Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Peripheral thermosensation in mammals

Key Points

  • The somatosensory system contains temperature-sensitive primary sensory neurons that convey thermal information from the skin and peripheral organs to the CNS. This sensory input enables the avoidance of prolonged contact with dangerously hot or cold objects and helps to maintain a core body temperature of 37 °C with minimal energy expenditure.

  • Thermal stimuli are coded by the action potential firing patterns of different types of temperature-sensitive primary sensory neurons, the cell bodies of which are located in the dorsal root and trigeminal ganglia.

  • The generation of action potentials in sensory nerve endings in response to a thermal stimulation depends on the activity of an array of temperature-sensitive ion channels. Members of the transient receptor potential (TRP) cation channel family of ion channels have been proposed as the prime thermosensors, but more recent research suggests additional important contributions from other ion channel types.

  • Several key temperature-sensitive ion channels exhibit intrinsic thermosensitivity, which implies substantial differences in enthalpy and entropy between the closed and open conformation of the channel proteins. The structural basis of this process is currently unclear.

  • Dysregulation of temperature-sensitive ion channels in sensory neurons can lead to thermal hypersensitivity and chronic pain, making these channels attractive targets for novel analgesic therapies.

  • Pharmacological inhibition of the prototype heat sensor TRPV1 and the cold sensor TRPM8 directly affects core body temperature, illustrating the important influence of peripheral thermosensation on thermoregulatory responses. Preventing unwanted changes in core body temperature is an important challenge in the future development of therapies that target temperature-sensitive ion channels.

Abstract

Our ability to perceive temperature is crucial: it enables us to swiftly react to noxiously cold or hot objects and helps us to maintain a constant body temperature. Sensory nerve endings, upon depolarization by temperature-gated ion channels, convey electrical signals from the periphery to the CNS, eliciting a sense of temperature. In the past two decades, we have witnessed important advances in our understanding of mammalian thermosensation, with the identification and animal-model assessment of candidate molecular thermosensors — such as types of transient receptor potential (TRP) cation channels — involved in peripheral thermosensation. Ongoing research aims to understand how these miniature thermometers operate at the cellular and molecular level, and how they can be pharmacologically targeted to treat pain without disturbing vital thermoregulatory processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neurons involved in thermosensation.
Figure 2: Temperature dependence of ion channels involved in thermosensation.
Figure 3: Potential mechanisms underlying temperature-sensitive gating of ion channels.
Figure 4: Putative regions implicated in the heat sensitivity of TRPV channels.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Damann, N., Voets, T. & Nilius, B. TRPs in our senses. Curr. Biol. 18, R880–R889 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Tattersall, G. J. et al. Coping with thermal challenges: physiological adaptations to environmental temperatures. Compr. Physiol. 2, 2151–2202 (2012).

    PubMed  Google Scholar 

  3. Bouchama, A. & Knochel, J. P. Heat stroke. N. Engl. J. Med. 346, 1978–1988 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Brown, D. J., Brugger, H., Boyd, J. & Paal, P. Accidental hypothermia. N. Engl. J. Med. 367, 1930–1938 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Delmas, P., Hao, J. & Rodat-Despoix, L. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nature Rev. Neurosci. 12, 139–153 (2011).

    Article  CAS  Google Scholar 

  6. Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A. & Hudspeth, A. J. (eds) Principles of Neural Science (McGraw-Hill Companies, 2013).

  7. Dubin, A. E. & Patapoutian, A. Nociceptors: the sensors of the pain pathway. J. Clin. Invest. 120, 3760–3772 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Romanovsky, A. A. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R37–R46 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Campero, M. & Bostock, H. Unmyelinated afferents in human skin and their responsiveness to low temperature. Neurosci. Lett. 470, 188–192 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Hensel, H. & Iggo, A. Analysis of cutaneous warm and cold fibres in primates. Pflugers Arch. 329, 1–8 (1971).

