and urine samples: prevalence and functional expression. J. Infect. Dis. 182, 1268–1271 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Maurelli, A. T., Fernández, R. E., Bloch, C. A., Rode, C. K. & Fasano, A. 'Black holes' and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc. Natl Acad. Sci. USA 95, 3943–3948 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Casalino, M., Latella, M. C., Prosseda, G. & Colonna, B. CadC is the preferential target of a convergent evolution driving enteroinvasive Escherichia coli toward a lysine decarboxylase-defective phenotype. Infect. Immun. 71, 5472–5479 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Weissman, S. J., Moseley, S. L., Dykhuizen, D. E. & Sokurenko, E. V. Enterobacterial adhesins and the case for studying SNPs in bacteria. Trends Microbiol. 11, 115–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Dobrindt, U. et al. Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J. Bacteriol. 185, 1831–1840 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mellies, J. L., Elliott, S. J., Sperandio, V., Donnenberg, M. S. & Kaper, J. B. The Per regulon of enteropathogenic Escherichia coli: identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). Mol. Microbiol. 33, 296–306 (1999).

    Article  CAS  PubMed  Google Scholar 

  141. Xia, Y., Gally, D., Forsman-Semb, K. & Uhlin, B. E. Regulatory cross-talk between adhesin operons in Escherichia coli: inhibition of type 1 fimbriae expression by the PapB protein. EMBO J. 19, 1450–1457 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wagner, P. L. et al. Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli. Mol. Microbiol. 44, 957–970 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Zhang, X. et al. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J. Infect. Dis. 181, 664–670 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Sperandio, V., Mellies, J. L., Nguyen, W., Shin, S. & Kaper, J. B. Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 96, (1999). First report that enteric bacterial virulence factors are regulated by quorum sensing.

  145. Sperandio, V., Torres, A. G., Jarvis, B., Nataro, J. P. & Kaper, J. B. Bacteria–host communication: the language of hormones. Proc. Natl Acad. Sci. USA 100, 8951–8956 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Abraham, J. M., Freitag, C. S., Clements, J. R. & Eisenstein, B. I. An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc. Natl Acad. Sci. USA 82, 5724–5727 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kuehn, M. J., Heuser, J., Normark, S. & Hultgren, S. J. P pili in uropathogenic E. coli are composite fibres with distinct fibrillar adhesive tips. Nature 356, 252–255 (1992).

    Article  CAS  PubMed  Google Scholar 

  148. Bustamante, V. H., Santana, F. J., Calva, E. & Puente, J. L. Transcriptional regulation of type III secretion genes in enteropathogenic Escherichia coli: Ler antagonizes H-NS-dependent repression. Mol. Microbiol. 39, 664–678 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Friedberg, D., Umanski, T., Fang, Y. & Rosenshine, I. Hierarchy in the expression of the locus of enterocyte effacement genes of enteropathogenic Escherichia coli. Mol. Microbiol. 34, 941–952 (1999).

    Article  CAS  PubMed  Google Scholar 

  150. Goldberg, M. D., Johnson, M., Hinton, J. C. & Williams, P. H. Role of the nucleoid-associated protein Fis in the regulation of virulence properties of enteropathogenic Escherichia coli. Mol. Microbiol. 41, 549–559 (2001).

    Article  CAS  PubMed  Google Scholar 

  151. Grant, A. J. et al. Co-ordination of pathogenicity island expression by the BipA GTPase in enteropathogenic Escherichia coli (EPEC). Mol. Microbiol. 48, 507–521 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Sperandio, V., Li, C. C. & Kaper, J. B. Quorum-sensing Escherichia coli regulator A: a regulator of the LysR family involved in the regulation of the locus of enterocyte effacement pathogenicity island in enterohemorrhagic E. coli. Infect. Immun. 70, 3085–3093 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sperandio, V., Torres, A. G. & Kaper, J. B. Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol. Microbiol. 43, 809–821 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Gómez-Duarte, O. G. & Kaper, J. B. A plasmid-encoded regulatory region activates chromosomal eaeA expression in enteropathogenic Escherichia coli. Infect. Immun. 63, 1767–1776 (1995).

    PubMed  PubMed Central  Google Scholar 

  155. Tobe, T., Schoolnik, G. K., Sohel, I., Bustamante, V. H. & Puente, J. L. Cloning and characterization of bfpTVW, genes required for the transcriptional activation of bfpA in enteropathogenic Escherichia coli. Mol. Microbiol. 21, 963–975 (1996).

    Article  CAS  PubMed  Google Scholar 

  156. Shin, S. et al. An activator of glutamate decarboxylase genes regulates the expression of enteropathogenic Escherichia coli virulence genes through control of the plasmid-encoded regulator, Per. Mol. Microbiol. 41, 1133–1150 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. Mellies, J. L. et al. espC pathogenicity island of enteropathogenic Escherichia coli encodes an enterotoxin. Infect. Immun. 69, 315–324 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratories is supported by the National Institutes of Health. We thank J. Girón for providing electron micrographs. We apologize to the numerous investigators whose papers could not be cited due to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Kaper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

E. coli CFT073

E. coli K-12

O157:H7

pO157

Shigella flexneri 2a

UPEC strain CFT073

LocusLink

Cdc42

The Protein Data Bank

heat-labile enterotoxin

heat-stable enterotoxin b

Shiga toxin

SwissProt

TLR4

TLR5

FURTHER INFORMATION

Movement of EPEC on ptK2 cells

James Kaper's laboratory

James Nataro's laboratory

Harry Mobley's laboratory

Glossary

PATHOTYPES

A group of strains of a single species that cause a common disease using a common set of virulence factors.

SEROGROUP

An antigenically distinct variety of serotype, based only on O (LPS) antigens.

SEROTYPE

An antigenically distinct variety within a bacterial species. For E. coli, a specific combination of O (lipopolysaccharide), H (flagellar) and sometimes K (capsular) antigens defines a serotype.

DECAY-ACCELERATING FACTOR

(DAF). A plasma membrane protein, also called CD55, that regulates the complement cascade by interfering with the formation of the C3bBb complex.

MICA

A homologue of MHC (major histocompatibility complex) I molecules. Two homologues have been described called MICA (MHC class I chain-related gene A) and MICB (MHC class I chain-related gene B).

TH1 IMMUNE RESPONSE

A response that is characterized by a subset of helper T cells that secrete a particular set of cytokines, including IL-2, interferon-γ and TNF-α, the main function of which is to stimulate phagocytosis-mediated defences against intracellular pathogens.

NUCLEOLIN

A nucleolar protein that functions as a shuttle protein between the nucleus and the cytoplasm and is also found on the cell surface.

GAP

GTPase-activating protein. A family of eukaryotic proteins that modulate the activity of Rac, Rho and Cdc42.

GALANIN

A neuropeptide that is widely distributed in the central nervous system and the gastrointestinal tract. Binding to the galanin-1 receptor can alter intestinal ion flux.

USSING CHAMBER

A device that is used to measure ion flow across an epithelium. Bacterial enterotoxins that induce ion fluxes are frequently studied in Ussing chambers.

SIGNATURE-TAGGED MUTAGENESIS

(STM). A technique to screen large numbers of distinct mutants for those that fail to survive an animal infection. Each mutant is tagged with a unique DNA sequence (called a signature tag), which allows a specific mutant to be tracked within a large pool of bacteria.

IVET

In vivo expression technology is a promoter trap technique that uses cloned promoters fused to a reporter gene. A library of such constructs is introduced into an animal model to detect promoters that are activated in vivo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaper, J., Nataro, J. & Mobley, H. Pathogenic Escherichia coli. Nat Rev Microbiol 2, 123–140 (2004). https://doi.org/10.1038/nrmicro818

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro818

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing