Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Home haemodialysis and uraemic toxin removal: does a happy marriage exist?

Abstract

Home-based methods of haemodialysis are becoming of increasing interest. In this article, we review theoretical and evidence-based aspects of dialysis adequacy in the home setting compared with those of standard in-centre dialysis. Owing to the flexibility it enables, home haemodialysis may allow reduced blood flow rates and the successful use of less-efficient access systems. With home haemodialysis, Kt/Vurea targets should be pursued as recommended in current guidelines, taking into account that this parameter does not reflect a number of essential elements that affect adequacy, such as dialyser pore size or alternative timeframes—factors that might be applicable to modern home haemodialysis. The use of high-flux, large-pore haemodialysers is associated with improved removal of large uremic toxins and should be considered as standard in home haemodialysis where possible, although dialysis water purity is crucial. Large molecule removal is further enhanced by applying convective strategies (such as haemo[dia]filtration), but these strategies greatly increase technical complexity. Alternate-day haemodialysis is more desirable than the usual thrice-weekly approach to avoid complications at the end of the long weekend interval, and it is easier to implement such a regime at home than in-centre. Frequent, prolonged, and combined frequent and prolonged dialysis regimes are all associated with improved removal and improved outcomes. All three alternative timeframes are easier to apply at home than in-centre. Home haemodialysis offers increased flexibility in adopting dialysis regimes that make it possible to improve solute removal and, therefore, outcomes.

Key Points

  • Frequent haemodialysis, prolonged haemodialysis, and particularly the combination of both (frequent long haemodialysis), have been associated with improved uremic solute removal and better outcomes

  • Frequent haemodialysis, prolonged haemodialysis, and frequent long haemodialysis are more easily applied in a home dialysis setting than in-centre, owing to the increased time flexibility in the home setting

  • Even when using alternative time schedules, the minimal conditions of standard adequate dialysis should be pursued; that is, Kt/Vurea should be targeted according to the current guidelines and high-flux membranes should be used if possible

  • Regulatory bodies do not take into account the increased costs for consumables, electricity and water for these alternative home-based schedules

  • Owing to the time flexibility it enables, home haemodialysis also facilitates achievement of adequacy even in situations where blood flow is limited by compromised or smaller access systems

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vanholder, R. et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 63, 1934–1943 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Meyer, T. W. & Hostetter, T. H. Uremia. N. Engl. J. Med. 357, 1316–1325 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Vanholder, R. et al. A bench to bedside view of uremic toxins. J. Am. Soc. Nephrol. 19, 863–870 (2008).

    Article  PubMed  Google Scholar 

  4. Vanholder, R. et al. Catheter-related blood stream infections (CRBSI): a European view. Nephrol. Dial. Transplant. 25, 1753–1756 (2010).

    Article  PubMed  Google Scholar 

  5. Tordoir, J. et al. EBPG on vascular access. Nephrol. Dial. Transplant. 22 (Suppl. 2), ii88–ii117 (2007).

    PubMed  Google Scholar 

  6. Van Canneyt, K. et al. The impact on dialysis adequacy when dialyzing with single lumen or dysfunctional double lumen central venous catheters. Int. J. Artif. Organs (in press).

  7. Amerling, R., Ronco, C., Kuhlman, M. & Winchester, J. F. Arteriovenous fistula toxicity. Blood Purif. 31, 113–120 (2011).

    Article  PubMed  Google Scholar 

  8. Chertow, G. M. et al. In-center hemodialysis six times per week versus three times per week. N. Engl. J. Med. 363, 2287–2300 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Shanks, R. M., Sargent, J. L., Martinez, R. M., Graber, M. L. & O'Toole, G. A. Catheter lock solutions influence staphylococcal biofilm formation on abiotic surfaces. Nephrol. Dial. Transplant. 21, 2247–2255 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Gotch, F. A. & Sargent, J. A. A mechanistic analysis of the National Cooperative Dialysis Study (NCDS). Kidney Int. 28, 526–534 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. Lowrie, E. G., Laird, N. M., Parker, T. F. & Sargent, J. A. Effect of the hemodialysis prescription of patient morbidity: report from the National Cooperative Dialysis Study. N. Engl. J. Med. 305, 1176–1181 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Owen, W. F. Jr, Lew, N. L., Liu, Y., Lowrie, E. G. & Lazarus, J. M. The urea reduction ratio and serum albumin concentration as predictors of mortality in patients undergoing hemodialysis. N. Engl. J. Med. 329, 1001–1006 (1993).

    Article  PubMed  Google Scholar 

  13. Saran, R. et al. Longer treatment time and slower ultrafiltration in hemodialysis: associations with reduced mortality in the DOPPS. Kidney Int. 69, 1222–1228 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Eknoyan, G. et al. Effect of dialysis dose and membrane flux in maintenance hemodialysis. N. Engl. J. Med. 347, 2010–2019 (2002).

    Article  PubMed  Google Scholar 

  15. Paniagua, R. et al. Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective, randomized, controlled trial. J. Am. Soc. Nephrol. 13, 1307–1320 (2002).

    CAS  PubMed  Google Scholar 

  16. Tattersall, J. et al. EBPG guideline on dialysis strategies. Nephrol. Dial. Transplant. 22 (Suppl. 2), ii5–ii21 (2007).

    PubMed  Google Scholar 

  17. Hemodialysis Adequacy 2006 Work Group. Clinical practice guidelines for hemodialysis adequacy, update 2006. Am. J. Kidney Dis. 48 (Suppl. 1), S2–S90 (2006).

  18. Port, F. K. et al. High dialysis dose is associated with lower mortality among women but not among men. Am. J. Kidney Dis. 43, 1014–1023 (2004).

    Article  PubMed  Google Scholar 

  19. Meyer, T. W., Sirich, T. L. & Hostetter, T. H. Dialysis cannot be dosed. Semin. Dial. 24, 471–479 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vanholder, R. et al. Uremic toxicity: present state of the art. Int.. J. Artif. Organs 24, 695–725 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Eloot, S. et al. Kinetic behavior of urea is different from that of other water-soluble compounds: the case of the guanidino compounds. Kidney Int. 67, 1566–1575 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Eloot, S. et al. Complex compartmental behavior of small water-soluble uremic retention solutes: evaluation by direct measurements in plasma and erythrocytes. Am. J. Kidney Dis. 50, 279–288 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Sirich, T. L., Luo, F. J., Plummer, N. S., Hostetter, T. H. & Meyer, T. W. Selectively increasing the clearance of protein-bound uremic solutes. Nephrol. Dial. Transplant. 27, 1574–1579 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vanholder, R., Schepers, E., Pletinck, A., Neirynck, N. & Glorieux, G. An update on protein-bound uremic retention solutes. J. Ren. Nutr. 22, 90–94 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Eloot, S. et al. Impact of hemodialysis duration on the removal of uremic retention solutes. Kidney Int. 73, 765–770 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Locatelli, F. et al. Effect of membrane permeability on survival of hemodialysis patients. J. Am. Soc. Nephrol. 20, 645–654 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Santoro, A. et al. The effect of on-line high-flux hemofiltration versus low-flux hemodialysis on mortality in chronic kidney failure: a small randomized controlled trial. Am. J. Kidney Dis. 52, 507–518 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Bleyer, A. J. et al. Characteristics of sudden death in hemodialysis patients. Kidney Int. 69, 2268–2273 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Fleischmann, E. H., Bower, J. D. & Salahudeen, A. K. Are conventional cardiovascular risk factors predictive of two-year mortality in hemodialysis patients? Clin. Nephrol. 56, 221–230 (2001).

    CAS  PubMed  Google Scholar 

  30. Maduell, F. et al. Osteocalcin and myoglobin removal in on-line hemodiafiltration versus low- and high-flux hemodialysis. Am. J. Kidney Dis. 40, 582–589 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Locatelli, F. et al. Effects of different membranes and dialysis technologies on patient treatment tolerance and nutritional parameters. The Italian Cooperative Dialysis Study Group. Kidney Int. 50, 1293–1302 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Fiore, G. B., Guadagni, G., Lupi, A., Ricci, Z. & Ronco, C. A new semiempirical mathematical model for prediction of internal filtration in hollow fiber hemodialyzers. Blood Purif. 24, 555–568 (2006).

    Article  PubMed  Google Scholar 

  33. Ronco, C., Orlandini, G., Brendolan, A., Lupi, A. & La, G. G. Enhancement of convective transport by internal filtration in a modified experimental hemodialyzer: technical note. Kidney Int. 54, 979–985 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Eloot, S., Van Biesen, W., Dhondt, A., Billiet, E., Verdonck, P. & Vanholder, R. Evidence for internal filtration in the Genius system, performing slow low efficient daily dialysis in the intensive care unit. Blood Purif. 26, 460–467 (2008).

    Article  PubMed  Google Scholar 

  35. Meert, N. et al. Comparison of removal capacity of two consecutive generations of high-flux dialysers during different treatment modalities. Nephrol. Dial. Transplant. 26, 2624–2630 (2011).

    Article  PubMed  Google Scholar 

  36. Vanholder, R., Van Laecke, S. & Glorieux, G. The middle-molecule hypothesis 30 years after: lost and rediscovered in the universe of uremic toxicity? J. Nephrol. 21, 146–160 (2008).

    CAS  PubMed  Google Scholar 

  37. Vanholder, R., Van Laecke, S. & Glorieux, G. What is new in uremic toxicity? Pediatr. Nephrol. 23, 1211–1221 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cheung, A. K. et al. Effects of high-flux hemodialysis on clinical outcomes: results of the HEMO study. J. Am. Soc. Nephrol. 14, 3251–3263 (2003).

    Article  PubMed  Google Scholar 

  39. Delmez, J. A. et al. Cerebrovascular disease in maintenance hemodialysis patients: results of the HEMO Study. Am. J. Kidney Dis. 47, 131–138 (2006).

    Article  PubMed  Google Scholar 

  40. Krane, V. et al. Dialyzer membrane characteristics and outcome of patients with type 2 diabetes on maintenance hemodialysis. Am. J. Kidney Dis. 49, 267–275 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Chauveau, P. et al. Dialyzer membrane permeability and survival in hemodialysis patients. Am. J. Kidney Dis. 45, 565–571 (2005).

    Article  PubMed  Google Scholar 

  42. Locatelli, F. et al. The effect of membrane permeability on ESRD: design of a prospective randomised multicentre trial. J. Nephrol. 12, 85–88 (1999).

    CAS  PubMed  Google Scholar 

  43. Van Dijk, P. C., Jager, K. J., Stengel, B., Gronhagen-Riska, C., Feest, T. G. & Briggs, J. D. Renal replacement therapy for diabetic end-stage renal disease: data from 10 registries in Europe (1991–2000). Kidney Int. 67, 1489–1499 (2005).

    Article  PubMed  Google Scholar 

  44. Lopes, A. A. et al. Lack of appetite in haemodialysis patients--associations with patient characteristics, indicators of nutritional status and outcomes in the international DOPPS. Nephrol. Dial. Transplant. 22, 3538–3546 (2007).

    Article  PubMed  Google Scholar 

  45. Tattersall, J. et al. High-flux or low-flux dialysis: a position statement following publication of the Membrane Permeability Outcome study. Nephrol. Dial. Transplant. 25, 1230–1232 (2010).

    Article  PubMed  Google Scholar 

  46. Stiller, S., Xu, X. Q., Gruner, N., Vienken, J. & Mann, H. Validation of a two-pool model for the kinetics of β2-microglobulin. Int. J. Artif. Organs 25, 411–420 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Odell, R. A., Slowiaczek, P., Moran, J. E. & Schindhelm, K. Beta 2-microglobulin kinetics in end-stage renal failure. Kidney Int. 39, 909–919 (1991).

    Article  CAS  PubMed  Google Scholar 

  48. Leypoldt, J. K., Cheung, A. K. & Deeter, R. B. Rebound kinetics of β2-microglobulin after hemodialysis. Kidney Int. 56, 1571–1577 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Ward, R. A., Schmidt, B., Hullin, J., Hillebrand, G. F. & Samtleben, W. A comparison of on-line hemodiafiltration and high-flux hemodialysis: a prospective clinical study. J. Am. Soc. Nephrol. 11, 2344–2350 (2000).

    CAS  PubMed  Google Scholar 

  50. Glorieux, G. et al. A novel bio-assay increases the detection yield of microbiological impurity of dialysis fluid, in comparison to the LAL test. Nephrol. Dial. Transplant. 24, 548–554 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Schindler, R. et al. Reduced cytokine induction and removal of complement products with synthetic hemodialysis membranes. Blood Purif. 24, 203–211 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Section, I. V. Dialysis fluid purity. Nephrol. Dial. Transplant. 17 (Suppl. 7), 45–62 (2002).

    Google Scholar 

  53. The International Organization for Standardization. Guidance for the preparation and quality management of fluids for haemodialysis and related therapies. ISO 23500:2011 (E) [online].

  54. The International Organization for Standardization. Quality of dialysis fluid for haemodialysis and related therapies. ISO/FDIS 11663:2009 (E) [online].

  55. The International Organization for Standardization. Water for haemodialysis and related therapies. ISO/FDIS 13959:2009 (E) [online].

  56. Glorieux, G., Neirynck, N., Veys, N. & Vanholder, R. Dialysis water and fluid purity: more than endotoxin. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfs306.

  57. Meert, N. et al. Effective removal of protein-bound uraemic solutes by different convective strategies: a prospective trial. Nephrol. Dial. Transplant. 24, 562–570 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Meert, N. et al. Evolution of protein-bound uraemic solutes during predilution haemofiltration. J. Nephrol. 22, 352–357 (2009).

    CAS  PubMed  Google Scholar 

  59. Meert, N. et al. Prospective evaluation of the change of predialysis protein-bound uremic solute concentration with postdilution online hemodiafiltration. Artif. Organs 34, 580–585 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Canaud, B. et al. Mortality risk for patients receiving hemodiafiltration versus hemodialysis: European results from the DOPPS. Kidney Int. 69, 2087–2093 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Ok, E. et al. Comparison of postdilution on-line hemodiafiltration and hemodialysis (Turkish HDF study) [abstract]. NDT Plus 4 (Suppl. 2), 4.

  62. Grooteman, M. P. et al. Effect of online hemodiafiltration on all-cause mortality and cardiovascular outcomes. J. Am. Soc. Nephrol. 23, 1087–1096 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Locatelli, F. et al. Hemofiltration and hemodiafiltration reduce intradialytic hypotension in ESRD. J. Am. Soc. Nephrol. 21, 1798–1807 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Maduell, F. et al. Design and patient characteristics of ESHOL study, a Catalonian prospective randomized study. J. Nephrol. 24, 196–202 (2011).

    Article  PubMed  Google Scholar 

  65. Vanholder, R. et al. Reimbursement of dialysis: a comparison of seven countries. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2011111094.

  66. Vanholder, R., Veys, N. & Van Biesen, W. Hemodialysis: Long weekend hemodialysis intervals—killing fields? Nat. Rev. Nephrol. 8, 5–6 (2012).

    Article  Google Scholar 

  67. Bleyer, A. J., Russell, G. B. & Satko, S. G. Sudden and cardiac death rates in hemodialysis patients. Kidney Int. 55, 1553–1559 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Karnik, J. A. et al. Cardiac arrest and sudden death in dialysis units. Kidney Int. 60, 350–357 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Foley, R. N., Gilbertson, D. T., Murray, T. & Collins, A. J. Long interdialytic interval and mortality among patients receiving hemodialysis. N. Engl. J. Med. 365, 1099–1107 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Doorenbos, C. J. Long interdialytic interval and mortality. N. Engl. J. Med. 365, 2437–2438 (2011).

    CAS  PubMed  Google Scholar 

  71. Fagugli, R. M., De Smet, R., Buoncristiani, U., Lameire, N. & Vanholder, R. Behavior of non-protein-bound and protein-bound uremic solutes during daily hemodialysis. Am. J. Kidney Dis. 40, 339–347 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Fagugli, R. M. et al. Advanced glycation end products: specific fluorescence changes of pentosidine-like compounds during short daily hemodialysis. Int. J. Artif. Organs 24, 256–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Eloot, S. et al. Impact of increasing haemodialysis frequency versus haemodialysis duration on removal of urea and guanidino compounds: a kinetic analysis. Nephrol. Dial. Transplant. 24, 2225–2232 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Daugirdas, J. T. et al. Effects of frequent hemodialysis on measures of CKD mineral and bone disorder. J. Am. Soc. Nephrol. 23, 727–738 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gotch, F. A. & Levin, N. W. Daily dialysis: the long and the short of it. Blood Purif. 21, 271–281 (2003).

    Article  PubMed  Google Scholar 

  76. Ayus, J. C. et al. Effects of short daily versus conventional hemodialysis on left ventricular hypertrophy and inflammatory markers: a prospective, controlled study. J. Am. Soc. Nephrol. 16, 2778–2788 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Buoncristiani, U. et al. Left ventricular hypertrophy in daily dialysis. Miner. Electrolyte Metab. 25, 90–94 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. London, G. M. et al. Alterations of left ventricular hypertrophy in and survival of patients receiving hemodialysis: follow-up of an interventional study. J. Am. Soc. Nephrol. 12, 2759–2767 (2001).

    CAS  PubMed  Google Scholar 

  79. Zoccali, C. et al. Left ventricular mass monitoring in the follow-up of dialysis patients: prognostic value of left ventricular hypertrophy progression. Kidney Int. 65, 1492–1498 (2004).

    Article  PubMed  Google Scholar 

  80. Silberberg, J. S., Barre, P. E., Prichard, S. S. & Sniderman, A. D. Impact of left ventricular hypertrophy on survival in end-stage renal disease. Kidney Int. 36, 286–290 (1989).

    Article  CAS  PubMed  Google Scholar 

  81. Ting, G. O., Kjellstrand, C., Freitas, T., Carrie, B. J. & Zarghamee, S. Long-term study of high-comorbidity ESRD patients converted from conventional to short daily hemodialysis. Am. J. Kidney Dis. 42, 1020–1035 (2003).

    Article  PubMed  Google Scholar 

  82. Jaber, B. L. et al. Impact of short daily hemodialysis on restless legs symptoms and sleep disturbances. Clin. J. Am. Soc. Nephrol. 6, 1049–1056 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Jefferies, H. J., Virk, B., Schiller, B., Moran, J. & McIntyre, C. W. Frequent hemodialysis schedules are associated with reduced levels of dialysis-induced cardiac injury (myocardial stunning). Clin. J. Am. Soc. Nephrol. 6, 1326–1332 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Odar-Cederlof, I. et al. Daily dialyses decrease plasma levels of brain natriuretic peptide (BNP), a biomarker of left ventricular dysfunction. Hemodial. Int. 10, 394–398 (2006).

    Article  PubMed  Google Scholar 

  85. Kjellstrand, C. M. et al. Short daily haemodialysis: survival in 415 patients treated for 1006 patient-years. Nephrol. Dial. Transplant. 23, 3283–3289 (2008).

    Article  PubMed  Google Scholar 

  86. Kjellstrand, C. et al. Survival with short-daily hemodialysis: association of time, site, and dose of dialysis. Hemodial. Int. 14, 464–470 (2010).

    Article  PubMed  Google Scholar 

  87. Chan, C. T. et al. Determinants of left ventricular mass in patients on hemodialysis: Frequent Hemodialysis Network (FHN) Trials. Circ. Cardiovasc. Imaging 5, 251–261 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hall, Y. N. et al. Effects of six versus three times per week hemodialysis on physical performance, health, and functioning: Frequent Hemodialysis Network (FHN) Randomized Trials. Clin. J. Am. Soc. Nephrol. 7, 782–794 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Rocco, M. V. et al. The effects of frequent nocturnal home hemodialysis: the Frequent Hemodialysis Network Nocturnal Trial. Kidney Int. 80, 1080–1091 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zhao, D., Sonawane, N. D., Levin, M. H. & Yang, B. Comparative transport efficiencies of urea analogues through urea transporter UT-B. Biochim. Biophys. Acta 1768, 1815–1821 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Daugirdas, J. T. et al. Factors that affect postdialysis rebound in serum urea concentration, including the rate of dialysis: results from the HEMO Study. J. Am. Soc. Nephrol. 15, 194–203 (2004).

    Article  PubMed  Google Scholar 

  92. Tattersall, J. E., DeTakats, D., Chamney, P., Greenwood, R. N. & Farrington, K. The post-hemodialysis rebound: predicting and quantifying its effect on Kt/V. Kidney Int. 50, 2094–2102 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Haag-Weber, M. Treatment options to intensify hemodialysis. Kidney Blood Press. Res. 26, 90–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Alloatti, S., Molino, A., Manes, M., Bonfant, G. & Pellu, V. Long nocturnal dialysis. Blood Purif. 20, 525–530 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Basile, C. et al. Removal of uraemic retention solutes in standard bicarbonate haemodialysis and long-hour slow-flow bicarbonate haemodialysis. Nephrol. Dial. Transplant. 26, 1296–1303 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Innes, A., Charra, B., Burden, R. P., Morgan, A. G. & Laurent, G. The effect of long, slow haemodialysis on patient survival. Nephrol. Dial. Transplant. 14, 919–922 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Lockridge, R. S. & Kjellstrand, C. M. Nightly home hemodialysis: outcome and factors associated with survival. Hemodial. Int. 15, 211–218 (2011).

    Article  PubMed  Google Scholar 

  98. McGregor, D. O., Buttimore, A. L., Lynn, K. L., Nicholls, M. G. & Jardine, D. L. A comparative study of blood pressure control with short in-center versus long home hemodialysis. Blood Purif. 19, 293–300 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Charra, B. et al. Long 3 × 8 hr dialysis: a three-decade summary. J. Nephrol. 16 (Suppl. 7), S64–S69 (2003).

    PubMed  Google Scholar 

  100. McGregor, D. O., Buttimore, A. L., Nicholls, M. G. & Lynn, K. L. Ambulatory blood pressure monitoring in patients receiving long, slow home haemodialysis. Nephrol. Dial. Transplant. 14, 2676–2679 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Chazot, C. et al. Interdialysis blood pressure control by long haemodialysis sessions. Nephrol. Dial. Transplant. 10, 831–837 (1995).

    CAS  PubMed  Google Scholar 

  102. Demirci, M. S. et al. Effects of thrice weekly nocturnal hemodialysis on arterial stiffness. Atherosclerosis 220, 477–485 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Flythe, J. E., Kimmel, S. E. & Brunelli, S. M. Rapid fluid removal during dialysis is associated with cardiovascular morbidity and mortality. Kidney Int. 79, 250–257 (2011).

    Article  PubMed  Google Scholar 

  104. Ok, E. et al. Comparison of 4- and 8-h dialysis sessions in thrice-weekly in-centre haemodialysis: a prospective, case-controlled study. Nephrol. Dial. Transplant. 26, 1287–1296 (2011).

    Article  PubMed  Google Scholar 

  105. Walsh, M. et al. The effects of nocturnal compared with conventional hemodialysis on mineral metabolism: a randomized-controlled trial. Hemodial. Int. 14, 174–181 (2010).

    Article  PubMed  Google Scholar 

  106. Culleton, B. F. et al. Effect of frequent nocturnal hemodialysis vs conventional hemodialysis on left ventricular mass and quality of life: a randomized controlled trial. JAMA 298, 1291–1299 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Mucsi, I. et al. Control of serum phosphate without any phosphate binders in patients treated with nocturnal hemodialysis. Kidney Int. 53, 1399–1404 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Chan, C. T., Mardirossian, S., Faratro, R. & Richardson, R. M. Improvement in lower-extremity peripheral arterial disease by nocturnal hemodialysis. Am. J. Kidney Dis. 41, 225–229 (2003).

    Article  PubMed  Google Scholar 

  109. Hanly, P. J. & Pierratos, A. Improvement of sleep apnea in patients with chronic renal failure who undergo nocturnal hemodialysis. N. Engl. J. Med. 344, 102–107 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Wong, J. H. et al. The use of nocturnal home hemodialysis as salvage therapy for patients experiencing peritoneal dialysis failure. Perit. Dial. Int. 27, 669–674 (2007).

    CAS  PubMed  Google Scholar 

  111. McFarlane, P. A., Bayoumi, A. M., Pierratos, A. & Redelmeier, D. A. The quality of life and cost utility of home nocturnal and conventional in-center hemodialysis. Kidney Int. 64, 1004–1011 (2003).

    Article  PubMed  Google Scholar 

  112. Pauly, R. P. et al. Survival among nocturnal home haemodialysis patients compared to kidney transplant recipients. Nephrol. Dial. Transplant. 24, 2915–2919 (2009).

    Article  PubMed  Google Scholar 

  113. Walsh, M., Culleton, B., Tonelli, M. & Manns, B. A systematic review of the effect of nocturnal hemodialysis on blood pressure, left ventricular hypertrophy, anemia, mineral metabolism, and health-related quality of life. Kidney Int. 67, 1500–1508 (2005).

    Article  PubMed  Google Scholar 

  114. Dharnidharka, S. G., Kirkham, R. & Kolff, W. J. Toward a wearable artificial kidney using ultrafiltrate as dialysate. Trans. Am. Soc. Artif. Intern. Organs 19, 92–97 (1973).

    Article  CAS  PubMed  Google Scholar 

  115. Gura, V., Davenport, A., Beizai, M., Ezon, C. & Ronco, C. Beta2-microglobulin and phosphate clearances using a wearable artificial kidney: a pilot study. Am. J. Kidney Dis. 54, 104–111 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Davenport, A. et al. A wearable haemodialysis device for patients with end-stage renal failure: a pilot study. Lancet 370, 2005–2010 (2007).

    Article  PubMed  Google Scholar 

  117. Gura, V. et al. A wearable hemofilter for continuous ambulatory ultrafiltration. Kidney Int. 73, 497–502 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article and to discussions of the content. R. Vanholder wrote the article and reviewed/edited it before submission.

Corresponding author

Correspondence to Raymond Vanholder.

Ethics declarations

Competing interests

The department of R. Vanholder has received unrestricted research grants from Gambro, Baxter Healthcare, Fresenius Medical Care and Bellco. R. Vanholder is on the advisory board of Baxter Healthcare (home haemodialysis program) and Johnson and Johnson. R. Vanholder and W. Van Biesen received speaker's honoraria from Fresenius Medical Care. N Neirynck receives travel support from Bellco. S. Eloot declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanholder, R., Eloot, S., Neirynck, N. et al. Home haemodialysis and uraemic toxin removal: does a happy marriage exist?. Nat Rev Nephrol 8, 579–588 (2012). https://doi.org/10.1038/nrneph.2012.189

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrneph.2012.189

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing