Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Central nervous system injury-induced immune deficiency syndrome

Key Points

  • Infections are a leading cause of death in patients suffering from acute CNS injury, such as stroke, traumatic brain injury or spinal cord injury. In affected patients infections impede neurological recovery and increase morbidity as well as mortality.

  • CNS injury induces a disturbance of the normally well balanced interplay between the immune system and the CNS.

  • Brain injury leads to a characteristic immunological phenotype, which is immunodepressant.

  • During systemic inflammation, either as a result of bacterial infection or injury, the CNS mounts a homeostatic, counter-regulatory anti-inflammatory response. However, when triggered by CNS injury, in the absence of systemic inflammation, this response may be detrimental because it shuts down defence mechanisms, rendering the affected organism susceptible to infection. Under these conditions, the immunodepression exerted by the brain is not balanced by general immunostimulation.

  • CNS injury suppresses cell-mediated immune responses via three major pathways of neuroimmunomodulation: the hypothalamo–pituitary–adrenal (HPA) axis, and the sympathetic and parasympathetic nervous systems.

  • We propose that 'neurogenic' mechanisms are involved in the induction of CNS injury-induced immunodepression (CIDS). Damage to sites in the nervous system that control neural–immune interactions (such as the hypothalamus) may lead to anti-inflammatory signals, without initial involvement of immune mechanisms.

  • CIDS is an important, independent contributor to the negative outcomes of patients with brain injury.

  • Recognizing and understanding CIDS could lead to novel treatment strategies to improve outcome in patients with CNS injury.

Abstract

Infections are a leading cause of morbidity and mortality in patients with acute CNS injury. It has recently become clear that CNS injury significantly increases susceptibility to infection by brain-specific mechanisms: CNS injury induces a disturbance of the normally well balanced interplay between the immune system and the CNS. As a result, CNS injury leads to secondary immunodeficiency — CNS injury-induced immunodepression (CIDS) — and infection. CIDS might serve as a model for the study of the mechanisms and mediators of brain control over immunity. More importantly, understanding CIDS will allow us to work on developing effective therapeutic strategies, with which the outcome after CNS damage by a host of diseases could be improved by eliminating a major determinant of poor recovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The nervous and immune systems are engaged in bidirectional communication.
Figure 2: Interactions between the central nervous system and the immune system.
Figure 3: Most types of CNS injury can lead to direct damage to sympathetic CNS structures involved in vegetative neuroimmunomodulation.
Figure 4: Scheme summarizing the pathophysiological events that lead from CNS injury to infection and worsening of patient outcome.

Similar content being viewed by others

References

  1. Davenport, R. J., Dennis, M. S., Wellwood, I. & Warlow, C. P. Complications after acute stroke. Stroke 27, 415–420 (1996).

    CAS  PubMed  Google Scholar 

  2. Langhorne, P. et al. Medical complications after stroke: a multicenter study. Stroke 31, 1223–1229 (2000).

    CAS  PubMed  Google Scholar 

  3. Weimar, C. et al. Complications following acute ischemic stroke. Eur. Neurol. 48, 133–140 (2002).

    PubMed  Google Scholar 

  4. Hufeland, C. W. Enchiridion Medicum (Jonas Verlagsbuchhandlung, Berlin, 1836). Classical text book of clinical medicine (in German) containing a vivid description of the natural course of 'apoplexia', and possibly the first article to link fever and stroke.

    Google Scholar 

  5. Georgilis, K., Plomaritoglou, A., Dafni, U., Bassiakos, Y. & Vemmos, K. Aetiology of fever in patients with acute stroke. J. Intern. Med. 246, 203–209 (1999).

    CAS  PubMed  Google Scholar 

  6. Diez-Tejedor, E. & Fuentes, B. Acute care in stroke: the importance of early intervention to achieve better brain protection. Cerebrovasc. Dis. 17 (Suppl. 1), 130–137 (2004).

    CAS  PubMed  Google Scholar 

  7. Hajat, C., Hajat, S. & Sharma, P. Effects of poststroke pyrexia on stroke outcome: a meta-analysis of studies in patients. Stroke 31, 410–414 (2000).

    CAS  PubMed  Google Scholar 

  8. Grau, A. J. et al. Fever and infection early after ischemic stroke. J. Neurol. Sci. 171, 115–120 (1999).

    CAS  PubMed  Google Scholar 

  9. Johnston, K. C. et al. Medical and neurological complications of ischemic stroke: experience from the RANTTAS trial. RANTTAS Investigators. Stroke 29, 447–453 (1998).

    CAS  PubMed  Google Scholar 

  10. Kalra, L., Yu, G., Wilson, K. & Roots, P. Medical complications during stroke rehabilitation. Stroke 26, 990–994 (1995).

    CAS  PubMed  Google Scholar 

  11. Henon, H. et al. Early predictors of death and disability after acute cerebral ischemic event. Stroke 26, 392–398 (1995).

    CAS  PubMed  Google Scholar 

  12. Rodriguez, R. et al. 3 year survival in patients hospitalized for acute cerebrovascular disorders. Rev. Neurol. 24, 199–206 (1996).

    CAS  PubMed  Google Scholar 

  13. Vernino, S. et al. Cause-specific mortality after first cerebral infarction: a population-based study. Stroke 34, 1828–1832 (2003).

    PubMed  Google Scholar 

  14. Heuschmann, P. U. et al. Predictors of in-hospital mortality and attributable risks of death after ischemic stroke: the German Stroke Registers Study Group. Arch. Intern. Med. 164, 1761–1768 (2004).

    PubMed  Google Scholar 

  15. Hilker, R. et al. Nosocomial pneumonia after acute stroke: implications for neurological intensive care medicine. Stroke 34, 975–981 (2003).

    PubMed  Google Scholar 

  16. Katzan, I. L., Cebul, R. D., Husak, S. H., Dawson, N. V. & Baker, D. W. The effect of pneumonia on mortality among patients hospitalized for acute stroke. Neurology 60, 620–625 (2003).

    CAS  PubMed  Google Scholar 

  17. Nakajoh, K. et al. Relation between incidence of pneumonia and protective reflexes in post-stroke patients with oral or tube feeding. J. Intern. Med. 247, 39–42 (2000).

    CAS  PubMed  Google Scholar 

  18. Marik, P. E. Aspiration pneumonitis and aspiration pneumonia. N. Engl. J. Med. 344, 665–671 (2001). Review article describing a concise concept of pneumonitis and pneumonia following aspiration, its differentiation and risk factors (for example, stroke).

    CAS  PubMed  Google Scholar 

  19. Perry, L. & Love, C. P. Screening for dysphagia and aspiration in acute stroke: a systematic review. Dysphagia 16, 7–18 (2001).

    CAS  PubMed  Google Scholar 

  20. Nakagawa, T. et al. Silent cerebral infarction: a potential risk for pneumonia in the elderly. J. Intern. Med. 247, 255–259 (2000).

    CAS  PubMed  Google Scholar 

  21. Fabregas, N. & Torres, A. Pulmonary infection in the brain injured patient. Minerva Anestesiol. 68, 285–290 (2002).

    CAS  PubMed  Google Scholar 

  22. Piek, J. et al. Extracranial complications of severe head injury. J. Neurosurg. 77, 901–907 (1992).

    CAS  PubMed  Google Scholar 

  23. Chastre, J. & Fagon, J. Y. Ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 165, 867–903 (2002).

    PubMed  Google Scholar 

  24. Bronchard, R. et al. Early onset pneumonia: risk factors and consequences in head trauma patients. Anesthesiology 100, 234–239 (2004).

    PubMed  Google Scholar 

  25. Ewig, S. et al. Bacterial colonization patterns in mechanically ventilated patients with traumatic and medical head injury. Incidence, risk factors, and association with ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 159, 188–198 (1999).

    CAS  PubMed  Google Scholar 

  26. Woratyla, S. P., Morgan, A. S., Mackay, L., Bernstein, B. & Barba, C. Factors associated with early onset pneumonia in the severely brain-injured patient. Conn. Med. 59, 643–647 (1995).

    CAS  PubMed  Google Scholar 

  27. Campbell, W., Hendrix, E., Schwalbe, R., Fattom, A. & Edelman, R. Head-injured patients who are nasal carriers of Staphylococcus aureus are at high risk for Staphylococcus aureus pneumonia. Crit. Care Med. 27, 798–801 (1999).

    CAS  PubMed  Google Scholar 

  28. Woiciechowsky, C. et al. Early IL-6 plasma concentrations correlate with severity of brain injury and pneumonia in brain-injured patients. J. Trauma 52, 339–345 (2002).

    CAS  PubMed  Google Scholar 

  29. Ishikawa, K. et al. Characteristics of infection and leukocyte count in severely head-injured patients treated with mild hypothermia. J. Trauma 49, 912–922 (2000).

    CAS  PubMed  Google Scholar 

  30. Nadal, P., Nicolas, J. M., Font, C., Vilella, A. & Nogue, S. Pneumonia in ventilated head trauma patients: the role of thiopental therapy. Eur. J. Emerg. Med. 2, 14–16 (1995).

    CAS  PubMed  Google Scholar 

  31. Kollef, M. H., Silver, P., Murphy, D. M. & Trovillion, E. The effect of late-onset ventilator-associated pneumonia in determining patient mortality. Chest 108, 1655–1662 (1995).

    CAS  PubMed  Google Scholar 

  32. Sirvent, J. M. et al. Protective effect of intravenously administered cefuroxime against nosocomial pneumonia in patients with structural coma. Am. J. Respir. Crit. Care Med. 155, 1729–1734 (1997).

    CAS  PubMed  Google Scholar 

  33. Jackson, A. B. & Groomes, T. E. Incidence of respiratory complications following spinal cord injury. Arch. Phys. Med. Rehabil. 75, 270–275 (1994).

    CAS  PubMed  Google Scholar 

  34. Waites, K. B., Canupp, K. C., Chen, Y., DeVivo, M. J. & Moser, S. A. Bacteremia after spinal cord injury in initial versus subsequent hospitalizations. J. Spinal Cord Med. 24, 96–100 (2001).

    CAS  PubMed  Google Scholar 

  35. DeVivo, M. J., Black, K. J. & Stover, S. L. Causes of death during the first 12 years after spinal cord injury. Arch. Phys. Med. Rehabil. 74, 248–254 (1993). References 33–37 detail seminal work using the SCI model system, which reports and quantifies infectious complications after SCI. They provide a clinical-epidemiological hint for a relative state of anergia attributable to SCI.

    CAS  PubMed  Google Scholar 

  36. DeVivo, M. J., Krause, J. S. & Lammertse, D. P. Recent trends in mortality and causes of death among persons with spinal cord injury. Arch. Phys. Med. Rehabil. 80, 1411–1419 (1999).

    CAS  PubMed  Google Scholar 

  37. Ragnarsson, K. T., Carter, R. E., Wilmot, C. B. & Hall, K. M. Spinal Cord Injury: Clinical Outcomes from the Model Systems (eds Stover, S. L., Whiteneck, G. G. & deLisa, J. A.) 79–99 (Aspen Publishers Inc, USA, 1995).

    Google Scholar 

  38. Reines, H. D. & Harris, R. C. Pulmonary complications of acute spinal cord injuries. Neurosurgery 21, 193–196 (1987).

    CAS  PubMed  Google Scholar 

  39. Inamasu, J., Nakamura, Y. & Ichikizaki, K. Induced hypothermia in experimental traumatic spinal cord injury: an update. J. Neurol. Sci. 209, 55–60 (2003).

    PubMed  Google Scholar 

  40. Meisel, C. et al. Preventive antibacterial treatment improves the general medical and neurological outcome in a mouse model of stroke. Stroke 35, 2–6 (2004).

    CAS  PubMed  Google Scholar 

  41. Cruse, J. M., Lewis, R. E., Bishop, G. R., Kliesch, W. F. & Gaitan, E. Neuroendocrine–immune interactions associated with loss and restoration of immune system function in spinal cord injury and stroke patients. Immunol. Res. 11, 104–116 (1992).

    CAS  PubMed  Google Scholar 

  42. Czlonkowska, A., Cyrta, B. & Korlak, J. Immunological observations on patients with acute cerebral vascular disease. J. Neurol. Sci. 43, 455–464 (1979). One of the first clinical studies demonstrating a marked inhibition of cell-mediated immune responses in patients after cerebral infarction, including suppressed DTH skin reactivity and reduced mitogenic T-cell responses, which correlated with disease severity.

    CAS  PubMed  Google Scholar 

  43. Hoyt, D. B., Ozkan, A. N., Hansbrough, J. F., Marshall, L. & van Berkum-Clark, M. Head injury: an immunologic deficit in T-cell activation. J. Trauma 30, 759–766 (1990).

    CAS  PubMed  Google Scholar 

  44. Quattrocchi, K. B. et al. Impairment of helper T-cell function and lymphokine-activated killer cytotoxicity following severe head injury. J. Neurosurg. 75, 766–773 (1991).

    CAS  PubMed  Google Scholar 

  45. Woiciechowsky, C. et al. Sympathetic activation triggers systemic interleukin-10 release in immunodepression induced by brain injury. Nature Med. 4, 808–813 (1998). Important study linking brain injury with immunodepression caused by sympathetic overactivation

    CAS  PubMed  Google Scholar 

  46. Kossmann, T. et al. Intrathecal and serum interleukin-6 and the acute-phase response in patients with severe traumatic brain injuries. Shock 4, 311–317 (1995).

    CAS  PubMed  Google Scholar 

  47. Meert, K. L., Long, M., Kaplan, J. & Sarnaik, A. P. Alterations in immune function following head injury in children. Crit. Care Med. 23, 822–828 (1995).

    CAS  PubMed  Google Scholar 

  48. Quattrocchi, K. B. et al. Severe head injury: effect upon cellular immune function. Neurol. Res. 13, 13–20 (1991).

    CAS  PubMed  Google Scholar 

  49. Imhoff, M., Gahr, R. H. & Hoffmann, P. Delayed cutaneous hypersensitivity after multiple injury and severe burn. Ann. Ital. Chir. 61, 525–528 (1990).

    CAS  PubMed  Google Scholar 

  50. Miller, C. H., Quattrocchi, K. B., Frank, E. H., Issel, B. W. & Wagner, F. C. Jr. Humoral and cellular immunity following severe head injury: review and current investigations. Neurol. Res. 13, 117–124 (1991).

    CAS  PubMed  Google Scholar 

  51. Wolach, B., Sazbon, L., Gavrieli, R., Broda, A. & Schlesinger, M. Early immunological defects in comatose patients after acute brain injury. J. Neurosurg. 94, 706–711 (2001).

    CAS  PubMed  Google Scholar 

  52. Maerker-Alzer, G., Beckmann, H., Richard, K. E. & Frowein, R. A. Humoral immunodeficiency syndrome in patients with severe head injury? Neurosurg. Rev. 12 (Suppl. 1), 420–428 (1989).

    PubMed  Google Scholar 

  53. Campagnolo, D. I., Bartlett, J. A., Keller, S. E., Sanchez, W. & Oza, R. Impaired phagocytosis of Staphylococcus aureus in complete tetraplegics. Am. J. Phys. Med. Rehabil. 76, 276–280 (1997). One of the earliest studies documenting impaired host defence as a function of a hampered innate immune response (immune-suppression) following SCI.

    CAS  PubMed  Google Scholar 

  54. Huschak, G., Zur, N. K., Stuttmann, R. & Riemann, D. Changes in monocytic expression of aminopeptidase N/CD13 after major trauma. Clin. Exp. Immunol. 134, 491–496 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wolk, K., Docke, W. D., von Baehr, V., Volk, H. D. & Sabat, R. Impaired antigen presentation by human monocytes during endotoxin tolerance. Blood 96, 218–223 (2000).

    CAS  PubMed  Google Scholar 

  56. Asadullah, K. et al. Immunodepression following neurosurgical procedures. Crit. Care Med. 23, 1976–1983 (1995).

    CAS  PubMed  Google Scholar 

  57. Majetschak, M. et al. The extent of traumatic damage determines a graded depression of the endotoxin responsiveness of peripheral blood mononuclear cells from patients with blunt injuries. Crit. Care Med. 27, 313–318 (1999).

    CAS  PubMed  Google Scholar 

  58. Prass, K. et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J. Exp. Med. 198, 725–736 (2003). Provides experimental proof, for the first time, that a neuroendocrine-mediated systemic immunosuppression after acute brain injury results in the development of spontaneous systemic bacterial infections.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Elenkov, I. J., Wilder, R. L., Chrousos, G. P. & Vizi, E. S. The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 52, 595–638 (2000). Comprehensive review on the role of the sympathetic nerve in the interactions between the brain and the immune system.

    CAS  PubMed  Google Scholar 

  60. Pavlov, V. A. & Tracey, K. J. Neural regulators of innate immune responses and inflammation. Cell. Mol. Life Sci. 61, 2322–2331 (2004).

    CAS  PubMed  Google Scholar 

  61. Steinman, L. Elaborate interactions between the immune and nervous systems. Nature Immunol. 5, 575–581 (2004).

    CAS  Google Scholar 

  62. Mulla, A. & Buckingham, J. C. Regulation of the hypothalamo–pituitary–adrenal axis by cytokines. Baillieres Best. Pract. Res. Clin. Endocrinol. Metab. 13, 503–521 (1999).

    CAS  PubMed  Google Scholar 

  63. Pavlov, V. A., Wang, H., Czura, C. J., Friedman, S. G. & Tracey, K. J. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol. Med. 9, 125–134 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Goehler, L. E. et al. Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton. Neurosci. 85, 49–59 (2000).

    CAS  PubMed  Google Scholar 

  65. Banks, W. A., Kastin, A. J. & Broadwell, R. D. Passage of cytokines across the blood–brain barrier. Neuroimmunomodulation 2, 241–248 (1995).

    CAS  PubMed  Google Scholar 

  66. Buller, K. M. Role of circumventricular organs in pro-inflammatory cytokine-induced activation of the hypothalamic–pituitary–adrenal axis. Clin. Exp. Pharmacol. Physiol. 28, 581–589 (2001).

    CAS  PubMed  Google Scholar 

  67. Weindl, A. in Frontiers in Neuroendocrinology (eds Ganong, W. F. & Martini, L.) 3–32 (Oxford Univ. Press, New York, 1973).

    Google Scholar 

  68. Haddad, J. J., Saade, N. E. & Safieh-Garabedian, B. Cytokines and neuro–immune–endocrine interactions: a role for the hypothalamic–pituitary–adrenal revolving axis. J. Neuroimmunol. 133, 1–19 (2002).

    CAS  PubMed  Google Scholar 

  69. Felten, D. L. et al. Noradrenergic sympathetic neural interactions with the immune system: structure and function. Immunol. Rev. 100, 225–260 (1987).

    CAS  PubMed  Google Scholar 

  70. Benschop, R. J., Rodriguez-Feuerhahn, M. & Schedlowski, M. Catecholamine-induced leukocytosis: early observations, current research, and future directions. Brain Behav. Immun. 10, 77–91 (1996).

    CAS  PubMed  Google Scholar 

  71. Borger, P. et al. β-adrenoceptor-mediated inhibition of IFN-γ, IL-3, and GM-CSF mRNA accumulation in activated human T lymphocytes is solely mediated by the β2-adrenoceptor subtype. Am. J. Respir. Cell Mol. Biol. 19, 400–407 (1998).

    CAS  PubMed  Google Scholar 

  72. Sanders, V. M. et al. Differential expression of the β2-adrenergic receptor by Th1 and Th2 clones: implications for cytokine production and B cell help. J. Immunol. 158, 4200–4210 (1997).

    CAS  PubMed  Google Scholar 

  73. Panina-Bordignon, P. et al. β2-agonists prevent Th1 development by selective inhibition of interleukin 12. J. Clin. Invest. 100, 1513–1519 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Elenkov, I. J., Papanicolaou, D. A., Wilder, R. L. & Chrousos, G. P. Modulatory effects of glucocorticoids and catecholamines on human interleukin-12 and interleukin-10 production: clinical implications. Proc. Assoc. Am. Physicians 108, 374–381 (1996).

    CAS  PubMed  Google Scholar 

  75. Van der Poll, T., Coyle, S. M., Barbosa, K., Braxton, C. C. & Lowry, S. F. Epinephrine inhibits tumor necrosis factor-α and potentiates interleukin 10 production during human endotoxemia. J. Clin. Invest. 97, 713–719 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Dokur, M., Boyadjieva, N. & Sarkar, D. K. Catecholaminergic control of NK cell cytolytic activity regulatory factors in the spleen. J. Neuroimmunol. 151, 148–157 (2004).

    CAS  PubMed  Google Scholar 

  77. Shakhar, G. & Ben Eliyahu, S. In vivo β-adrenergic stimulation suppresses natural killer activity and compromises resistance to tumor metastasis in rats. J. Immunol. 160, 3251–3258 (1998).

    CAS  PubMed  Google Scholar 

  78. Takamoto, T. et al. Norepinephrine inhibits human natural killer cell activity in vitro. Int. J. Neurosci. 58, 127–131 (1991).

    CAS  PubMed  Google Scholar 

  79. Tracey, K. J. The inflammatory reflex. Nature 420, 853–859 (2002).

    CAS  PubMed  Google Scholar 

  80. Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000). The first report to demonstrate a neural anti-inflammatory pathway, consisting of afferent and efferent vagus nerve signalling, through which the CNS modulates systemic inflammatory responses.

    CAS  PubMed  Google Scholar 

  81. Wang, H. et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421, 384–388 (2003).

    CAS  PubMed  Google Scholar 

  82. Kwon, O. J. et al. Inhibition of interleukin-8 expression by dexamethasone in human cultured airway epithelial cells. Immunology 81, 389–394 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Szabo, C., Thiemermann, C., Wu, C. C., Perretti, M. & Vane, J. R. Attenuation of the induction of nitric oxide synthase by endogenous glucocorticoids accounts for endotoxin tolerance in vivo. Proc. Natl Acad. Sci. USA 91, 271–275 (1994).

    CAS  PubMed  Google Scholar 

  84. Wilckens, T. & De Rijk, R. Glucocorticoids and immune function: unknown dimensions and new frontiers. Immunol. Today 18, 418–424 (1997).

    CAS  PubMed  Google Scholar 

  85. AyanlarBatuman, O., Ferrero, A. P., Diaz, A. & Jimenez, S. A. Regulation of transforming growth factor-β 1 gene expression by glucocorticoids in normal human T lymphocytes. J. Clin. Invest. 88, 1574–1580 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Barrat, F. J. et al. In vitro generation of interleukin 10-producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J. Exp. Med. 195, 603–616 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hodge, S., Hodge, G., Flower, R. & Han, P. Methyl-prednisolone up-regulates monocyte interleukin-10 production in stimulated whole blood. Scand. J. Immunol. 49, 548–553 (1999).

    CAS  PubMed  Google Scholar 

  88. Meagher, L. C., Cousin, J. M., Seckl, J. R. & Haslett, C. Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. J. Immunol. 156, 4422–4428 (1996).

    CAS  PubMed  Google Scholar 

  89. Smets, L. A., Salomons, G. & van den Berg, J. Glucocorticoid induced apoptosis in leukemia. Adv. Exp. Med. Biol. 457, 607–614 (1999).

    CAS  PubMed  Google Scholar 

  90. Tuosto, L., Cundari, E., Montani, M. S. & Piccolella, E. Analysis of susceptibility of mature human T lymphocytes to dexamethasone-induced apoptosis. Eur. J. Immunol. 24, 1061–1065 (1994).

    CAS  PubMed  Google Scholar 

  91. Zacharchuk, C. M., Mercep, M., Chakraborti, P. K., Simons, S. S. Jr . & Ashwell, J. D. Programmed T lymphocyte death. Cell activation- and steroid-induced pathways are mutually antagonistic. J. Immunol. 145, 4037–4045 (1990).

    CAS  PubMed  Google Scholar 

  92. Cowan, H. B., Vick, S., Conary, J. T. & Shepherd, V. L. Dexamethasone up-regulates mannose receptor activity by increasing mRNA levels. Arch. Biochem. Biophys. 296, 314–320 (1992).

    CAS  PubMed  Google Scholar 

  93. Liu, Y. et al. Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes. J. Immunol. 162, 3639–3646 (1999).

    CAS  PubMed  Google Scholar 

  94. Piemonti, L. et al. Glucocorticoids increase the endocytic activity of human dendritic cells. Int. Immunol. 11, 1519–1526 (1999).

    CAS  PubMed  Google Scholar 

  95. Pan, J. et al. Dexamethasone inhibits the antigen presentation of dendritic cells in MHC class II pathway. Immunol. Lett. 76, 153–161 (2001).

    CAS  PubMed  Google Scholar 

  96. Schwiebert, L. M., Schleimer, R. P., Radka, S. F. & Ono, S. J. Modulation of MHC class II expression in human cells by dexamethasone. Cell. Immunol. 165, 12–19 (1995).

    CAS  PubMed  Google Scholar 

  97. Blotta, M. H., DeKruyff, R. H. & Umetsu, D. T. Corticosteroids inhibit IL-12 production in human monocytes and enhance their capacity to induce IL-4 synthesis in CD4+ lymphocytes. J. Immunol. 158, 5589–5595 (1997).

    CAS  PubMed  Google Scholar 

  98. Franchimont, D. et al. Inhibition of Th1 immune response by glucocorticoids: dexamethasone selectively inhibits IL-12-induced Stat4 phosphorylation in T lymphocytes. J. Immunol. 164, 1768–1774 (2000).

    CAS  PubMed  Google Scholar 

  99. Ramierz, F., Fowell, D. J., Puklavec, M., Simmonds, S. & Mason, D. Glucocorticoids promote a TH2 cytokine response by CD4+ T cells in vitro. J. Immunol. 156, 2406–2412 (1996).

    Google Scholar 

  100. Weller, M. & Fontana, A. The failure of current immunotherapy for malignant glioma. Tumor-derived TGF-β, T-cell apoptosis, and the immune privilege of the brain. Brain Res. Rev. 21, 128–151 (1995).

    CAS  PubMed  Google Scholar 

  101. Bodmer, S., Huber, D., Heid, I. & Fontana, A. Human glioblastoma cell derived transforming growth-factor-β-2: evidence for secretion of both high and low-molecular-weight biologically-active forms. J. Neuroimmunol. 34, 33–42 (1991).

    CAS  PubMed  Google Scholar 

  102. Csuka, E. et al. IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-α, TGF-β 1 and blood–brain barrier function. J. Neuroimmunol. 101, 211–221 (1999).

    CAS  PubMed  Google Scholar 

  103. Stanzani, L. et al. Nerve growth factor and transforming growth factor-β serum levels in acute stroke patients: possible involvement of neurotrophins in cerebrovascular disease. Cerebrovasc. Dis. 12, 240–244 (2001).

    CAS  PubMed  Google Scholar 

  104. Castillo, J. et al. The release of tumor necrosis factor-α is associated with ischemic tolerance in human stroke. Ann. Neurol. 54, 811–819 (2003).

    CAS  PubMed  Google Scholar 

  105. Emsley, H. C. et al. An early and sustained peripheral inflammatory response in acute ischaemic stroke: relationships with infection and atherosclerosis. J. Neuroimmunol. 139, 93–101 (2003).

    CAS  PubMed  Google Scholar 

  106. Grau, A. J. et al. Monocyte function and plasma levels of interleukin-8 in acute ischemic stroke. J. Neurol. Sci. 192, 41–47 (2001).

    CAS  PubMed  Google Scholar 

  107. Smith, C. J. et al. Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome. BMC Neurol. 4, 2 (2004).

    PubMed  PubMed Central  Google Scholar 

  108. Vila, N., Castillo, J., Davalos, A. & Chamorro, A. Proinflammatory cytokines and early neurological worsening in ischemic stroke. Stroke 31, 2325–2329 (2000).

    CAS  PubMed  Google Scholar 

  109. Vila, N. et al. Levels of anti-inflammatory cytokines and neurological worsening in acute ischemic stroke. Stroke 34, 671–675 (2003).

    CAS  PubMed  Google Scholar 

  110. Bone, R. C. Immunologic dissonance: a continuing evolution in our understanding of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS). Ann. Intern. Med. 125, 680–687 (1996).

    CAS  PubMed  Google Scholar 

  111. Woiciechowsky, C., Schoning, B., Lanksch, W. R., Volk, H. D. & Docke, W. D. Mechanisms of brain-mediated systemic anti-inflammatory syndrome causing immunodepression. J. Mol. Med. 77, 769–780 (1999).

    CAS  PubMed  Google Scholar 

  112. Sharshar, T., Hopkinson, N. S., Orlikowski, D. & Annane, D. Science review: the brain in sepsis — culprit and victim. Crit. Care 9, 37–44 (2005).

    PubMed  Google Scholar 

  113. Schwartz, M. Harnessing the immune system for neuroprotection: therapeutic vaccines for acute and chronic neurodegenerative disorders. Cell. Mol. Neurobiol. 21, 617–627 (2001).

    CAS  PubMed  Google Scholar 

  114. Feuerstein, G. Z., Liu, T. & Barone, F. C. Cytokines, inflammation, and brain injury: role of tumor necrosis factor-α. Cerebrovasc. Brain Metab. Rev. 6, 341–360 (1994).

    CAS  PubMed  Google Scholar 

  115. Johansson, A., Olsson, T., Carlberg, B., Karlsson, K. & Fagerlund, M. Hypercortisolism after stroke—partly cytokine-mediated? J. Neurol. Sci. 147, 43–47 (1997).

    CAS  PubMed  Google Scholar 

  116. Szczudlik, A., Dziedzic, T., Bartus, S., Slowik, A. & Kieltyka, A. Serum interleukin-6 predicts cortisol release in acute stroke patients. J. Endocrinol. Invest. 27, 37–41 (2004).

    CAS  PubMed  Google Scholar 

  117. Bethin, K. E., Vogt, S. K. & Muglia, L. J. Interleukin-6 is an essential, corticotropin-releasing hormone-independent stimulator of the adrenal axis during immune system activation. Proc. Natl Acad. Sci. USA 97, 9317–9322 (2000).

    CAS  PubMed  Google Scholar 

  118. Brown, R. et al. Suppression of splenic macrophage interleukin-1 secretion following intracerebroventricular injection of interleukin-1 β: evidence for pituitary-adrenal and sympathetic control. Cell. Immunol. 132, 84–93 (1991).

    CAS  PubMed  Google Scholar 

  119. Sullivan, G. M. et al. Intracerebroventricular injection of interleukin-1 suppresses peripheral lymphocyte function in the primate. Neuroimmunomodulation 4, 12–18 (1997).

    CAS  PubMed  Google Scholar 

  120. van der Meer, M. J. et al. Acute stimulation of the hypothalamic–pituitary–adrenal axis by IL-1 β, TNF α and IL-6: a dose response study. J. Endocrinol. Invest. 19, 175–182 (1996).

    CAS  PubMed  Google Scholar 

  121. Sundar, S. K. et al. Intracerebroventricular infusion of interleukin 1 rapidly decreases peripheral cellular immune responses. Proc. Natl Acad. Sci. USA 86, 6398–6402 (1989).

    CAS  PubMed  Google Scholar 

  122. Woiciechowsky, C. et al. Brain-IL-1β induces local inflammation but systemic anti-inflammatory response through stimulation of both hypothalamic–pituitary–adrenal axis and sympathetic nervous system. Brain Res. 816, 563–571 (1999).

    CAS  PubMed  Google Scholar 

  123. Stevens-Felten, S. Y. & Bellinger, D. L. Noradrenergic and peptidergic innervation of lymphoid organs. Chem. Immunol. 69, 99–131 (1997).

    CAS  PubMed  Google Scholar 

  124. Teasell, R. W., Arnold, J. M., Krassioukov, A. & Delaney, G. A. Cardiovascular consequences of loss of supraspinal control of the sympathetic nervous system after spinal cord injury. Arch. Phys. Med. Rehabil. 81, 506–516 (2000).

    CAS  PubMed  Google Scholar 

  125. Chesnut, R. M., Gautille, T., Blunt, B. A., Klauber, M. R. & Marshall, L. F. Neurogenic hypotension in patients with severe head injuries. J. Trauma 44, 958–963 (1998).

    CAS  PubMed  Google Scholar 

  126. Meyer, S., Strittmatter, M., Fischer, C., Georg, T. & Schmitz, B. Lateralization in autonomic dysfunction in ischemic stroke involving the insular cortex. Neuroreport 15, 357–361 (2004).

    CAS  PubMed  Google Scholar 

  127. Saphier, D. & Feldman, S. Effects of stimulation of the preoptic area on hypothalamic paraventricular nucleus unit activity and corticosterone secretion in freely moving rats. Neuroendocrinology 42, 167–173 (1986).

    CAS  PubMed  Google Scholar 

  128. Tibbs, P. A., Young, B., Ziegler, M. G. & McAllister, R. G. Jr. Studies of experimental cervical spinal cord transection. Part II: plasma norepinephrine levels after acute cervical spinal cord transection. J. Neurosurg. 50, 629–632 (1979).

    CAS  PubMed  Google Scholar 

  129. Feibel, J. H., Hardy, P. M., Campbell, R. G., Goldstein, M. N. & Joynt, R. J. Prognostic value of the stress response following stroke. JAMA 238, 1374–1376 (1977).

    CAS  PubMed  Google Scholar 

  130. Harper, R. M., Bandler, R., Spriggs, D. & Alger, J. R. Lateralized and widespread brain activation during transient blood pressure elevation revealed by magnetic resonance imaging. J. Comp. Neurol. 417, 195–204 (2000).

    CAS  PubMed  Google Scholar 

  131. Kalogeras, K. T. et al. Inferior petrosal sinus sampling in healthy subjects reveals a unilateral corticotropin-releasing hormone-induced arginine vasopressin release associated with ipsilateral adrenocorticotropin secretion. J. Clin. Invest. 97, 2045–2050 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Meador, K. J. et al. Role of cerebral lateralization in control of immune processes in humans. Ann. Neurol. 55, 840–844 (2004).

    PubMed  Google Scholar 

  133. Tarkowski, E. et al. Localization of the brain lesion affects the lateralization of T-lymphocyte dependent cutaneous inflammation. Evidence for an immunoregulatory role of the right frontal cortex–putamen region. Scand. J. Immunol. 47, 30–36 (1998).

    CAS  PubMed  Google Scholar 

  134. Robinson, R. G. Differential behavioral and biochemical effects of right and left hemispheric cerebral infarction in the rat. Science 205, 707–710 (1979).

    CAS  PubMed  Google Scholar 

  135. Tarkowski, E., Naver, H., Wallin, B. G., Blomstrand, C. & Tarkowski, A. Lateralization of T-lymphocyte responses in patients with stroke. Effect of sympathetic dysfunction? Stroke 26, 57–62 (1995).

    CAS  PubMed  Google Scholar 

  136. Cechetto, D. F. & Chen, S. J. Subcortical sites mediating sympathetic responses from insular cortex in rats. Am. J. Physiol. 258, R245–R255 (1990).

    CAS  PubMed  Google Scholar 

  137. Sander, D. & Klingelhofer, J. Changes of circadian blood pressure patterns and cardiovascular parameters indicate lateralization of sympathetic activation following hemispheric brain infarction. J. Neurol. 242, 313–318 (1995).

    CAS  PubMed  Google Scholar 

  138. Popovich, P. G. Immunological regulation of neuronal degeneration and regeneration in the injured spinal cord. Prog. Brain Res. 128, 43–58 (2000).

    CAS  PubMed  Google Scholar 

  139. Evans, A. et al. Can differences in management processes explain different outcomes between stroke unit and stroke-team care? Lancet 358, 1586–1592 (2001).

    CAS  PubMed  Google Scholar 

  140. Ronning, O. M. & Guldvog, B. Stroke unit versus general medical wards, II: neurological deficits and activities of daily living: a quasi-randomized controlled trial. Stroke 29, 586–590 (1998).

    CAS  PubMed  Google Scholar 

  141. Ronning, O. M. & Guldvog, B. Stroke units versus general medical wards, I: twelve- and eighteen-month survival: a randomized, controlled trial. Stroke 29, 58–62 (1998).

    CAS  PubMed  Google Scholar 

  142. Furuichi, S. et al. Related changes in sympathetic activity, cerebral blood flow and intracranial pressure, and effect of an alpha-blocker in experimental subarachnoid haemorrhage. Acta Neurochir. (Wien.) 141, 415–423 (1999).

    CAS  Google Scholar 

  143. Naredi, S. et al. Increased sympathetic nervous activity in patients with nontraumatic subarachnoid hemorrhage. Stroke 31, 901–906 (2000).

    CAS  PubMed  Google Scholar 

  144. Palasik, W., Popow, J., Lechowicz, W., Fiszer, U. & Czlonkowska, A. The use of gammaglobulin for preventing infection in stroke. Neurol. Neurochir. Pol. 29, 309–316 (1995).

    CAS  PubMed  Google Scholar 

  145. Strand, T., Alling, C., Karlsson, B., Karlsson, I. & Winblad, B. Brain and plasma proteins in spinal fluid as markers for brain damage and severity of stroke. Stroke 15, 138–144 (1984).

    CAS  PubMed  Google Scholar 

  146. Becker, K., Kindrick, D., McCarron, R., Hallenbeck, J. & Winn, R. Adoptive transfer of myelin basic protein-tolerized splenocytes to naive animals reduces infarct size: a role for lymphocytes in ischemic brain injury? Stroke 34, 1809–1815 (2003). Study showing that immunological tolerance and its neuroprotective effects in stroke can be transferred to naive animals and are related to antigen-specific induction of transforming growth factor-β1.

    CAS  PubMed  Google Scholar 

  147. Schwab, J. M., Nguyen, T. D., Meyermann, R. & Schluesener, H. J. Human focal cerebral infarctions induce differential lesional interleukin-16 (IL-16) expression confined to infiltrating granulocytes, CD8+ T-lymphocytes and activated microglia/macrophages. J. Neuroimmunol. 114, 232–241 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work is supported by the Hermann and Lilly Schilling Foundation, the Wings for Life Spinal Cord Research Foundation, and the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan M. Schwab.

Ethics declarations

Competing interests

A patent application on preventive anti-infective and immunomodulatory therapy in stroke has been filed by A. M., C. M., K. P. and U. D. to the European Patent Office. Patent owner: Charité Universitätsmedizin Berlin.

Related links

Related links

DATABASES

Entrez Gene

ACTH

CGRP

CRF

IFNγ

IL-1β

IL-6

NPY

TNFα

VIP

FURTHER INFORMATION

Department of Experimental Neurology, Charité, Berlin

Glossary

INNATE AND ADAPTIVE IMMUNITY

The early phases of the host response to a pathogen depend on innate resistance mechanisms. The activation of innate effector mechanisms induces the clonal expansion of antigen-specific lymphocytes and initiates adaptive immune responses, including the development of immunological memory.

STROKE

There are two main types of stroke: ischaemic (caused by blockage in an artery that supplies blood to the brain) and haemorrhagic (caused by the bleeding of ruptured blood vessels in the brain).

NOSOCOMIAL

A disease acquired in hospital.

HYPOXAEMIA

Describes critically decreased arterial oxygen levels.

SYSTEMIC INFLAMMATORY RESPONSE SYNDROME

(SIRS). This describes the host response to a critical illness of either infectious or noninfectious aetiology. The response is mediated by a cascade of pro-inflammatory mediators, such as inflammatory cytokines (for example, TNFα), activated complement factors and lipid mediators.

HUMORAL

Derived from the blood.

ENDOTOXINS

Inflammatory bacterial cell wall products that can cause sepsis.

TYPE 1 T-HELPER T CELLS

(Th1). T-helper cells can be divided on the basis of their cytokine expression pattern. Th1 cells produce mostly IFNγ and mediate delayed-type hypersensitivity and protection against intracellular pathogens.

TYPE 2 T-HELPER T CELLS

(Th2). Th2 cells produce mainly IL-4 and IL-5, and have been implicated in humoral and allergic immune responses.

COMPENSATORY ANTI-INFLAMMATORY RESPONSE SYNDROME

(CARS). The systemic inflammatory response induces, and is then balanced by, counter-regulatory processes, known as CARS. This includes the release of anti-inflammatory molecules (for example, IL-10) and activation of neuroendocrine pathways (for example, the HPA axis).

NEUROGENIC

Caused by a primarily neuronal mechanism through either blockade or stimulation of trans-synaptic nerve conduction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meisel, C., Schwab, J., Prass, K. et al. Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci 6, 775–786 (2005). https://doi.org/10.1038/nrn1765

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrn1765

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing