Abstract
The past few decades are characterized by an explosive evolution of genetics and molecular cell biology. Advances in chemistry and engineering have enabled increased data throughput, permitting the study of complete sets of molecules with increasing speed and accuracy using techniques such as genomics, transcriptomics, proteomics, and metabolomics. Prediction of long-term outcomes in transplantation is hampered by the absence of sufficiently robust biomarkers and a lack of adequate insight into the mechanisms of acute and chronic alloimmune injury and the adaptive mechanisms of immunological quiescence that may support transplantation tolerance. Here, we discuss some of the great opportunities that molecular diagnostic tools have to offer both basic scientists and translational researchers for bench-to-bedside clinical application in transplantation medicine, with special focus on genomics and genome-wide association studies, epigenetics (DNA methylation and histone modifications), gene expression studies and transcriptomics (including microRNA and small interfering RNA studies), proteomics and peptidomics, antibodyomics, metabolomics, chemical genomics and functional imaging with nanoparticles. We address the challenges and opportunities associated with the newer high-throughput sequencing technologies, especially in the field of bioinformatics and biostatistics, and demonstrate the importance of integrative approaches. Although this Review focuses on transplantation research and clinical transplantation, the concepts addressed are valid for all translational research.
Key Points
-
The omics approach has accelerated biomarker discovery and improved understanding of multifactorial biological processes and diseases
-
The complex interplay between the genome, transcriptome, proteome and metabolome has mostly been overlooked in traditional translational research and in the field of transplantation
-
In transplantation research, data from high-throughput molecular diagnostic tools are shedding new light on many pathogenic processes (for example, acute cellular rejection, ischemia–reperfusion injury and chronic allograft damage)
-
Upcoming high-throughput techniques, such as massively parallel sequencing for genotyping and transcriptomics, are expected to further accelerate the pace at which translational research is performed
-
The challenge for the future is to translate the progress that is being made in molecular biology into health gains, an outcome that will only be possible with a holistic approach and integrative data analysis
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Merrill, J., Murray, J., Harrison, J. & Guild, W. R. Successful homotransplantation of the human kidney between identical twins. J. Am. Med. Assoc. 160, 277–282 (1956).
Morris, P. J. Transplantation—a medical miracle of the 20th century. N. Engl. J. Med. 351, 2678–2680 (2004).
Starzl, T. E. & Zinkernagel, R. M. Transplantation tolerance from a historical perspective. Nat. Rev. Immunol. 1, 233–239 (2001).
Kahan, B. D. Individuality: the barrier to optimal immunosuppression. Nat. Rev. Immunol. 3, 831–838 (2003).
Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).
International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).
Kidd, J. M. et al. Mapping and sequencing of structural variation from eight human genomes. Nature 453, 56–64 (2008).
Robertson, K. D. DNA methylation and human disease. Nat. Rev. Genet. 6, 597–610 (2005).
Sultan, M. et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321, 956–960 (2008).
Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).
Kim, D. H. & Rossi, J. J. Strategies for silencing human disease using RNA interference. Nat. Rev. Genet. 8, 173–184 (2007).
Cohen, P. The regulation of protein function by multisite phosphorylation—-a 25 year update. Trends Biochem. Sci. 25, 596–601 (2000).
Jensen, O. N. Interpreting the protein language using proteomics. Nat. Rev. Mol. Cell Biol. 7, 391–403 (2006).
Fiehn, O. Metabolomics—the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171 (2002).
Nicholson, J. K., Connelly, J., Lindon, J. C. & Holmes, E. Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 1, 153–161 (2002).
Zerhouni, E. A. Translational and clinical science—time for a new vision. N. Engl. J. Med. 353, 1621–1623 (2005).
Hemminki, K., Lorenzo, B. J. & Forsti, A. The balance between heritable and environmental aetiology of human disease. Nat. Rev. Genet. 7, 958–965 (2006).
Nicholson, J. K., Holmes, E., Lindon, J. C. & Wilson, I. D. The challenges of modeling mammalian biocomplexity. Nat. Biotechnol. 22, 1268–1274 (2004).
Farber, D. L. Biochemical signaling pathways for memory T cell recall. Semin. Immunol. 21, 84–91 (2009).
Adams, A. B. et al. Heterologous immunity provides a potent barrier to transplantation tolerance. J. Clin. Invest. 111, 1887–1895 (2003).
Smith, J. B. Frequency in human peripheral blood of T cells which respond to self, modified self and alloantigens. Immunology 50, 181–187 (1983).
Erlich, H. A., Opelz, G. & Hansen, J. HLA DNA typing and transplantation. Immunity 14, 347–356 (2001).
Hurley, C. K., Maiers, M., Marsh, S. G. & Oudshoorn, M. Overview of registries, HLA typing and diversity, and search algorithms. Tissue Antigens 69 (Suppl. 1), 3–5 (2007).
Sasazuki, T. et al. Effect of matching of class I HLA alleles on clinical outcome after transplantation of hematopoietic stem cells from an unrelated donor. Japan Marrow Donor Program. N. Engl. J. Med. 339, 1177–1185 (1998).
Rubinstein, P. HLA matching for bone marrow transplantation—how much is enough? N. Engl. J. Med. 345, 1842–1844 (2001).
Nickerson, P. The impact of immune gene polymorphisms in kidney and liver transplantation. Clin. Lab. Med. 28, 455–468, vii (2008).
Girnita, D. M., Webber, S. A. & Zeevi, A. Clinical impact of cytokine and growth factor genetic polymorphisms in thoracic organ transplantation. Clin. Lab. Med. 28, 423–440 (2008).
St Peter, S. D. et al. Genetic determinants of delayed graft function after kidney transplantation. Transplantation 74, 809–813 (2002).
Ullrich, R. et al. Microsatellite polymorphism in the heme oxygenase-1 gene promoter and cardiac allograft vasculopathy. J. Heart Lung Transplant. 24, 1600–1605 (2005).
Haimila, K. et al. Association of genetic variation in inducible costimulator gene with outcome of kidney transplantation. Transplantation 87, 393–396 (2009).
Kruger, B. et al. Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc. Natl Acad. Sci. USA 106, 3390–3395 (2009).
Brown, K. M. et al. Influence of donor C3 allotype on late renal-transplantation outcome. N. Engl. J. Med. 354, 2014–2023 (2006).
Kruger, B., Schroppel, B. & Murphy, B. T. Genetic polymorphisms and the fate of the transplanted organ. Transplant. Rev. (Orlando) 22, 131–140 (2008).
de Jonge, H. & Kuypers, D. R. Pharmacogenetics in solid organ transplantation: current status and future directions. Transplant. Rev. (Orlando) 22, 6–20 (2008).
Lennard, L., Van Loon, J. A. & Weinshilboum, R. M. Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin. Pharmacol. Ther. 46, 149–154 (1989).
Naesens, M. et al. Donor age and renal P-glycoprotein expression associate with chronic histological damage in renal allografts. J. Am. Soc. Nephrol. 20, 2468–2480 (2009).
Burckart, G. J. & Amur, S. Update on the clinical pharmacogenomics of organ transplantation. Pharmacogenomics 11, 227–236 (2010).
Thervet, E. et al. Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin. Pharmacol. Ther. 87, 721–726 (2010).
Kruglyak, L. The road to genome-wide association studies. Nat. Rev. Genet. 9, 314–318 (2008).
Hirschhorn, J. N. Genomewide association studies—illuminating biologic pathways. N. Engl. J. Med. 360, 1699–1701 (2009).
Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).
International HapMap Project [online], (2010).
Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).
Manolio, T. A., Brooks, L. D. & Collins, F. S. A HapMap harvest of insights into the genetics of common disease. J. Clin. Invest. 118, 1590–1605 (2008).
Hindorff, L. A., Junkins, H. A., Hall, P. N., Mehta, J. P. & Manolio, T. A. A Catalog of Published Genome-Wide Association Studies [online], (2010).
Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).
Cantor, R. M., Lange, K. & Sinsheimer, J. S. Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am. J. Hum. Genet. 86, 6–22 (2010).
Goldstein, D. B. Common genetic variation and human traits. N. Engl. J. Med. 360, 1696–1698 (2009).
Genomes: a Deep Catalog of Human Genetic Variation [online], (2010).
The United Kingdom and Ireland Renal Transplant Consortium. WTCCC3—Wellcome Trust Case-Control Consortium 3: Defining the genetic basis of interactions between donor and recipient DNA that determine early and late renal transplant dysfunction [online], (2010).
Jirtle, R. L. & Skinner, M. K. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 8, 253–262 (2007).
Park, P. J. ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 10, 669–680 (2009).
Esteller, M. Epigenetics in cancer. N. Engl. J. Med. 358, 1148–1159 (2008).
Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).
Cuddapah, S., Barski, A. & Zhao, K. Epigenomics of T cell activation, differentiation, and memory. Curr. Opin. Immunol. 22, 341–347 (2010).
Araki, Y. et al. Genome-wide analysis of histone methylation reveals chromatin state-based regulation of gene transcription and function of memory CD8+ T cells. Immunity. 30, 912–925 (2009).
Wilson, C. B., Rowell, E. & Sekimata, M. Epigenetic control of T-helper-cell differentiation. Nat. Rev. Immunol. 9, 91–105 (2009).
Granger, A. et al. Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J. 22, 3549–3560 (2008).
Uhrberg, M. Shaping the human NK cell repertoire: an epigenetic glance at KIR gene regulation. Mol. Immunol. 42, 471–475 (2005).
Parra, M. Epigenetic events during B lymphocyte development. Epigenetics 4, 462–468 (2009).
Laird, P. W. Principles and challenges of genome-wide DNA methylation analysis. Nat. Rev. Genet. 11, 191–203 (2010).
Floess, S. et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 5, e38 (2007).
Lal, G. & Bromberg, J. S. Epigenetic mechanisms of regulation of Foxp3 expression. Blood 114, 3727–3735 (2009).
Parker, M. D., Chambers, P. A., Lodge, J. P. & Pratt, J. R. Ischemia–reperfusion injury and its influence on the epigenetic modification of the donor kidney genome. Transplantation 86, 1818–1823 (2008).
Hoffmann, S. C. et al. Molecular and immunohistochemical characterization of the onset and resolution of human renal allograft ischemia-reperfusion injury. Transplantation 74, 916–923 (2002).
Avihingsanon, Y. et al. On the intraoperative molecular status of renal allografts after vascular reperfusion and clinical outcomes. J. Am. Soc. Nephrol. 16, 1542–1548 (2005).
Strehlau, J. et al. Quantitative detection of immune activation transcripts as a diagnostic tool in kidney transplantation. Proc. Natl Acad. Sci. USA 94, 695–700 (1997).
Shihab, F. et al. Transforming growth factor-beta and matrix protein expression in acute and chronic rejection of human renal allografts. J. Am. Soc. Nephrol. 6, 286–294 (1995).
Sharma, V. K. et al. Intragraft TGF-beta 1 mRNA: a correlate of interstitial fibrosis and chronic allograft nephropathy. Kidney Int. 49, 1297–1303 (1996).
Strom, T. B. & Suthanthiran, M. Transcriptional profiling to assess the clinical status of kidney transplants. Nat. Clin. Pract. Nephrol. 2, 116–117 (2006).
Li, B. et al. Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine. N. Engl. J. Med. 344, 947–954 (2001).
Simon, T., Opelz, G., Wiesel, M., Ott, R. C. & Susal, C. Serial peripheral blood perforin and granzyme B gene expression measurements for prediction of acute rejection in kidney graft recipients. Am. J. Transplant. 3, 1121–1127 (2003).
Aquino-Dias, E. C. et al. Non-invasive diagnosis of acute rejection in kidney transplants with delayed graft function. Kidney Int. 73, 877–884 (2008).
Anglicheau, D. & Suthanthiran, M. Noninvasive prediction of organ graft rejection and outcome using gene expression patterns. Transplantation 86, 192–199 (2008).
Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).
Derisi, J. et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 14, 457–460 (1996).
Shi, L. et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat. Biotechnol. 24, 1151–1161 (2006).
Weintraub, L. A. & Sarwal, M. M. Microarrays: a monitoring tool for transplant patients? Transpl. Int. 19, 775–788 (2006).
Ying, L. & Sarwal, M. In praise of arrays. Pediatr. Nephrol. 24, 1643–1659 (2009).
Khatri, P. & Sarwal, M. M. Using gene arrays in diagnosis of rejection. Curr. Opin. Organ Transplant. 14, 34–39 (2009).
Mueller, T. F. et al. The transcriptome of the implant biopsy identifies donor kidneys at increased risk of delayed graft function. Am. J. Transplant. 8, 78–85 (2008).
Naesens, M. et al. Expression of complement components differs between kidney allografts from living and deceased donors. J. Am. Soc. Nephrol. 20, 1839–1851 (2009).
Sarwal, M. et al. Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling. N. Engl. J. Med. 349, 125–138 (2003).
Mueller, T. F. et al. Microarray analysis of rejection in human kidney transplants using pathogenesis-based transcript sets. Am. J. Transplant. 7, 2712–2722 (2007).
Mas, V. et al. Establishing the molecular pathways involved in chronic allograft nephropathy for testing new noninvasive diagnostic markers. Transplantation 83, 448–457 (2007).
Park, W., Griffin, M., Grande, J. P., Cosio, F. & Stegall, M. D. Molecular evidence of injury and inflammation in normal and fibrotic renal allografts one year posttransplant. Transplantation 83, 1466–1476 (2007).
Mengel, M. et al. Molecular correlates of scarring in kidney transplants: the emergence of mast cell transcripts. Am. J. Transplant. 9, 169–178 (2009).
Nakorchevsky, A. et al. Molecular mechanisms of chronic kidney transplant rejection via large-scale proteogenomic analysis of tissue biopsies. J. Am. Soc. Nephrol. 21, 362–373 (2010).
Brouard, S. et al. Identification of a peripheral blood transcriptional biomarker panel associated with operational renal allograft tolerance. Proc. Natl Acad. Sci. USA 104, 15448–15453 (2007).
Martinez-Llordella, M. et al. Using transcriptional profiling to develop a diagnostic test of operational tolerance in liver transplant recipients. J. Clin. Invest. 118, 2845–2857 (2008).
Zarkhin, V. & Sarwal, M. M. Microarrays: monitoring for transplant tolerance and mechanistic insights. Clin. Lab. Med. 28, 385–410 (2008).
Li, L. et al. Interference of globin genes with biomarker discovery for allograft rejection in peripheral blood samples. Physiol. Genomics 32, 190–197 (2008).
Gunther, O. P. et al. Functional genomic analysis of peripheral blood during early acute renal allograft rejection. Transplantation 88, 942–951 (2009).
Lin, D. et al. Whole blood genomic biomarkers of acute cardiac allograft rejection. J. Heart Lung Transplant. 28, 927–935 (2009).
Kurian, S. M. et al. Biomarkers for early and late stage chronic allograft nephropathy by proteogenomic profiling of peripheral blood. PLoS ONE 4, e6212 (2009).
Kwan, T. et al. Genome-wide analysis of transcript isoform variation in humans. Nat. Genet. 40, 225–231 (2008).
Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).
Richard, H. et al. Prediction of alternative isoforms from exon expression levels in RNA-Seq experiments. Nucleic Acids Res. 38, e112 (2010).
Grosshans, H. & Filipowicz, W. Molecular biology: the expanding world of small RNAs. Nature 451, 414–416 (2008).
Heo, I. & Kim, V. N. Regulating the regulators: posttranslational modifications of RNA silencing factors. Cell 139, 28–31 (2009).
Ghildiyal, M. & Zamore, P. D. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94–108 (2009).
McManus, M. T. MicroRNAs and cancer. Semin. Cancer Biol. 13, 253–258 (2003).
McManus, M. T. Small RNAs and immunity. Immunity 21, 747–756 (2004).
Gantier, M. P., Sadler, A. J. & Williams, B. R. Fine-tuning of the innate immune response by microRNAs. Immunol. Cell Biol. 85, 458–462 (2007).
Lodish, H. F., Zhou, B., Liu, G. & Chen, C. Z. Micromanagement of the immune system by microRNAs. Nat. Rev. Immunol. 8, 120–130 (2008).
Anglicheau, D. et al. MicroRNA expression profiles predictive of human renal allograft status. Proc. Natl Acad. Sci. USA 106, 5330–5335 (2009).
Cohen, C. D. Will non-coding RNAs help to decipher renal allograft failure? Nephrol. Dial. Transplant. 24, 2325–2327 (2009).
Harris, A., Krams, S. M. & Martinez, O. M. MicroRNAs as immune regulators: implications for transplantation. Am. J. Transplant. 10, 713–719 (2010).
Rodriguez, A. et al. Requirement of bic/microRNA-155 for normal immune function. Science 316, 608–611 (2007).
Castanotto, D. & Rossi, J. J. The promises and pitfalls of RNA-interference-based therapeutics. Nature 457, 426–433 (2009).
Abbott, A. A post-genomic challenge: learning to read patterns of protein synthesis. Nature 402, 715–720 (1999).
Mann, M. & Jensen, O. N. Proteomic analysis of post-translational modifications. Nat. Biotechnol. 21, 255–261 (2003).
Cristea, I. M., Gaskell, S. J. & Whetton, A. D. Proteomics techniques and their application to hematology. Blood 103, 3624–3634 (2004).
Ludwig, J. A. & Weinstein, J. N. Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer 5, 845–856 (2005).
Graham, D. R., Elliott, S. T. & Van Eyk, J. E. Broad-based proteomic strategies: a practical guide to proteomics and functional screening. J. Physiol. 563, 1–9 (2005).
Hanash, S. M., Pitteri, S. J. & Faca, V. M. Mining the plasma proteome for cancer biomarkers. Nature 452, 571–579 (2008).
Sigdel, T. K., Klassen, R. B. & Sarwal, M. M. Interpreting the proteome and peptidome in transplantation. Adv. Clin. Chem. 47, 139–169 (2009).
Jenkins, J. K., Huang, H., Ndebele, K. & Salahudeen, A. K. Vitamin E inhibits renal mRNA expression of COX II, HO I, TGFbeta, and osteopontin in the rat model of cyclosporine nephrotoxicity. Transplantation 71, 331–334 (2001).
O'Riordan, E., Gross, S. S. & Goligorsky, M. S. Technology Insight: renal proteomics—at the crossroads between promise and problems. Nat. Clin. Pract. Nephrol. 2, 445–458 (2006).
Clarke, W. et al. Characterization of renal allograft rejection by urinary proteomic analysis. Ann. Surg. 237, 660–664 (2003).
Schaub, S. et al. Proteomic-based detection of urine proteins associated with acute renal allograft rejection. J. Am. Soc. Nephrol. 15, 219–227 (2004).
O'Riordan, E. et al. Bioinformatic analysis of the urine proteome of acute allograft rejection. J. Am. Soc. Nephrol. 15, 3240–3248 (2004).
Borozdenkova, S. et al. Use of proteomics to discover novel markers of cardiac allograft rejection. J. Proteome Res. 3, 282–288 (2004).
Ling, X. B. et al. Integrative urinary peptidomics in renal transplantation identifies biomarkers for acute rejection. J. Am. Soc. Nephrol. 21, 646–653 (2010).
Quintana, L. F. et al. Urine proteomics to detect biomarkers for chronic allograft dysfunction. J. Am. Soc. Nephrol. 20, 428–435 (2009).
Banon-Maneus, E. et al. Two-dimensional difference gel electrophoresis urinary proteomic profile in the search of nonimmune chronic allograft dysfunction biomarkers. Transplantation 89, 548–558 (2010).
Quintana, L. F., Banon-Maneus, E., Sole-Gonzalez, A. & Campistol, J. M. Urine proteomics biomarkers in renal transplantation: an overview. Transplantation 88, S45–S49 (2009).
Yu, X., Schneiderhan-Marra, N., Hsu, H. Y., Bachmann, J. & Joos, T. O. Protein microarrays: effective tools for the study of inflammatory diseases. Methods Mol. Biol. 577, 199–214 (2009).
Robinson, W. H. et al. Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat. Med. 8, 295–301 (2002).
Hudson, M. E., Pozdnyakova, I., Haines, K., Mor, G. & Snyder, M. Identification of differentially expressed proteins in ovarian cancer using high-density protein microarrays. Proc. Natl Acad. Sci. USA 104, 17494–17499 (2007).
Wang, X. et al. Autoantibody signatures in prostate cancer. N. Engl. J. Med. 353, 1224–1235 (2005).
Li, L. et al. Identifying compartment-specific non-HLA targets after renal transplantation by integrating transcriptome and “antibodyome” measures. Proc. Natl Acad. Sci. USA 106, 4148–4153 (2009).
Sutherland, S. M. et al. Protein microarrays identify antibodies to protein kinase Czeta that are associated with a greater risk of allograft loss in pediatric renal transplant recipients. Kidney Int. 76, 1277–1283 (2009).
Li, L. et al. Compartmental localization and clinical relevance of MICA antibodies after renal transplantation. Transplantation 89, 312–319 (2010).
Porcheray, F. et al. B-cell immunity in the context of T-cell tolerance after combined kidney and bone marrow transplantation in humans. Am. J. Transplant. 9, 2126–2135 (2009).
Wishart, D. S. Metabolomics: a complementary tool in renal transplantation. Contrib. Nephrol. 160, 76–87 (2008).
Wishart, D. S. et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 37, D603–D610 (2009).
Frolkis, A. et al. SMPDB: The small molecule pathway database. Nucleic Acids Res. 38, D480–D487 (2010).
Serkova, N., Fuller, T. F., Klawitter, J., Freise, C. E. & Niemann, C. U. H-NMR-based metabolic signatures of mild and severe ischemia/reperfusion injury in rat kidney transplants. Kidney Int. 67, 1142–1151 (2005).
Wang, J. N., Zhou, Y., Zhu, T. Y., Wang, X. & Guo, Y. L. Prediction of acute cellular renal allograft rejection by urinary metabolomics using MALDI-FTMS. J. Proteome Res. 7, 3597–3601 (2008).
Christians, U. et al. Toxicodynamic therapeutic drug monitoring of immunosuppressants: promises, reality, and challenges. Ther. Drug Monit. 30, 151–158 (2008).
Foxall, P. J., Mellotte, G. J., Bending, M. R., Lindon, J. C. & Nicholson, J. K. NMR spectroscopy as a novel approach to the monitoring of renal transplant function. Kidney Int. 43, 234–245 (1993).
Serkova, N. J. et al. Early detection of graft failure using the blood metabolic profile of a liver recipient. Transplantation 83, 517–521 (2007).
Butcher, R. A. & Schreiber, S. L. Using genome-wide transcriptional profiling to elucidate small-molecule mechanism. Curr. Opin. Chem. Biol. 9, 25–30 (2005).
Strausberg, R. L. & Schreiber, S. L. From knowing to controlling: a path from genomics to drugs using small molecule probes. Science 300, 294–295 (2003).
Seiler, K. P. et al. ChemBank: a small-molecule screening and cheminformatics resource database. Nucleic Acids Res. 36, D351–D359 (2008).
Weissleder, R., Tung, C. H., Mahmood, U. & Bogdanov, A. Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol. 17, 375–378 (1999).
Sosnovik, D. E., Nahrendorf, M. & Weissleder, R. Targeted imaging of myocardial damage. Nat. Clin. Pract. Cardiovasc. Med. 5 (Suppl. 2), S63–S70 (2008).
Harisinghani, M. G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491–2499 (2003).
Kooi, M. E. et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107, 2453–2458 (2003).
Radu, C. G. et al. Molecular imaging of lymphoid organs and immune activation by positron emission tomography with a new [18F]-labeled 2′-deoxycytidine analog. Nat. Med. 14, 783–788 (2008).
Wildgruber, M. et al. Monocyte subset dynamics in human atherosclerosis can be profiled with magnetic nano-sensors. PLoS ONE 4, e5663 (2009).
Christen, T. et al. Molecular imaging of innate immune cell function in transplant rejection. Circulation 119, 1925–1932 (2009).
Rogers, Y. H. & Venter, J. C. Genomics: massively parallel sequencing. Nature 437, 326–327 (2005).
Rothberg, J. M. & Leamon, J. H. The development and impact of 454 sequencing. Nat. Biotechnol. 26, 1117–1124 (2008).
Tucker, T., Marra, M. & Friedman, J. M. Massively parallel sequencing: the next big thing in genetic medicine. Am. J. Hum. Genet. 85, 142–154 (2009).
Aparicio, S. A. & Huntsman, D. G. Does massively parallel DNA resequencing signify the end of histopathology as we know it? J. Pathol. 220, 307–315 (2010).
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).
Shendure, J. The beginning of the end for microarrays? Nat. Methods 5, 585–587 (2008).
Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).
Teutsch, S. M. et al. The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Initiative: methods of the EGAPP Working Group. Genet. Med. 11, 3–14 (2009).
Giallourakis, C., Henson, C., Reich, M., Xie, X. & Mootha, V. K. Disease gene discovery through integrative genomics. Annu. Rev. Genomics Hum. Genet. 6, 381–406 (2005).
Mootha, V. K. et al. Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc. Natl Acad. Sci. USA 100, 605–610 (2003).
Lee, I., Date, S. V., Adai, A. T. & Marcotte, E. M. A probabilistic functional network of yeast genes. Science 306, 1555–1558 (2004).
Somorjai, R. L., Dolenko, B. & Baumgartner, R. Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions. Bioinformatics 19, 1484–1491 (2003).
Pawitan, Y., Michiels, S., Koscielny, S., Gusnanto, A. & Ploner, A. False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics 21, 3017–3024 (2005).
Butte, A. The use and analysis of microarray data. Nat. Rev. Drug Discov. 1, 951–960 (2002).
Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116–5121 (2001).
Reich, M. et al. GenePattern 2.0. Nat. Genet. 38, 500–501 (2006).
Dahlquist, K. D., Salomonis, N., Vranizan, K., Lawlor, S. C. & Conklin, B. R. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat. Genet. 31, 19–20 (2002).
Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).
National Center for Biotechnology Information. Gene Expression Omnibus [online], (2010).
Butte, A. J. & Kohane, I. S. Creation and implications of a phenome-genome network. Nat. Biotechnol. 24, 55–62 (2006).
Thorisson, G. A., Muilu, J. & Brookes, A. J. Genotype-phenotype databases: challenges and solutions for the post-genomic era. Nat. Rev. Genet. 10, 9–18 (2009).
Perez-Iratxeta, C. & Andrade, M. A. Inconsistencies over time in 5% of NetAffx probe-to-gene annotations. BMC Bioinformatics 6, 183 (2005).
Noth, S. & Benecke, A. Avoiding inconsistencies over time and tracking difficulties in Applied Biosystems AB1700/Panther probe-to-gene annotations. BMC Bioinformatics 6, 307 (2005).
Chen, R., Li, L. & Butte, A. J. AILUN: reannotating gene expression data automatically. Nat. Methods 4, 879 (2007).
Rhee, S. Y., Wood, V., Dolinski, K. & Draghici, S. Use and misuse of the gene ontology annotations. Nat. Rev. Genet. 9, 509–515 (2008).
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).
Schulze, A. & Downward, J. Navigating gene expression using microarrays—a technology review. Nat. Cell Biol. 3, E190–E195 (2001).
Lieberfarb, M. E. et al. Genome-wide loss of heterozygosity analysis from laser capture microdissected prostate cancer using single nucleotide polymorphic allele (SNP) arrays and a novel bioinformatics platform dChipSNP. Cancer Res. 63, 4781–4785 (2003).
Shen-Orr, S. S. et al. Cell type-specific gene expression differences in complex tissues. Nat. Methods 7, 287–289 (2010).
Acknowledgements
We apologize to colleagues whose work we were unable to cite due to space constraints.
Author information
Authors and Affiliations
Contributions
Both authors contributed to researching data for the article, discussing the content, writing the article, and reviewing and editing the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Naesens, M., Sarwal, M. Molecular diagnostics in transplantation. Nat Rev Nephrol 6, 614–628 (2010). https://doi.org/10.1038/nrneph.2010.113
Published:
Issue date:
DOI: https://doi.org/10.1038/nrneph.2010.113
This article is cited by
-
Advances in Detection of Kidney Transplant Injury
Molecular Diagnosis & Therapy (2019)
-
Identification of Candidate Biomarkers for Transplant Rejection from Transcriptome Data: A Systematic Review
Molecular Diagnosis & Therapy (2019)
-
Integrated and global pseudotargeted metabolomics strategy applied to screening for quality control markers of Citrus TCMs
Analytical and Bioanalytical Chemistry (2017)
-
Lipidomics comparing DCD and DBD liver allografts uncovers lysophospholipids elevated in recipients undergoing early allograft dysfunction
Scientific Reports (2015)
-
Managing diabetes with nanomedicine: challenges and opportunities
Nature Reviews Drug Discovery (2015)