    Article  CAS  PubMed  Google Scholar 

  12. Zimmermann, K. et al. Phenotyping sensory nerve endings in vitro in the mouse. Nature Protoc. 4, 174–196 (2009).

    Article  CAS  Google Scholar 

  13. Nilius, B. & Voets, T. Neurophysiology: channelling cold reception. Nature 448, 147–148 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Frolich, M. A., Bolding, M. S., Cutter, G. R., Ness, T. J. & Zhang, K. Temporal characteristics of cold pain perception. Neurosci. Lett. 480, 12–15 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Torebjork, H. E., LaMotte, R. H. & Robinson, C. J. Peripheral neural correlates of magnitude of cutaneous pain and hyperalgesia: simultaneous recordings in humans of sensory judgments of pain and evoked responses in nociceptors with C-fibers. J. Neurophysiol. 51, 325–339 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. Piomelli, D. & Sasso, O. Peripheral gating of pain signals by endogenous lipid mediators. Nature Neurosci. 17, 164–174 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Romanovsky, A. A. et al. The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not. Pharmacol. Rev. 61, 228–261 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nakamura, K. Central circuitries for body temperature regulation and fever. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1207–R1228 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Clapham, J. C. Central control of thermogenesis. Neuropharmacology 63, 111–123 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Voets, T., Talavera, K., Owsianik, G. & Nilius, B. Sensing with TRP channels. Nature Chem. Biol. 1, 85–92 (2005).

    Article  CAS  Google Scholar 

  21. Caterina, M. J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Davis, J. B. et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405, 183–187 (2000). The first description (together with reference 21) of TRPV1-deficient mice, establishing the channel's role in heat sensation and heat hyperalgesia.

    Article  CAS  PubMed  Google Scholar 

  23. Karashima, Y. et al. TRPA1 acts as a cold sensor in vitro and in vivo. Proc. Natl Acad. Sci. USA 106, 1273–1278 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Moqrich, A. et al. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307, 1468–1472 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Gees, M., Owsianik, G., Nilius, B. & Voets, T. TRP channels. Compr. Physiol. 2, 563–608 (2012).

    PubMed  Google Scholar 

  26. Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997). A groundbreaking study identifying the capsaicin receptor (now known as TRPV1) as the first heat-activated cation channel in the somatosensory system.

    Article  CAS  PubMed  Google Scholar 

  27. Liao, M., Cao, E., Julius, D. & Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107–112 (2013). This paper reports the first high-resolution structure of a TRP channel involved in thermosensation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531–543 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Zygmunt, P. M. et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400, 452–457 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Hwang, S. W. et al. Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc. Natl Acad. Sci. USA 97, 6155–6160 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vriens, J., Nilius, B. & Vennekens, R. Herbal compounds and toxins modulating TRP channels. Curr. Neuropharmacol. 6, 79–96 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Szallasi, A. & Sheta, M. Targeting TRPV1 for pain relief: limits, losers and laurels. Expert Opin. Investig. Drugs 21, 1351–1369 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Schaffler, K. et al. An oral TRPV1 antagonist attenuates laser radiant-heat-evoked potentials and pain ratings from UVB-inflamed and normal skin. Br. J. Clin. Pharmacol. 75, 404–414 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Caterina, M. J., Rosen, T. A., Tominaga, M., Brake, A. J. & Julius, D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398, 436–441 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Park, U. et al. TRP vanilloid 2 knock-out mice are susceptible to perinatal lethality but display normal thermal and mechanical nociception. J. Neurosci. 31, 11425–11436 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guler, A. D. et al. Heat-evoked activation of the ion channel, TRPV4. J. Neurosci. 22, 6408–6414 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peier, A. M. et al. A heat-sensitive TRP channel expressed in keratinocytes. Science 296, 2046–2049 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Smith, G. D. et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418, 186–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Watanabe, H. et al. Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J. Biol. Chem. 277, 47044–47051 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Xu, H. et al. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418, 181–186 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Chung, M. K., Lee, H. & Caterina, M. J. Warm temperatures activate TRPV4 in mouse 308 keratinocytes. J. Biol. Chem. 278, 32037–32046 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Vandewauw, I., Owsianik, G. & Voets, T. Systematic and quantitative mRNA expression analysis of TRP channel genes at the single trigeminal and dorsal root ganglion level in mouse. BMC Neurosci. 14, 21 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mandadi, S. et al. TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP. Pflugers Arch. 458, 1093–1102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miyamoto, T., Petrus, M. J., Dubin, A. E. & Patapoutian, A. TRPV3 regulates nitric oxide synthase-independent nitric oxide synthesis in the skin. Nature Commun. 2, 369 (2011).

    Article  CAS  Google Scholar 

  45. Mihara, H., Boudaka, A., Sugiyama, T., Moriyama, Y. & Tominaga, M. Transient receptor potential vanilloid 4 (TRPV4)-dependent calcium influx and ATP release in mouse oesophageal keratinocytes. J. Physiol. 589, 3471–3482 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, H., Iida, T., Mizuno, A., Suzuki, M. & Caterina, M. J. Altered thermal selection behavior in mice lacking transient receptor potential vanilloid 4. J. Neurosci. 25, 1304–1310 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang, S. M., Li, X., Yu, Y., Wang, J. & Caterina, M. J. TRPV3 and TRPV4 ion channels are not major contributors to mouse heat sensation. Mol. Pain 7, 37 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lariviere, W. R., Chesler, E. J. & Mogil, J. S. Transgenic studies of pain and analgesia: mutation or background genotype? J. Pharmacol. Exp. Ther. 297, 467–473 (2001).

    CAS  PubMed  Google Scholar 

  49. Wagner, T. F. et al. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic β cells. Nature Cell Biol. 10, 1421–1430 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Vriens, J. et al. TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70, 482–494 (2011). This study demonstrates that TRPM3 functions as a receptor for noxious heat in the somatosensory system and is essential for the development of inflammatory heat hyperalgesia.

    Article  CAS  PubMed  Google Scholar 

  51. Straub, I. et al. Flavanones that selectively inhibit TRPM3 attenuate thermal nociception in vivo. Mol. Pharmacol. 84, 736–750 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Pogorzala, L. A., Mishra, S. K. & Hoon, M. A. The cellular code for mammalian thermosensation. J. Neurosci. 33, 5533–5541 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mishra, S. K. & Hoon, M. A. Ablation of TrpV1 neurons reveals their selective role in thermal pain sensation. Mol. Cell. Neurosci. 43, 157–163 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. McKemy, D. D., Neuhausser, W. M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Peier, A. M. et al. A TRP channel that senses cold stimuli and menthol. Cell 108, 705–715 (2002). This study (together with reference 54) identifies TRPM8 as a sensor for cold and menthol.

    Article  CAS  PubMed  Google Scholar 

  56. Bautista, D. M. et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448, 204–208 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Colburn, R. W. et al. Attenuated cold sensitivity in TRPM8 null mice. Neuron 54, 379–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Dhaka, A. et al. TRPM8 is required for cold sensation in mice. Neuron 54, 371–378 (2007). The first description (together with references 56 and 57) of TRPM8-deficient mice, establishing the channel's role in non-noxious cold sensation.

    Article  CAS  PubMed  Google Scholar 

  59. Parra, A. et al. Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea. Nature Med. 16, 1396–1399 (2010). This study shows that the cold sensor TRPM8 can act as a wetness sensor in the eye, thereby regulating basal tearing.

    Article  CAS  PubMed  Google Scholar 

  60. Knowlton, W. M. et al. A sensory-labeled line for cold: TRPM8-expressing sensory neurons define the cellular basis for cold, cold pain, and cooling-mediated analgesia. J. Neurosci. 33, 2837–2848 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Story, G. M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819–829 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849–857 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Sawada, Y., Hosokawa, H., Hori, A., Matsumura, K. & Kobayashi, S. Cold sensitivity of recombinant TRPA1 channels. Brain Res. 1160, 39–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Fajardo, O., Meseguer, V., Belmonte, C. & Viana, F. TRPA1 channels mediate cold temperature sensing in mammalian vagal sensory neurons: pharmacological and genetic evidence. J. Neurosci. 28, 7863–7875 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kremeyer, B. et al. A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 66, 671–680 (2010). The first example of an inherited disease, FEPS, caused by a gain-of-function mutation in the gene encoding a channel implicated in thermosensation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jordt, S. E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Talavera, K. et al. Nicotine activates the chemosensory cation channel TRPA1. Nature Neurosci. 12, 1293–1299 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Kwan, K. Y. et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 277–289 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Gentry, C., Stoakley, N., Andersson, D. A. & Bevan, S. The roles of iPLA2, TRPM8 and TRPA1 in chemically induced cold hypersensitivity. Mol. Pain 6, 4 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zurborg, S., Yurgionas, B., Jira, J. A., Caspani, O. & Heppenstall, P. A. Direct activation of the ion channel TRPA1 by Ca2+. Nature Neurosci. 10, 277–279 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Chen, J. et al. Species differences and molecular determinant of TRPA1 cold sensitivity. Nature Commun. 4, 2501 (2013).

    Article  CAS  Google Scholar 

  72. Bautista, D. M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269–1282 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Knowlton, W. M., Bifolck-Fisher, A., Bautista, D. M. & McKemy, D. D. TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo. Pain 150, 340–350 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. del Camino, D. et al. TRPA1 contributes to cold hypersensitivity. J. Neurosci. 30, 15165–15174 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zimmermann, K. et al. Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proc. Natl Acad. Sci. USA 108, 18114–18119 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Huang, F., Wong, X. & Jan, L. Y. International Union of Basic and Clinical Pharmacology. LXXXV: calcium-activated chloride channels. Pharmacol. Rev. 64, 1–15 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cho, H. et al. The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nature Neurosci. 15, 1015–1021 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Lee, B. et al. Anoctamin 1 contributes to inflammatory and nerve-injury induced hypersensitivity. Mol. Pain 10, 5 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cahalan, M. D. STIMulating store-operated Ca2+ entry. Nature Cell Biol. 11, 669–677 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Xiao, B., Coste, B., Mathur, J. & Patapoutian, A. Temperature-dependent STIM1 activation induces Ca2+ influx and modulates gene expression. Nature Chem. Biol. 7, 351–358 (2011).

    Article  CAS  Google Scholar 

  81. Viana, F., de la Pena, E. & Belmonte, C. Specificity of cold thermotransduction is determined by differential ionic channel expression. Nature Neurosci. 5, 254–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Honore, E. The neuronal background K2P channels: focus on TREK1. Nature Rev. Neurosci. 8, 251–261 (2007).

    Article  CAS  Google Scholar 

  83. Maingret, F. et al. TREK-1 is a heat-activated background K+ channel. EMBO J. 19, 2483–2491 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kang, D., Choe, C. & Kim, D. Thermosensitivity of the two-pore domain K+ channels TREK-2 and TRAAK. J. Physiol. 564, 103–116 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Alloui, A. et al. TREK-1, a K+ channel involved in polymodal pain perception. EMBO J. 25, 2368–2376 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Noel, J. et al. The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception. EMBO J. 28, 1308–1318 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Catterall, W. A. Voltage-gated sodium channels at 60: structure, function and pathophysiology. J. Physiol. 590, 2577–2589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zimmermann, K. et al. Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature 447, 855–858 (2007). This study demonstrates that the voltage-gated Na+ channel Nav1.8 remains active at noxiously low temperatures and is crucial for the transmission of painful stimuli in the cold.

    Article  CAS  PubMed  Google Scholar 

  89. Abrahamsen, B. et al. The cell and molecular basis of mechanical, cold, and inflammatory pain. Science 321, 702–705 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Heimburg, T. Mechanical aspects of membrane thermodynamics. Estimation of the mechanical properties of lipid membranes close to the chain melting transition from calorimetry. Biochim. Biophys. Acta 1415, 147–162 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Yudin, Y., Lukacs, V., Cao, C. & Rohacs, T. Decrease in phosphatidylinositol 4,5-bisphosphate levels mediates desensitization of the cold sensor TRPM8 channels. J. Physiol. 589, 6007–6027 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Levitan, I. B. Signaling protein complexes associated with neuronal ion channels. Nature Neurosci. 9, 305–310 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Walsh, K. B. & Kass, R. S. Regulation of a heart potassium channel by protein kinase A and C. Science 242, 67–69 (1988).

    Article  CAS  PubMed  Google Scholar 

  94. Wang, Y. et al. The calcium store sensor, STIM1, reciprocally controls Orai and CaV1.2 channels. Science 330, 105–109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Park, C. Y., Shcheglovitov, A. & Dolmetsch, R. The CRAC channel activator STIM1 binds and inhibits L-type voltage-gated calcium channels. Science 330, 101–105 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Yuan, J. P., Zeng, W., Huang, G. N., Worley, P. F. & Muallem, S. STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nature Cell Biol. 9, 636–645 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. DeHaven, W. I. et al. TRPC channels function independently of STIM1 and Orai1. J. Physiol. 587, 2275–2298 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zakharian, E., Cao, C. & Rohacs, T. Gating of transient receptor potential melastatin 8 (TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers. J. Neurosci. 30, 12526–12534 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cao, E., Cordero-Morales, J. F., Liu, B., Qin, F. & Julius, D. TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. Neuron 77, 667–679 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Talavera, K. et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438, 1022–1025 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Voets, T. et al. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430, 748–754 (2004). This study provides a unifying thermodynamic model to explain the temperature sensitivity of TRP channels.

    Article  CAS  PubMed  Google Scholar 

  102. Jackson, M. B. Molecular and Cellular Biophysics (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

  103. Yao, J., Liu, B. & Qin, F. Kinetic and energetic analysis of thermally activated TRPV1 channels. Biophys. J. 99, 1743–1753 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Brauchi, S., Orta, G., Salazar, M., Rosenmann, E. & Latorre, R. A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J. Neurosci. 26, 4835–4840 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Latorre, R., Brauchi, S., Orta, G., Zaelzer, C. & Vargas, G. ThermoTRP channels as modular proteins with allosteric gating. Cell Calcium 42, 427–438 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Grandl, J. et al. Pore region of TRPV3 ion channel is specifically required for heat activation. Nature Neurosci. 11, 1007–1013 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Cordero-Morales, J. F., Gracheva, E. O. & Julius, D. Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli. Proc. Natl Acad. Sci. USA 108, E1184–E1191 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Voets, T. Quantifying and modeling the temperature-dependent gating of TRP channels. Rev. Physiol. Biochem. Pharmacol. 162, 91–119 (2012).

    CAS  PubMed  Google Scholar 

  109. Cao, E., Liao, M., Cheng, Y. & Julius, D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504, 113–118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tan, P. L. & Katsanis, N. Thermosensory and mechanosensory perception in human genetic disease. Hum. Mol. Genet. 18, R146–R155 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cruz-Almeida, Y., Riley, J. L. & Fillingim, R. B. Experimental pain phenotype profiles in a racially and ethnically diverse sample of healthy adults. Pain Med. 14, 1708–1718 (2013).

    Article  PubMed  Google Scholar 

  112. Hollins, M. Somesthetic senses. Annu. Rev. Psychol. 61, 243–271 (2010).

    Article  PubMed  Google Scholar 

  113. Kim, H., Mittal, D. P., Iadarola, M. J. & Dionne, R. A. Genetic predictors for acute experimental cold and heat pain sensitivity in humans. J. Med. Genet. 43, e40 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Binder, A. et al. Transient receptor potential channel polymorphisms are associated with the somatosensory function in neuropathic pain patients. PLoS ONE 6, e17387 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Woolf, C. J. Central sensitization: implications for the diagnosis and treatment of pain. Pain 152, S2–S15 (2011).

    Article  PubMed  Google Scholar 

  116. Julius, D. & Basbaum, A. I. Molecular mechanisms of nociception. Nature 413, 203–210 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Sisignano, M. et al. Synthesis of lipid mediators during UVB-induced inflammatory hyperalgesia in rats and mice. PLoS ONE 8, e81228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jordt, S. E., Tominaga, M. & Julius, D. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc. Natl Acad. Sci. USA 97, 8134–8139 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chuang, H. H. et al. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411, 957–962 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Prescott, E. D. & Julius, D. A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300, 1284–1288 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Stein, A. T., Ufret-Vincenty, C. A., Hua, L., Santana, L. F. & Gordon, S. E. Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J. Gen. Physiol. 128, 509–522 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yao, J. & Qin, F. Interaction with phosphoinositides confers adaptation onto the TRPV1 pain receptor. PLoS Biol. 7, e46 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Premkumar, L. S. & Ahern, G. P. Induction of vanilloid receptor channel activity by protein kinase C. Nature 408, 985–990 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Bhave, G. et al. Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc. Natl Acad. Sci. USA 100, 12480–12485 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bhave, G. et al. cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron 35, 721–731 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Bonnington, J. K. & McNaughton, P. A. Signalling pathways involved in the sensitisation of mouse nociceptive neurones by nerve growth factor. J. Physiol. 551, 433–446 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hudson, L. J. et al. VR1 protein expression increases in undamaged DRG neurons after partial nerve injury. Eur. J. Neurosci. 13, 2105–2114 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Zakir, H. M. et al. Expression of TRPV1 channels after nerve injury provides an essential delivery tool for neuropathic pain attenuation. PLoS ONE 7, e44023 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hong, S. & Wiley, J. W. Early painful diabetic neuropathy is associated with differential changes in the expression and function of vanilloid receptor 1. J. Biol. Chem. 280, 618–627 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Bishnoi, M., Bosgraaf, C. A., Abooj, M., Zhong, L. & Premkumar, L. S. Streptozotocin-induced early thermal hyperalgesia is independent of glycemic state of rats: role of transient receptor potential vanilloid 1 (TRPV1) and inflammatory mediators. Mol. Pain 7, 52 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Xing, H., Chen, M., Ling, J., Tan, W. & Gu, J. G. TRPM8 mechanism of cold allodynia after chronic nerve injury. J. Neurosci. 27, 13680–13690 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Knowlton, W. M., Daniels, R. L., Palkar, R., McCoy, D. D. & McKemy, D. D. Pharmacological blockade of TRPM8 ion channels alters cold and cold pain responses in mice. PLoS ONE 6, e25894 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rohacs, T., Lopes, C. M., Michailidis, I. & Logothetis, D. E. PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nature Neurosci. 8, 626–634 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Fujita, F., Uchida, K., Takaishi, M., Sokabe, T. & Tominaga, M. Ambient temperature affects the temperature threshold for TRPM8 activation through interaction of phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 33, 6154–6159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Liu, B. & Qin, F. Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 25, 1674–1681 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Premkumar, L. S., Raisinghani, M., Pingle, S. C., Long, C. & Pimentel, F. Downregulation of transient receptor potential melastatin 8 by protein kinase C-mediated dephosphorylation. J. Neurosci. 25, 11322–11329 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang, X. et al. Direct inhibition of the cold-activated TRPM8 ion channel by Gαq . Nature Cell Biol. 14, 851–858 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Obata, K. et al. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J. Clin. Invest. 115, 2393–2401 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Katsura, H. et al. Antisense knock down of TRPA1, but not TRPM8, alleviates cold hyperalgesia after spinal nerve ligation in rats. Exp. Neurol. 200, 112–123 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Voets, T. TRP channel blamed for burning cold after a tropical fish meal. EMBO J. 31, 3785–3787 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Vetter, I. et al. Ciguatoxins activate specific cold pain pathways to elicit burning pain from cooling. EMBO J. 31, 3795–3808 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhao, M. et al. Acute cold hypersensitivity characteristically induced by oxaliplatin is caused by the enhanced responsiveness of TRPA1 in mice. Mol. Pain 8, 55 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Materazzi, S. et al. TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism. Pflugers Arch. 463, 561–569 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Nassini, R. et al. Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain 152, 1621–1631 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Descoeur, J. et al. Oxaliplatin-induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors. EMBO Mol. Med. 3, 266–278 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Reid, K. J. et al. Epidemiology of chronic non-cancer pain in Europe: narrative review of prevalence, pain treatments and pain impact. Curr. Med. Res. Opin. 27, 449–462 (2011).

    Article  PubMed  Google Scholar 

  147. Moran, M. M., McAlexander, M. A., Biro, T. & Szallasi, A. Transient receptor potential channels as therapeutic targets. Nature Rev. Drug Discov. 10, 601–620 (2011).

    Article  CAS  Google Scholar 

  148. Garcia-Martinez, C. et al. Attenuation of thermal nociception and hyperalgesia by VR1 blockers. Proc. Natl Acad. Sci. USA 99, 2374–2379 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ghilardi, J. R. et al. Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. J. Neurosci. 25, 3126–3131 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Honore, P. et al. A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel transient receptor potential type V1 receptor antagonist, relieves pathophysiological pain associated with inflammation and tissue injury in rats. J. Pharmacol. Exp. Ther. 314, 410–421 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Quiding, H. et al. TRPV1 antagonistic analgesic effect: a randomized study of AZD1386 in pain after third molar extraction. Pain 154, 808–812 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Gavva, N. R. et al. The vanilloid receptor TRPV1 is tonically activated in vivo and involved in body temperature regulation. J. Neurosci. 27, 3366–3374 (2007). This study establishes the role of TRPV1 in core body temperature regulation and shows that peripheral inhibition of TRPV1 using selective antagonists causes hyperthermia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Steiner, A. A. et al. Nonthermal activation of transient receptor potential vanilloid-1 channels in abdominal viscera tonically inhibits autonomic cold-defense effectors. J. Neurosci. 27, 7459–7468 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Gavva, N. R. Body-temperature maintenance as the predominant function of the vanilloid receptor TRPV1. Trends Pharmacol. Sci. 29, 550–557 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Gavva, N. R. et al. Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain 136, 202–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Garami, A. et al. Contributions of different modes of TRPV1 activation to TRPV1 antagonist-induced hyperthermia. J. Neurosci. 30, 1435–1440 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Fischer, M. J., Btesh, J. & McNaughton, P. A. Disrupting sensitization of transient receptor potential vanilloid subtype 1 inhibits inflammatory hyperalgesia. J. Neurosci. 33, 7407–7414 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Fosgerau, K. et al. Drug-induced mild therapeutic hypothermia obtained by administration of a transient receptor potential vanilloid type 1 agonist. BMC Cardiovasc. Disord. 10, 51 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Cao, Z., Balasubramanian, A. & Marrelli, S. P. Pharmacologically induced hypothermia via TRPV1 channel agonism provides neuroprotection following ischemic stroke when initiated 90 min after reperfusion. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R149–R156 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Liu, B. et al. TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain. Pain 154, 2169–2177 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Almeida, M. C. et al. Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature. J. Neurosci. 32, 2086–2099 (2012). This study establishes the role of TRPM8 in core body temperature regulation and shows that peripheral blockade of TRPM8 inhibits involuntary and voluntary cold defence responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tajino, K. et al. Application of menthol to the skin of whole trunk in mice induces autonomic and behavioral heat-gain responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R2128–R2135 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Chen, J. et al. Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation. Pain 152, 1165–1172 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Yang, Y. D. et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455, 1210–1215 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. Caputo, A. et al. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322, 590–594 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Schroeder, B. C., Cheng, T., Jan, Y. N. & Jan, L. Y. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134, 1019–1029 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Vig, M. et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312, 1220–1223 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Feske, S. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  170. Kiyonaka, S. et al. Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells. Nature Methods 10, 1232–1238 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Clapham, D. E. & Miller, C. A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels. Proc. Natl Acad. Sci. USA 108, 19492–19497 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Schmidt, M., Dubin, A. E., Petrus, M. J., Earley, T. J. & Patapoutian, A. Nociceptive signals induce trafficking of TRPA1 to the plasma membrane. Neuron 64, 498–509 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Jordt, S. E. & Julius, D. Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 108, 421–430 (2002).

    Article  CAS  PubMed  Google Scholar 

  174. Bandell, M. et al. High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol. Nature Neurosci. 9, 493–500 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Voets, T., Owsianik, G., Janssens, A., Talavera, K. & Nilius, B. TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nature Chem. Biol. 3, 174–182 (2007).

    Article  CAS  Google Scholar 

  176. Janssens, A. & Voets, T. Ligand stoichiometry of the cold- and menthol-activated channel TRPM8. J. Physiol. 589, 4827–4835 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Macpherson, L. J. et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445, 541–545 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Hinman, A., Chuang, H. H., Bautista, D. M. & Julius, D. TRP channel activation by reversible covalent modification. Proc. Natl Acad. Sci. USA 103, 19564–19568 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Salazar, H. et al. A single N-terminal cysteine in TRPV1 determines activation by pungent compounds from onion and garlic. Nature Neurosci. 11, 255–261 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Karashima, Y. et al. Bimodal action of menthol on the transient receptor potential channel TRPA1. J. Neurosci. 27, 9874–9884 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. McNamara, F. N., Randall, A. & Gunthorpe, M. J. Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). Br. J. Pharmacol. 144, 781–790 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Everaerts, W. et al. The capsaicin receptor TRPV1 is a crucial mediator of the noxious effects of mustard oil. Curr. Biol. 21, 316–321 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Macpherson, L. J. et al. The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr. Biol. 15, 929–934 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Yao, J., Liu, B. & Qin, F. Modular thermal sensors in temperature-gated transient receptor potential (TRP) channels. Proc. Natl Acad. Sci. USA 108, 11109–11114 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Yang, F., Cui, Y., Wang, K. & Zheng, J. Thermosensitive TRP channel pore turret is part of the temperature activation pathway. Proc. Natl Acad. Sci. USA 107, 7083–7088 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Grandl, J. et al. Temperature-induced opening of TRPV1 ion channel is stabilized by the pore domain. Nature Neurosci. 13, 708–714 (2010).

    Article  CAS  PubMed  Google Scholar 

  187. Valente, P. et al. Identification of molecular determinants of channel gating in the transient receptor potential box of vanilloid receptor I. FASEB J. 22, 3298–3309 (2008).

    Article  CAS  PubMed  Google Scholar 

  188. Brauchi, S. et al. Dissection of the components for PIP2 activation and thermosensation in TRP channels. Proc. Natl Acad. Sci. USA 104, 10246–10251 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Vlachova, V. et al. Functional role of C-terminal cytoplasmic tail of rat vanilloid receptor 1. J. Neurosci. 23, 1340–1350 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Wang, H., Schupp, M., Zurborg, S. & Heppenstall, P. A. Residues in the pore region of Drosophila transient receptor potential A1 dictate sensitivity to thermal stimuli. J. Physiol. 591, 185–201 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all members of the Laboratory of Ion Channel Research for helpful discussions. This work was supported by grants from the Belgian Science Policy (IUAP P7/13 to T.V.), the Research Foundation - Flanders (G.0825.11 to T.V. and J.V.), the Research Council of the KU Leuven (PF-TRPLe to T.V.) and the Planckaert-De Waele fund (to J.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Voets.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Transient receptor potential channels

(TRP channels). A family of cation channels homologous to the product of the Drosophila melanogaster trp gene. Several mammalian members of this family function as molecular thermosensors.

Aδ fibres

Sensory neurons with medium-diameter, thinly myelinated axons and a medium conduction velocity of between 2 and 30 metres per second.

C fibres

Sensory neurons with small-diameter, non-myelinated axons and a low conduction velocity of between 0.5 and 2 metres per second.

Adaptation

The reduction over time of the response of a neuron to a constant sensory stimulus.

Q10 value

A dimensionless value to quantify the temperature dependence of a process. It is defined as the ratio between reaction rates or current amplitudes measured at two temperatures 10 degrees apart.

Hyperalgesia

Increased sensitivity to a painful stimulus.

Tetrodotoxin

(TTX). A toxin from puffer fish that potently blocks several types of voltage-gated Na+ channels.

Enthalpy

A thermodynamic measure of the internal energy of a system. In a protein, formation of stabilizing intramolecular bonds causes a reduction in enthalpy.

Entropy

A thermodynamic measure of the disorder of a system. It is determined by the number of different configurations (microstates) that correspond to a specific macrostate.

Allodynia

Pain in response to a stimulus that does not normally evoke pain.

Complete Freund's adjuvant

(CFA). An emulsion of inactivated and dried mycobacteria. When injected subcutaneously, it induces local inflammation and hypersensitivity to thermal and mechanical stimuli.

Carrageenan

A sulphated polysaccharide extracted from red edible seaweeds. When injected subcutaneously, it induces local inflammation and hypersensitivity to thermal and mechanical stimuli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vriens, J., Nilius, B. & Voets, T. Peripheral thermosensation in mammals. Nat Rev Neurosci 15, 573–589 (2014). https://doi.org/10.1038/nrn3784

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrn3784

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing