Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS

A Correction to this article was published on 01 December 2003

Key Points

  • The fact that the adult mammalian central nervous system (CNS) does not regenerate after injury was recognized as early as 1550 BC. There are two main obstacles to regeneration — inhibitors within myelin, and the formation of a glial scar. This review will discuss what is known about the myelin inhibitors, and how their effects might be overcome.

  • Three inhibitors of axonal regeneration have been identified in myelin – Nogo, myelin-associated glycoprotein (Mag) and oligodendrocyte myelin glycoprotein (Omgp). All of these proteins induce growth cone collapse and inhibit neurite outgrowth.

  • In 2001, Strittmatter and colleagues cloned the Nogo receptor (Ngr), which they identified as a binding partner of the Nogo domain Nogo-66. It has since been found that Mag and Omgp also bind to this receptor. Ngr cannot transduce signals across the membrane, as it has no transmembrane and cytoplasmic domains, so it seems to use the p75 neurotrophin receptor (p75NTR) as a transducing partner.

  • Members of the Rho family of small GTPases have been implicated in myelin's inhibitory effects. Rho has been suggested to interact directly with p75NTR, and activation of p75NTR initiates various signalling cascades. Some of these cascades might run in parallel with the Rho pathway to bring about inhibition when myelin inhibitors bind to the Ngr–p75NTR complex.

  • Two approaches might be used to overcome inhibitors and encourage regeneration. First, the inhibitors and/or their receptors could be blocked with antibodies or peptides. Second, the intrinsic state of the neuron could be changed, such that it no longer recognizes the environment as inhibitory. Elevation of cyclic AMP inside the injured neuron has been shown to overcome inhibition by Mag and myelin.

  • To identify genes and proteins that are required for regeneration, it is useful to look for genes that are upregulated in systems that regenerate spontaneously after injury. Studies have focused on two such situations — neonatal spinal neurons, which can regenerate to produce complete functional recovery, and regeneration of the CNS branch of dorsal root ganglion neurons after the peripheral branch has been lesioned.

  • Overcoming inhibitors of regeneration in myelin is only one aspect of a complex problem. Even if axons can be induced to grow across the lesion site before the glial scar forms, they still need to be directed back to their correct destination and make functional synapses. The first step is to get the axons to grow, and the last few years have seen enormous advances in this respect.

Abstract

Recent studies have expanded our knowledge, at the molecular level, of how myelin inhibits axonal regeneration after injury to the mammalian central nervous system. Several inhibitors have been identified that seem to signal inhibition through the same receptor complex. New molecular information has also accumulated on how the neuron can be changed intrinsically to overcome myelin inhibitors. Together, these important advances in the field have identified many new targets for therapeutic intervention to encourage nerve regeneration after spinal cord or brain injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of three inhibitors of axonal regeneration identified in myelin.
Figure 2: Nogo-66, Mag and Omgp interact with the same receptor complex.
Figure 3: Model of signalling inhibition through the Ngr–p75NTR receptor complex.
Figure 4: Elevation of cyclic AMP mimics the effects of a peripheral conditioning lesion on dorsal column regeneration.

Similar content being viewed by others

References

  1. Fitch, M. T. & Silver, J. in CNS Regeneration (eds Tuszynski, M. H. & Kordower, J. H.) 55–88 (Academic, San Diego, 1999).

    Book  Google Scholar 

  2. Qiu, J., Cai, D. & Filbin, M. T. Glial inhibition of nerve regeneration in the mature mammalian CNS. Glia 29, 166–174 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Schwab, M. E. & Bartholdi, D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol. Rev. 76, 319–370 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Huang, D. W., McKerracher, L., Braun, P. E. & David, S. A therapeutic vaccine approach to stimulate axon regeneration in the adult mammalian spinal cord. Neuron 24, 639–647 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Ramón y Cajal, S. Cajal's Degeneration & Regeneration of the Nervous System (eds DeFelipe, J. & Jones, E. G.) (Oxford Univ. Press, Oxford, 1928).

    Google Scholar 

  6. Berry, M. Post-injury myelin-breakdown products inhibit axonal growth: an hypothesis to explain the failure of axonal regeneration in the mammalian central nervous system. Bibl. Anat. 23, 1–11 (1982). The first experimental data that support the suggestion that myelin inhibits axonal regeneration.

    Google Scholar 

  7. Crutcher, K. A. Tissue sections from the mature rat brain and spinal cord as substrates for neurite outgrowth in vitro: extensive growth on gray matter but little growth on white matter. Exp. Neurol. 104, 39–54 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Caroni, P. & Schwab, M. E. Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J. Cell Biol. 106, 1281–1288 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Caroni, P. & Schwab, M. E. Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1, 85–96 (1988). References 8 and 9 identify inhibitory fractions in myelin and describe the IN-1 monoclonal antibody that neutralizes the inhibition.

    Article  CAS  PubMed  Google Scholar 

  10. Schnell, L. & Schwab, M. E. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343, 269–272 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, M. S. et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434–439 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. GrandPre, T., Nakamura, F., Vartanian, T. & Strittmatter, S. M. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403, 439–444 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Prinjha, R. et al. Inhibitor of neurite outgrowth in humans. Nature 403, 383–384 (2000). References 11–13 describe the cloning of Nogo, a long-sought antigen of the IN-1 monoclonal antibody.

    Article  CAS  PubMed  Google Scholar 

  14. Huber, A. B., Weinmann, O., Brosamle, C., Oertle, T. & Schwab, M. E. Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions. J. Neurosci. 22, 3553–3567 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, X. et al. Localization of Nogo-A and Nogo-66 receptor proteins at sites of axon-myelin and synaptic contact. J. Neurosci. 22, 5505–15 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McKerracher, L. et al. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13, 805–811 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Mukhopadhyay, G., Doherty, P., Walsh, F. S., Crocker, P. R. & Filbin, M. T. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13, 757–767 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Cai, D. et al. Neuronal cyclic amp controls the developmental loss in ability of axons to regenerate. J. Neurosci. 21, 4731–4739 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Bellard, M. & Filbin, M. T. Myelin-associated glycoprotein, MAG, selectively binds several neuronal proteins. J. Neurosci. Res. 56, 213–218 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Turnley, A. M. & Bartlett, P. F. MAG and MOG enhance neurite outgrowth of embryonic mouse spinal cord neurons. Neuroreport 9, 1987–1990 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Johnson, P. W. et al. Recombinant myelin-associated glycoprotein confers neural adhesion and neurite outgrowth function. Neuron 3, 377–385 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Salzer, J. L., Holmes, W. P. & Colman, D. R. The amino acid sequences of the myelin-associated glycoproteins: homology to the immunoglobulin gene superfamily. J. Cell Biol. 104, 957–965 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Salzer, J. L. et al. Structure and function of the myelin-associated glycoproteins. Ann. NY Acad. Sci. 605, 302–312 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Kelm, S. et al. Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr. Biol. 4, 965–972 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Tang, S. et al. Myelin-associated glycoprotein interacts with neurons via a sialic acid binding site at ARG118 and a distinct neurite inhibition site. J. Cell Biol. 138, 1355–1366 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Trapp, B. D. Distribution of the myelin-associated glycoprotein and P0 protein during myelin compaction in quaking mouse peripheral nerve. J. Cell Biol. 107, 675–685 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Willison, H. J. et al. Myelin-associated glycoprotein and related glycoconjugates in developing cat peripheral nerve: a correlative biochemical and morphometric study. J. Neurochem. 49, 1853–1862 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, K. C. et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417, 941–944 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Habib, A. A. et al. Expression of the oligodendrocyte-myelin glycoprotein by neurons in the mouse central nervous system. J. Neurochem. 70, 1704–1711 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Mikol, D. D., Gulcher, J. R. & Stefansson, K. The oligodendrocyte-myelin glycoprotein belongs to a distinct family of proteins and contains the HNK-1 carbohydrate. J. Cell Biol. 110, 471–479 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Kottis, V. et al. Oligodendrocyte-myelin glycoprotein (OMgp) is an inhibitor of neurite outgrowth. J. Neurochem. 82, 1566–1569 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Fournier, A. E., GrandPre, T. & Strittmatter, S. M. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409, 341–346 (2001). Identifies the first receptor for an inhibitor found in myelin.

    Article  CAS  PubMed  Google Scholar 

  33. Josephson, A. et al. Nogo-receptor gene activity: cellular localization and developmental regulation of mRNA in mice and humans. J. Comp. Neurol. 453, 292–304 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Oertle, T. et al. Nogo-A inhibits neurite outgrowth and cell spreading with three discrete regions. J. Neurosci. 23, 5393–5406 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, B. P., Fournier, A., GrandPre, T. & Strittmatter, S. M. Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 297, 1190–1193 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Domeniconi, M. et al. Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron 35, 283–290 (2002). References 35 and 36 reveal, surprisingly, that Mag interacts with the Ngr, and reference 34 shows that OMgp also interacts with this receptor.

    Article  CAS  PubMed  Google Scholar 

  37. Yamashita, T., Higuchi, H. & Tohyama, M. The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J. Cell Biol. 157, 565–570 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, K. C., Kim, J. A., Sivasankaran, R., Segal, R. & He, Z. P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420, 74–78 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Wong, S. T. et al. A p75NTR and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nature Neurosci. 5, 1302–1308 (2002). References 37–39 identify the p75NTR as a transducing partner of Ngr.

    Article  CAS  PubMed  Google Scholar 

  40. He, X. L. et al. Structure of the Nogo receptor ectodomain. A recognition module implicated in myelin inhibition. Neuron 38, 177–185 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Bartsch, U. et al. Lack of evidence that myelin-associated glycoprotein is a major inhibitor of axonal regeneration in the CNS. Neuron 15, 1375–1381 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Li, M. et al. Myelin-associated glycoprotein inhibits neurite/axon growth and causes growth cone collapse. J. Neurosci. Res. 46, 404–414 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Bregman, B. S. et al. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 378, 498–501 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Schnell, L. & Schwab, M. E. Sprouting and regeneration of lesioned corticospinal tract fibres in the adult rat spinal cord. Eur. J. Neurosci. 5, 1156–1171 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. GrandPre, T., Li, S. & Strittmatter, S. M. Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417, 547–551 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Kim, J. E., Li, S., GrandPre, T., Qiu, D. & Strittmatter, S. M. Axon regeneration in young adult mice lacking nogo-a/b. Neuron 38, 187–199 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Simonen, M. et al. Systemic deletion of the myelin-associated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury. Neuron 38, 201–211 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Zheng, B. et al. Lack of enhanced spinal regeneration in Nogo-deficient mice. Neuron 38, 213–224 (2003). References 46–48 describe different phenotypes when Nogo is knocked out.

    Article  CAS  PubMed  Google Scholar 

  49. Trapp, B. D. Myelin-associated glycoprotein. Location and potential functions. Ann. NY Acad. Sci. 605, 29–43 (1990).

    Article  CAS  PubMed  Google Scholar 

  50. Apostolski, S. et al. Identification of Gal(β1–3)GalNAc bearing glycoproteins at the nodes of Ranvier in peripheral nerve. J. Neurosci. Res. 38, 134–141 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Josephson, A., Widenfalk, J., Widmer, H. W., Olson, L. & Spenger, C. NOGO mRNA expression in adult and fetal human and rat nervous tissue and in weight drop injury. Exp. Neurol. 169, 319–328 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. McMahon, S. B., Armanini, M. P., Ling, L. H. & Phillips, H. S. Expression and coexpression of Trk receptors in subpopulations of adult primary sensory neurons projecting to identified peripheral targets. Neuron 12, 1161–1171 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Wright, D. E. & Snider, W. D. Neurotrophin receptor mRNA expression defines distinct populations of neurons in rat dorsal root ganglia. J. Comp. Neurol. 351, 329–338 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Ernfors, P., Henschen, A., Olson, L. & Persson, H. Expression of nerve growth factor receptor mRNA is developmentally regulated and increased after axotomy in rat spinal cord motoneurons. Neuron 2, 1605–1613 (1989).

    Article  CAS  PubMed  Google Scholar 

  55. Koliatsos, V. E., Crawford, T. O. & Price, D. L. Axotomy induces nerve growth factor receptor immunoreactivity in spinal motor neurons. Brain Res. 549, 297–304 (1991).

    Article  CAS  PubMed  Google Scholar 

  56. Walsh, G. S., Krol, K. M., Crutcher, K. A. & Kawaja, M. D. Enhanced neurotrophin-induced axon growth in myelinated portions of the CNS in mice lacking the p75 neurotrophin receptor. J. Neurosci. 19, 4155–4168 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Davies, S. J. et al. Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390, 680–683 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Davies, S. J., Goucher, D. R., Doller, C. & Silver, J. Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J. Neurosci. 19, 5810–5822 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lehmann, M. et al. Inactivation of Rho signaling pathway promotes CNS axon regeneration. J. Neurosci. 19, 7537–7547 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Jin, Z. & Strittmatter, S. M. Rac1 mediates collapsin-1-induced growth cone collapse. J. Neurosci. 17, 6256–6263 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fournier, A. E., Takizawa, B. T. & Strittmatter, S. M. Rho kinase inhibition enhances axonal regeneration in the injured CNS. J. Neurosci. 23, 1416–1423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Niederost, B., Oertle, T., Fritsche, J., McKinney, R. A. & Bandtlow, C. E. Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1. J. Neurosci. 22, 10368–10376 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vinson, M. et al. Myelin-associated glycoprotein interacts with ganglioside GT1b. A mechanism for neurite outgrowth inhibition. J. Biol. Chem. 276, 20280–20285 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Yamashita, T. & Tohyama, M. The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nature Neurosci. 6, 461–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Dergham, P. et al. Rho signaling pathway targeted to promote spinal cord repair. J. Neurosci. 22, 6570–6577 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Igarashi, M., Strittmatter, S. M., Vartanian, T. & Fishman, M. C. Mediation by G proteins of signals that cause collapse of growth cones. Science 259, 77–79 (1993).

    Article  CAS  PubMed  Google Scholar 

  68. Cai, D., Shen, Y., de Bellard, M., Tang, S. & Filbin, M. T. Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 22, 89–101 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Bandtlow, C. E., Schmidt, M. F., Hassinger, T. D., Schwab, M. E. & Kater, S. B. Role of intracellular calcium in NI-35-evoked collapse of neuronal growth cones. Science 259, 80–83 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. Hempstead, B. L. The many faces of p75NTR. Curr. Opin. Neurobiol. 12, 260–267 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Fournier, A. E., Gould, G. C., Liu, B. P. & Strittmatter, S. M. Truncated soluble Nogo receptor binds Nogo-66 and blocks inhibition of axon growth by myelin. J. Neurosci. 22, 8876–8883 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Winton, M. J., Dubreuil, C. I., Lasko, D., Leclerc, N. & McKerracher, L. Characterization of new cell permeable C3-like proteins that inactivate Rho and stimulate neurite outgrowth on inhibitory substrates. J. Biol. Chem. 277, 32820–32829 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Bandtlow, C. E. Regeneration in the central nervous system. Exp. Gerontol. 38, 79–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Song, H. et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281, 1515–1518 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Ramer, M. S., Priestley, J. V. & McMahon, S. B. Functional regeneration of sensory axons into the adult spinal cord. Nature 403, 312–316 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Qiu, J. et al. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34, 895–903 (2002). This study, as well as reference 96, demonstrates for the first time that elevation of cAMP in vivo , at the cell body, can induce spinal axon regeneration.

    Article  CAS  PubMed  Google Scholar 

  77. Cai, D. et al. Arginase I and polyamines are downstream from cyclic AMP in the pathway that overcomes inhibition of axonal regeneration by Mag and myelin in vitro. Neuron 35, 711–719 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Chu, P. J., Saito, H. & Abe, K. Polyamines promote regeneration of injured axons of cultured rat hippocampal neurons. Brain Res. 673, 233–241 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Dornay, M., Gilad, V. H., Shiler, I. & Gilad, G. M. Early polyamine treatment accelerates regeneration of rat sympathetic neurons. Exp. Neurol. 92, 665–674 (1986).

    Article  CAS  PubMed  Google Scholar 

  80. Kauppila, T., Stenberg, D. & Porkka-Heiskanen, T. Putative stimulants for functional recovery after neural trauma: only spermine was effective. Exp. Neurol. 99, 50–58 (1988).

    Article  CAS  PubMed  Google Scholar 

  81. Banan, A., McCormack, S. A. & Johnson, L. R. Polyamines are required for microtubule formation during gastric mucosal healing. Am. J. Physiol. 274, G879–885 (1998).

    CAS  PubMed  Google Scholar 

  82. Kaminska, B., Kaczmarek, L. & Grzelakowska-Sztabert, B. Inhibitors of polyamine biosynthesis affect the expression of genes encoding cytoskeletal proteins. FEBS Lett. 304, 198–200 (1992).

    Article  CAS  PubMed  Google Scholar 

  83. Wolff, J. Promotion of microtubule assembly by oligocations: cooperativity between charged groups. Biochemistry 37, 10722–10729 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Williams, K. Interactions of polyamines with ion channels. Biochem. J. 325, 289–297 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chao, J. et al. N1-dansyl-spermine and N1-(n-octanesulfonyl)-spermine, novel glutamate receptor antagonists: block and permeation of N-methyl-D-aspartate receptors. Mol. Pharmacol. 51, 861–871 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Kashiwagi, K., Pahk, A. J., Masuko, T., Igarashi, K. & Williams, K. Block and modulation of N-methyl-D-aspartate receptors by polyamines and protons: role of amino acid residues in the transmembrane and pore-forming regions of NR1 and NR2 subunits. Mol. Pharmacol. 52, 701–713 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Williams, K., Zappia, A. M., Pritchett, D. B., Shen, Y. M. & Molinoff, P. B. Sensitivity of the N-methyl-D–aspartate receptor to polyamines is controlled by NR2 subunits. Mol. Pharmacol. 45, 803–809 (1994).

    CAS  PubMed  Google Scholar 

  88. Cohen, S. (ed.) A Guide to the Polyamines (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  89. Aizenman, C. D., Munoz-Elias, G. & Cline, H. T. Visually driven modulation of glutamatergic synaptic transmission is mediated by the regulation of intracellular polyamines. Neuron 34, 623–634 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Ming, G., Henley, J., Tessier-Lavigne, M., Song, H. & Poo, M. Electrical activity modulates growth cone guidance by diffusible factors. Neuron 29, 441–452 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Bregman, B. S. & Goldberger, M. E. Anatomical plasticity and sparing of function after spinal cord damage in neonatal cats. Science 217, 553–555 (1982).

    Article  CAS  PubMed  Google Scholar 

  92. Kunkel-Bagden, E., Dai, H. N. & Bregman, B. S. Recovery of function after spinal cord hemisection in newborn and adult rats: differential effects on reflex and locomotor function. Exp. Neurol. 116, 40–51 (1992).

    Article  CAS  PubMed  Google Scholar 

  93. Neumann, S. & Woolf, C. J. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23, 83–91 (1999). Shows that dorsal column axons will regenerate after a peripheral conditioning lesion without a peripheral nerve graft at the lesion site.

    Article  CAS  PubMed  Google Scholar 

  94. Richardson, P. M. & Issa, V. M. Peripheral injury enhances central regeneration of primary sensory neurones. Nature 309, 791–793 (1984).

    Article  CAS  PubMed  Google Scholar 

  95. DeBellard, M. E., Tang, S., Mukhopadhyay, G., Shen, Y. J. & Filbin, M. T. Myelin-associated glycoprotein inhibits axonal regeneration from a variety of neurons via interaction with a sialoglycoprotein. Mol. Cell. Neurosci. 7, 89–101 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Neumann, S., Bradke, F., Tessier-Lavigne, M. & Basbaum, A. I. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 34, 885–893 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Bonilla, I. E., Tanabe, K. & Strittmatter, S. M. Small proline-rich repeat protein 1A is expressed by axotomized neurons and promotes axonal outgrowth. J. Neurosci. 22, 1303–1315 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Schreyer, D. J. & Skene, J. H. Fate of GAP-43 in ascending spinal axons of DRG neurons after peripheral nerve injury: delayed accumulation and correlation with regenerative potential. J. Neurosci. 11, 3738–3751 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schreyer, D. J. & Skene, J. H. Injury-associated induction of GAP-43 expression displays axon branch specificity in rat dorsal root ganglion neurons. J. Neurobiol. 24, 959–970 (1993).

    Article  CAS  PubMed  Google Scholar 

  100. Bomze, H. M., Bulsara, K. R., Iskandar, B. J., Caroni, P. & Skene, J. H. Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nature Neurosci. 4, 38–43 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Scherer, S. S. & Salzer, J. L. in Glial Cell Development; Basic Principles and Clinical Relevance (eds Jessen, K. R. & Richardson, W. D.) 165–185 (Bios Scientific Publishers, Oxford, 1996).

    Google Scholar 

  102. Rapalino, O. et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nature Med. 4, 814–821 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Leskovar, A., Moriarty, L. J., Turek, J. J., Schoenlein, I. A. & Borgens, R. B. The macrophage in acute neural injury: changes in cell numbers over time and levels of cytokine production in mammalian central and peripheral nervous systems. J. Exp. Biol. 203, 1783–1795 (2000).

    CAS  PubMed  Google Scholar 

  104. Kelm, S. et al. Functional groups of sialic acids involved in binding to siglecs (sialoadhesins) deduced from interactions with synthetic analogues. Eur. J. Biochem. 255, 663–672 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Collins, B. E. et al. Sialic acid specificity of myelin-associated glycoprotein binding. J. Biol. Chem. 272, 1248–1255 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Vyas, A. A. et al. Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc. Natl Acad. Sci. USA 99, 8412–8417 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yang, L. J. et al. Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc. Natl Acad. Sci. USA 93, 814–818 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bandtlow, C. E. & Loschinger, J. Developmental changes in neuronal responsiveness to the CNS myelin-associated neurite growth inhibitor NI-35/250. Eur. J. Neurosci. 9, 2743–2752 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review is dedicated to the memory of N. Kimura. I thank R. Persell for critically reading this manuscript and T. Spencer for creating the figures. Funding was provided by the NIH/NINDS/RCMI/SNRP, the National Multiple Sclerosis Society, USA and the New York State Spinal Cord Initiative.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

Gap43

Mag

Nogo-A

Ngr

Omgp

p75NTR

Sprrp1a

Glossary

LECTINS

Sugar-binding proteins that tend to agglutinate cells.

PARANODAL LOOPS

Concertina-shaped folds of myelin, which flank the nodes of Ranvier.

SCHMIDT-LANTERMAN INCISURES

Funnel-shaped interruptions in the myelin sheath that were shown by electron microscopy to correspond to strands of cytoplasm separating two otherwise fused myelinating cell membranes.

GLYCOSYL PHOSPHATIDYLINOSITOL

A post-translational modification, the function of which is to attach proteins to the exoplasmic leaflet of membranes, possibly to specific domains therein. The anchor is made of one molecule of phosphatidylinositol to which a carbohydrate chain is linked through the C6 hydroxyl of the inositol, and is attached to the protein through an ethanolamine phosphate moiety.

IGM ANTIBODY

An immunoglobulin molecule that consists of five immunoglobulin G-type monomers, joined together by J chains to form a cyclic pentamer. During an immune response, IgM is usually produced before IgG, and forms the first line of defence.

NODE OF RANVIER

A region of exposed plasma membrane in a myelinated axon. The nodes propagate action potentials by saltatory conduction, and they contain high concentrations of voltage-gated ion channels.

DOMINANT NEGATIVE

A mutant molecule that can interfere with the normal molecule, knocking out its activity

GANGLIOSIDE

An anionic glycosphingolipid that carries one or more sialic acid residues, in addition to other sugar residues.

GENE TRAPPING

A mutation strategy that makes use of insertion vectors to trap or isolate transcripts from flanking genes. The inserted sequence acts as a tag from which to clone the mutated gene.

DORSAL ROOT GANGLION

The cell bodies of sensory neurons are collected together in paired ganglia that lie alongside the spinal cord. These cell bodies are surrounded by satellite glial cells, which have much in common with the Schwann cells that ensheath peripheral axons. Very few synapses have been observed in these ganglia.

SMALL GTPASE PROTEINS

A family of proteins that can hydrolyse GTP, which includes Rac, Rab, Ran, Rad, Rho and others. They subserve multiple cellular functions; for example, Rho and Rac are involved in the control of the cytoskeleton.

PERTUSSIS TOXIN

The causative agent of whooping cough, pertussis toxin causes the persistent inactivation of Gi proteins by catalysing the ADP-ribosylation of the α-subunit.

POLYAMINES

Organic compounds that contain two or more amino groups. Putrescine, spermine and spermidine are prime examples.

INWARDLY RECTIFYING K+ CHANNELS

Potassium channels that allow long depolarizing responses, as they close during depolarizing pulses and open with steep voltage dependence on hyperpolarization. They are called inward rectifiers because current flows through them more easily into than out of the cell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filbin, M. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 4, 703–713 (2003). https://doi.org/10.1038/nrn1195

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrn1195

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing