Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Acute kidney injury—epidemiology, outcomes and economics

Key Points

  • Acute kidney injury (AKI) occurs in an estimated one in five adults and one in three children hospitalized with acute illness; the incidence of AKI is increasing

  • Subclinical AKI, defined as elevation in levels of kidney damage biomarkers not fulfilling the conventional criteria for AKI, has characterized a subgroup of patients with increased risk of poor outcome

  • Bedside clinical information systems can enable real-time automated electronic alerting for patients at risk of AKI or who develop early AKI; these systems can be integrated with evidence-based decision support tools

  • The mortality associated with AKI remains unacceptably high, and increasing severity correlates with increasing mortality, the highest of which is among patients with overt kidney failure requiring renal replacement therapy

  • Reduced health-related quality of life and incident disability are increasingly recognized as important patient-centred outcomes following acute illness complicated by AKI

  • AKI is now recognized as an important risk factor for nonrecovery of kidney function, incident chronic kidney disease, and accelerated progression to end-stage renal disease

Abstract

Acute kidney injury (AKI) is a widespread problem of epidemic status. Compelling evidence indicates that the incidence of AKI is rapidly increasing, particularly among hospitalized patients with acute illness and those undergoing major surgery. This increase might be partially attributable to greater recognition of AKI, improved ascertainment in administrative data and greater sensitivity of consensus diagnostic and classification schemes. Other causes could be an ageing population, increasing incidences of cardiovascular disease, diabetes mellitus and chronic kidney disease (CKD), and an expanding characterization of modifiable risk factors, such as sepsis, administration of contrast media and exposure to nephrotoxins. The sequelae of AKI are severe and characterized by increased risk of short-term and long-term mortality, incident CKD and accelerated progression to end-stage renal disease. AKI-associated mortality is decreasing, but remains unacceptably high. Moreover, the absolute number of patients dying as a result of AKI is increasing as the incidence of the disorder increases, and few proven effective preventative or therapeutic interventions exist. Survivors of AKI, particularly those who remain on renal replacement therapy, often have reduced quality of life and consume substantially greater health-care resources than the general population as a result of longer hospitalizations, unplanned intensive care unit admissions and rehospitalizations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Association between the incidence and mortality for acute kidney injury when assessed by a | absolute changes in serum creatinine levels and b | changes in serum creatinine levels relative to baseline.
Figure 2: Kaplan–Meier graph for hospital survival, stratified by KDIGO stages of acute kidney injury.
Figure 3: Long-term survival stratified by CKD and AKI.

Similar content being viewed by others

References

  1. Bellomo, R. The epidemiology of acute renal failure: 1975 versus 2005. Curr. Opin. Crit. Care 12, 557–560 (2006).

    PubMed  Google Scholar 

  2. Susantitaphong, P. et al. World incidence of AKI: a meta-analysis. Clin. J. Am. Soc. Nephrol. 8, 1482–1493 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. Uchino, S. The epidemiology of acute renal failure in the world. Curr. Opin. Crit. Care 12, 538–543 (2006).

    PubMed  Google Scholar 

  4. Lameire, N. H. et al. Acute kidney injury: an increasing global concern. Lancet 382, 170–179 (2013).

    PubMed  Google Scholar 

  5. Xue, J. L. et al. Incidence and mortality of acute renal failure in Medicare beneficiaries, 1992 to 2001. J. Am. Soc. Nephrol. 17, 1135–1142 (2006).

    PubMed  Google Scholar 

  6. Waikar, S. S., Curhan, G. C., Wald, R., McCarthy, E. P. & Chertow, G. M. Declining mortality in patients with acute renal failure, 1988 to 2002. J. Am. Soc. Nephrol. 17, 1143–1150 (2006).

    PubMed  Google Scholar 

  7. Kellum, J. A., Bellomo, R. & Ronco, C. Kidney attack. JAMA 307, 2265–2266 (2012).

    CAS  PubMed  Google Scholar 

  8. Li, P. K. et al. Acute kidney injury: global health alert. Kidney Int. 83, 372–376 (2013).

    PubMed  Google Scholar 

  9. Hoste, E. A. et al. The epidemiology of cardiac surgery-associated acute kidney injury. Int. J. Artif. Organs 31, 158–165 (2008).

    CAS  PubMed  Google Scholar 

  10. Bellomo, R. et al. Acute renal failure–definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 8, R204–R212 (2004).

    PubMed  PubMed Central  Google Scholar 

  11. Mehta, R. L. et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit. Care 11, R31 (2007).

    PubMed  PubMed Central  Google Scholar 

  12. Kellum, J. A., Levin, N., Bouman, C. & Lameire, N. Developing a consensus classification system for acute renal failure. Curr. Opin. Crit. Care 8, 509–514 (2002).

    PubMed  Google Scholar 

  13. Kidney Disease Improving Global Outcomes. KDIGO clinical practice guidelines on acute kidney injury. Kidney Int. Suppl. 2, 8–12 (2012).

  14. Ricci, Z., Cruz, D. & Ronco, C. The RIFLE criteria and mortality in acute kidney injury: a systematic review. Kidney Int. 73, 538–546 (2008).

    CAS  PubMed  Google Scholar 

  15. Bagshaw, S. M. et al. Prognosis for long-term survival and renal recovery in critically ill patients with severe acute renal failure: a population-based study. Crit. Care 9, R700–R709 (2005).

    PubMed  PubMed Central  Google Scholar 

  16. de Mendonca, A. et al. Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA score. Intensive Care Med. 26, 915–921 (2000).

    CAS  PubMed  Google Scholar 

  17. Bagshaw, S. M. et al. A comparison of observed versus estimated baseline creatinine for determination of RIFLE class in patients with acute kidney injury. Nephrol. Dial. Transplant. 24, 2739–2744 (2009).

    CAS  PubMed  Google Scholar 

  18. Zavada, J. et al. A comparison of three methods to estimate baseline creatinine for RIFLE classification. Nephrol. Dial. Transplant. 25, 3911–3918 (2010).

    CAS  PubMed  Google Scholar 

  19. Siew, E. D. et al. Use of multiple imputation method to improve estimation of missing baseline serum creatinine in acute kidney injury research. Clin. J. Am. Soc. Nephrol. 8, 10–18 (2013).

    CAS  PubMed  Google Scholar 

  20. Pickering, J. W. & Endre, Z. H. Back-calculating baseline creatinine with MDRD misclassifies acute kidney injury in the intensive care unit. Clin. J. Am. Soc. Nephrol. 5, 1165–1173 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pickering, J. W. & Endre, Z. H. GFR shot by RIFLE: errors in staging acute kidney injury. Lancet 373, 1318–1319 (2009).

    PubMed  Google Scholar 

  22. Doi, K. et al. Reduced production of creatinine limits its use as marker of kidney injury in sepsis. J. Am. Soc. Nephrol. 20, 1217–1221 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, K. D. et al. Acute kidney injury in patients with acute lung injury: impact of fluid accumulation on classification of acute kidney injury and associated outcomes. Crit. Care Med. 39, 2665–2671 (2011).

    PubMed  PubMed Central  Google Scholar 

  24. Macedo, E. et al. Fluid accumulation, recognition and staging of acute kidney injury in critically-ill patients. Crit. Care 14, R82 (2010).

    PubMed  PubMed Central  Google Scholar 

  25. Pickering, J. W., Ralib, A. M. & Endre, Z. H. Combining creatinine and volume kinetics identifies missed cases of acute kidney injury following cardiac arrest. Crit. Care 17, R7 (2013).

    PubMed  PubMed Central  Google Scholar 

  26. Macedo, E., Malhotra, R., Bouchard, J., Wynn, S. K. & Mehta, R. L. Oliguria is an early predictor of higher mortality in critically ill patients. Kidney Int. 80, 760–767 (2011).

    CAS  PubMed  Google Scholar 

  27. Mandelbaum, T. et al. Empirical relationships among oliguria, creatinine, mortality, and renal replacement therapy in the critically ill. Intensive Care Med. 39, 414–419 (2013).

    CAS  PubMed  Google Scholar 

  28. Prowle, J. R. et al. Oliguria as predictive biomarker of acute kidney injury in critically ill patients. Crit. Care 15, R172 (2011).

    PubMed  PubMed Central  Google Scholar 

  29. Macedo, E., Malhotra, R., Claure- Del Granado, R., Fedullo, P. & Mehta, R. L. Defining urine output criterion for acute kidney injury in critically ill patients. Nephrol. Dial. Transplant. 26, 509–515 (2011).

    PubMed  Google Scholar 

  30. Ralib, A. M., Pickering, J. W., Shaw, G. M. & Endre, Z. H. The urine output definition of acute kidney injury is too liberal. Crit. Care 17, R112 (2013).

    Google Scholar 

  31. McCullough, P. A. et al. Implementation of novel biomarkers in the diagnosis, prognosis, and management of acute kidney injury: executive summary from the tenth consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib. Nephrol. 182, 5–12 (2013).

    PubMed  Google Scholar 

  32. Bagshaw, S. M., Zappitelli, M. & Chawla, L. S. Novel biomarkers of AKI: the challenges of progress 'amid the noise and the haste'. Nephrol. Dial. Transplant. 28, 235–238 (2013).

    CAS  PubMed  Google Scholar 

  33. Parikh, C. R. et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after pediatric cardiac surgery. J. Am. Soc. Nephrol. 22, 1737–1747 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Siew, E. D. et al. Distinct injury markers for the early detection and prognosis of incident acute kidney injury in critically ill adults with preserved kidney function. Kidney Int. 84, 786–794 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Nickolas, T. L. et al. Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J. Am. Coll. Cardiol. 59, 246–255 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nickolas, T. L. et al. Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann. Intern. Med. 148, 810–819 (2008).

    PubMed  PubMed Central  Google Scholar 

  37. Kashani, K. et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care 17, R25 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. Bagshaw, S. M. Subclinical acute kidney injury: a novel biomarker-defined syndrome. Crit. Care Resusc. 13, 201–203 (2011).

    PubMed  Google Scholar 

  39. Haase, M., Kellum, J. A. & Ronco, C. Subclinical AKI—an emerging syndrome with important consequences. Nat. Rev. Nephrol. 8, 735–739 (2012).

    CAS  PubMed  Google Scholar 

  40. Haase, M. et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J. Am. Coll. Cardiol. 57, 1752–1761 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Colpaert, K. et al. Impact of real-time electronic alerting of acute kidney injury on therapeutic intervention and progression of RIFLE class. Crit. Care Med. 40, 1164–1170 (2012).

    PubMed  Google Scholar 

  42. Brown, J. R., Kramer, R. S., Coca, S. G. & Parikh, C. R. The prognostic value of using the duration of acute kidney injury in cardiac surgery: an example using two antifibrinolytics. J. Extra Corpor. Technol. 43, 227–231 (2011).

    PubMed  PubMed Central  Google Scholar 

  43. Goldstein, S. L. et al. Electronic health record identification of nephrotoxin exposure and associated acute kidney injury. Pediatrics 132, e756–e767 (2013).

    PubMed  Google Scholar 

  44. Selby, N. M. et al. Use of electronic results reporting to diagnose and monitor AKI in hospitalized patients. Clin. J. Am. Soc. Nephrol. 7, 533–540 (2012).

    PubMed  Google Scholar 

  45. Hsu, C. Y. et al. Community-based incidence of acute renal failure. Kidney Int. 72, 208–212 (2007).

    PubMed  PubMed Central  Google Scholar 

  46. Liangos, O. et al. Epidemiology and outcomes of acute renal failure in hospitalized patients: a national survey. Clin. J. Am. Soc. Nephrol. 1, 43–51 (2006).

    PubMed  Google Scholar 

  47. Swaminathan, M. et al. Trends in acute renal failure associated with coronary artery bypass graft surgery in the United States. Crit. Care Med. 35, 2286–2291 (2007).

    PubMed  Google Scholar 

  48. Fujii, T., Uchino, S., Takinami, M. & Bellomo, R. Subacute kidney injury in hospitalized patients. Clin. J. Am. Soc. Nephrol. http://dx.doi.org/10.2215/CJN.04120413.

  49. Waikar, S. S. et al. Validity of international classification of diseases, ninth revision, clinical modification codes for acute renal failure. J. Am. Soc. Nephrol. 17, 1688–1694 (2006).

    PubMed  Google Scholar 

  50. Hwang, Y. J. et al. Validity of the international classification of diseases, tenth revision code for acute kidney injury in elderly patients at presentation to the emergency department and at hospital admission. BMJ Open 2, e001821 (2012).

    PubMed  PubMed Central  Google Scholar 

  51. Ali, T. et al. Incidence and outcomes in acute kidney injury: a comprehensive population-based study. J. Am. Soc. Nephrol. 18, 1292–1298 (2007).

    CAS  PubMed  Google Scholar 

  52. Chertow, G. M., Burdick, E., Honour, M., Bonventre, J. V. & Bates, D. W. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 16, 3365–3370 (2005).

    PubMed  Google Scholar 

  53. Lassnigg, A. et al. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J. Am. Soc. Nephrol. 15, 1597–1605 (2004).

    CAS  PubMed  Google Scholar 

  54. Hou, S. H., Bushinsky, D. A., Wish, J. B., Cohen, J. J. & Harrington, J. T. Hospital-acquired renal insufficiency: a prospective study. Am. J. Med. 74, 243–248 (1983).

    CAS  PubMed  Google Scholar 

  55. Nash, K., Hafeez, A. & Hou, S. Hospital-acquired renal insufficiency. Am. J. Kidney Dis. 39, 930–936 (2002).

    PubMed  Google Scholar 

  56. Uchino, S., Bellomo, R., Goldsmith, D., Bates, S. & Ronco, C. An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit. Care Med. 34, 1913–1917 (2006).

    PubMed  Google Scholar 

  57. Hsu, R. K., McCulloch, C. E., Dudley, R. A., Lo, L. J. & Hsu, C. Y. Temporal changes in incidence of dialysis-requiring AKI. J. Am. Soc. Nephrol. 24, 37–42 (2013).

    PubMed  Google Scholar 

  58. Siddiqui, N. F. et al. Secular trends in acute dialysis after elective major surgery—1995 to 2009. CMAJ 184, 1237–1245 (2012).

    PubMed  PubMed Central  Google Scholar 

  59. Andrikos, E. et al. Epidemiology of acute renal failure in ICUs: a multi-center prospective study. Blood Purif. 28, 239–244 (2009).

    PubMed  Google Scholar 

  60. Bagshaw, S. M. et al. Changes in the incidence and outcome for early acute kidney injury in a cohort of Australian intensive care units. Crit. Care 11, R68 (2007).

    PubMed  PubMed Central  Google Scholar 

  61. Bagshaw, S. M., George, C., Dinu, I. & Bellomo, R. A multi-centre evaluation of the RIFLE criteria for early acute kidney injury in critically ill patients. Nephrol. Dial. Transplant. 23, 1203–1210 (2008).

    PubMed  Google Scholar 

  62. Medve, L. et al. Epidemiology of acute kidney injury in Hungarian intensive care units: a multicenter, prospective, observational study. BMC Nephrol. 12, 43 (2011).

    PubMed  PubMed Central  Google Scholar 

  63. Nisula, S. et al. Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: the FINNAKI study. Intensive Care Med. 39, 420–428 (2013).

    PubMed  Google Scholar 

  64. Piccinni, P. et al. Prospective multicenter study on epidemiology of acute kidney injury in the ICU: a critical care nephrology Italian collaborative effort (NEFROINT). Minerva Anestesiol. 77, 1072–1083 (2011).

    CAS  PubMed  Google Scholar 

  65. Poukkanen, M. et al. Acute kidney injury in patients with severe sepsis in Finnish intensive care units. Acta Anaesthesiol. Scand. 57, 863–872 (2013).

    CAS  PubMed  Google Scholar 

  66. Thakar, C. V., Christianson, A., Freyberg, R., Almenoff, P. & Render, M. L. Incidence and outcomes of acute kidney injury in intensive care units: a Veterans Administration study. Crit. Care Med. 37, 2552–2558 (2009).

    PubMed  Google Scholar 

  67. Ostermann, M. & Chang, R. W. Acute kidney injury in the intensive care unit according to RIFLE. Crit. Care Med. 35, 1837–1843 (2007).

    PubMed  Google Scholar 

  68. Uchino, S. et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294, 813–818 (2005).

    CAS  PubMed  Google Scholar 

  69. Hoste, E. A. et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit. Care 10, R73 (2006).

    PubMed  PubMed Central  Google Scholar 

  70. Clec'h, C. et al. Multiple-center evaluation of mortality associated with acute kidney injury in critically ill patients: a competing risks analysis. Crit. Care 15, R128 (2011).

    PubMed  PubMed Central  Google Scholar 

  71. Vaara, S. et al. Population-based incidence, mortality and quality of life in critically ill patients treated with renal replacement therapy—a nationwide retrospective cohort study in Finnish ICUs. Crit. Care 16, R13 (2012).

    PubMed  PubMed Central  Google Scholar 

  72. Riley, S. et al. Renal impairment among acute hospital admissions in a rural Ethiopian hospital. Nephrology (Carlton) 18, 92–96 (2013).

    Google Scholar 

  73. Xuan, B. H. et al. Swarming hornet attacks: shock and acute kidney injury—a large case series from Vietnam. Nephrol. Dial. Transplant. 25, 1146–1150 (2010).

    PubMed  Google Scholar 

  74. Khakurel, S., Satyal, P. R., Agrawal, R. K., Chhetri, P. K. & Hada, R. Acute renal failure in a tertiary care center in Nepal. J. Nepal Med. Assoc. 44, 32–35 (2005).

    CAS  Google Scholar 

  75. Soliman, A. R. Spectrum of acute kidney injury in a tertiary care hospital in Cairo. Arab J. Nephrol. Transplant. 4, 83–86 (2011).

    PubMed  Google Scholar 

  76. Daher, E. F. et al. Leptospirosis-associated acute kidney injury: penicillin at the late stage is still controversial. J. Clin. Pharm. Ther. 37, 420–425 (2012).

    CAS  PubMed  Google Scholar 

  77. Liborio, A. B. et al. Acute kidney injury in children with visceral leishmaniasis. Pediatr. Infect. Dis. J. 31, 451–454 (2012).

    PubMed  Google Scholar 

  78. Krishnamurthy, S. et al. Incidence and etiology of acute kidney injury in southern India. Indian J. Pediatr. 80, 183–189 (2013).

    PubMed  Google Scholar 

  79. Shukla, V. S., Singh, R. G., Rathore, S. S. & Usha . Outcome of malaria-associated acute kidney injury: a prospective study from a single center. Ren. Fail. 35, 801–805 (2013).

    PubMed  Google Scholar 

  80. Lombardi, R., Yu, L., Younes-Ibrahim, M., Schor, N. & Burdmann, E. A. Epidemiology of acute kidney injury in Latin America. Semin. Nephrol. 28, 320–329 (2008).

    PubMed  Google Scholar 

  81. Phillips, L. A. et al. Acute kidney injury risk factor recognition in three teaching hospitals in Ethiopia. S. Afr. Med. J. 103, 413–418 (2013).

    PubMed  Google Scholar 

  82. Coca, S. G., Cho, K. C. & Hsu, C. Y. Acute kidney injury in the elderly: predisposition to chronic kidney disease and vice versa. Nephron Clin. Pract. 119 (Suppl. 1), c19–c24 (2011).

    PubMed  PubMed Central  Google Scholar 

  83. Ishani, A. et al. Acute kidney injury increases risk of ESRD among elderly. J. Am. Soc. Nephrol. 20, 223–228 (2009).

    PubMed  PubMed Central  Google Scholar 

  84. Boumendil, A. et al. Treatment intensity and outcome of patients aged 80 and older in intensive care units: a multicenter matched-cohort study. J. Am. Geriatr. Soc. 53, 88–93 (2005).

    PubMed  Google Scholar 

  85. Bagshaw, S. M. et al. Association between renal replacement therapy in critically ill patients with severe acute kidney injury and mortality. J. Crit. Care 28, 1011–1018 (2013).

    PubMed  Google Scholar 

  86. Ball, E. F. & Kara, T. Epidemiology and outcome of acute kidney injury in New Zealand children. J. Paediatr. Child Health 44, 642–646 (2008).

    PubMed  Google Scholar 

  87. James, M. T. et al. Glomerular filtration rate, proteinuria, and the incidence and consequences of acute kidney injury: a cohort study. Lancet 376, 2096–2103 (2010).

    PubMed  Google Scholar 

  88. Grams, M. E. et al. Albuminuria and estimated glomerular filtration rate independently associate with acute kidney injury. J. Am. Soc. Nephrol. 21, 1757–1764 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Coca, S. G. et al. Preoperative proteinuria predicts acute kidney injury in patients undergoing cardiac surgery. J. Thorac. Cardiovasc. Surg. 143, 495–502 (2012).

    CAS  PubMed  Google Scholar 

  90. Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E. & Hsu, C. Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351, 1296–1305 (2004).

    CAS  PubMed  Google Scholar 

  91. Cho, K. & Hsu, C. Y. Quantifying severity of chronic kidney disease as a risk factor for acute kidney injury. J. Am. Soc. Nephrol. 21, 1602–1604 (2010).

    PubMed  Google Scholar 

  92. Lafrance, J. P., Djurdjev, O. & Levin, A. Incidence and outcomes of acute kidney injury in a referred chronic kidney disease cohort. Nephrol. Dial. Transplant. 25, 2203–2209 (2010).

    PubMed  Google Scholar 

  93. Kheterpal, S. et al. Development and validation of an acute kidney injury risk index for patients undergoing general surgery: results from a national data set. Anesthesiology 110, 505–515 (2009).

    PubMed  Google Scholar 

  94. Huen, S. C. & Parikh, C. R. Predicting acute kidney injury after cardiac surgery: a systematic review. Ann. Thorac. Surg. 93, 337–347 (2012).

    PubMed  PubMed Central  Google Scholar 

  95. Mehta, R. H. et al. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation 114, 2208–2216 (2006).

    PubMed  Google Scholar 

  96. Thakar, C. V., Arrigain, S., Worley, S., Yared, J. P. & Paganini, E. P. A clinical score to predict acute renal failure after cardiac surgery. J. Am. Soc. Nephrol. 16, 162–168 (2005).

    PubMed  Google Scholar 

  97. Benko, A. et al. Canadian association of radiologists: consensus guidelines for the prevention of contrast-induced nephropathy. Can. Assoc. Radiol. J. 58, 79–87 (2007).

    PubMed  Google Scholar 

  98. Schneider, V., Levesque, L. E., Zhang, B., Hutchinson, T. & Brophy, J. M. Association of selective and conventional nonsteroidal antiinflammatory drugs with acute renal failure: a population-based, nested case-control analysis. Am. J. Epidemiol. 164, 881–889 (2006).

    PubMed  Google Scholar 

  99. Bird, S. T., Etminan, M., Brophy, J. M., Hartzema, A. G. & Delaney, J. A. Risk of acute kidney injury associated with the use of fluoroquinolones. CMAJ 185, E475–E482 (2013).

    PubMed  PubMed Central  Google Scholar 

  100. Dormuth, C. R. et al. Use of high potency statins and rates of admission for acute kidney injury: multicenter, retrospective observational analysis of administrative databases. BMJ 346, f880 (2013).

    PubMed  Google Scholar 

  101. Leonard, C. E. et al. Proton pump inhibitors and traditional nonsteroidal anti-inflammatory drugs and the risk of acute interstitial nephritis and acute kidney injury. Pharmacoepidemiol. Drug Saf. 21, 1155–1172 (2012).

    CAS  PubMed  Google Scholar 

  102. Sorli, L. et al. Trough colistin plasma level is an independent risk factor for nephrotoxicity: a prospective observational cohort study. BMC Infect. Dis. 13, 380 (2013).

    PubMed  PubMed Central  Google Scholar 

  103. Wikman, P. et al. The significance of antiretroviral-associated acute kidney injury in a cohort of ambulatory human immunodeficiency virus-infected patients. Nephrol. Dial. Transplant. 28, 2073–2081 (2013).

    CAS  PubMed  Google Scholar 

  104. Zhao, Y. Y. et al. New fibrate use and acute renal outcomes in elderly adults: a population-based study. Ann. Intern. Med. 156, 560–569 (2012).

    PubMed  Google Scholar 

  105. Cox, Z. L. et al. Adverse drug events during AKI and its recovery. Clin. J. Am. Soc. Nephrol. 8, 1070–1078 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zappitelli, M., Moffett, B. S., Hyder, A. & Goldstein, S. L. Acute kidney injury in non-critically ill children treated with aminoglycoside antibiotics in a tertiary healthcare centre. Nephrol. Dial. Transplant. 26, 144–150 (2011).

    PubMed  Google Scholar 

  107. Herrera-Gutierrez, M. E., Seller-Perez, G., Sanchez- Izquierdo-Riera, J. A. & Maynar-Moliner, J. Prevalence of acute kidney injury in intensive care units: the “COrte de prevalencia de disFuncion RenAl y DEpuracion en criticos” point-prevalence multicenter study. J. Crit. Care 28, 687–694 (2013).

    PubMed  Google Scholar 

  108. Ramirez, E. et al. Vancomycin-induced acute kidney injury detected by a prospective pharmacovigilance program from laboratory signals. Ther. Drug Monit. 35, 360–366 (2013).

    CAS  PubMed  Google Scholar 

  109. Wunderink, R. G. et al. Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a randomized, controlled study. Clin. Infect. Dis. 54, 621–629 (2012).

    CAS  PubMed  Google Scholar 

  110. Hoste, E. A. et al. Epidemiology of contrast-associated acute kidney injury in ICU patients: a retrospective cohort analysis. Intensive Care Med. 37, 1921–1931 (2011).

    PubMed  Google Scholar 

  111. Kheterpal, S. et al. Predictors of postoperative acute renal failure after noncardiac surgery in patients with previously normal renal function. Anesthesiology 107, 892–902 (2007).

    PubMed  Google Scholar 

  112. Ho, J. et al. Serum creatinine measurement immediately after cardiac surgery and prediction of acute kidney injury. Am. J. Kidney Dis. 59, 196–201 (2012).

    CAS  PubMed  Google Scholar 

  113. Bastin, A. J. et al. Acute kidney injury after cardiac surgery according to risk/injury/failure/loss/end-stage, acute kidney injury network, and kidney disease: improving global outcomes classifications. J. Crit. Care 28, 389–396 (2013).

    PubMed  Google Scholar 

  114. Swaminathan, M. et al. Impact of early renal recovery on survival after cardiac surgery-associated acute kidney injury. Ann. Thorac. Surg. 89, 1098–1104 (2010).

    PubMed  Google Scholar 

  115. Kuitunen, A., Vento, A., Suojaranta-Ylinen, R. & Pettila, V. Acute renal failure after cardiac surgery: evaluation of the RIFLE classification. Ann. Thorac. Surg. 81, 542–546 (2006).

    PubMed  Google Scholar 

  116. Chertow, G. M., Levy, E. M., Hammermeister, K. E., Grover, F. & Daley, J. Independent association between acute renal failure and mortality following cardiac surgery. Am. J. Med. 104, 343–348 (1998).

    CAS  PubMed  Google Scholar 

  117. Bagshaw, S. M. et al. Early acute kidney injury and sepsis: a multicentre evaluation. Crit. Care 12, R47 (2008).

    PubMed  PubMed Central  Google Scholar 

  118. Murugan, R. et al. Acute kidney injury in non-severe pneumonia is associated with an increased immune response and lower survival. Kidney Int. 77, 527–535 (2010).

    CAS  PubMed  Google Scholar 

  119. Bagshaw, S. M. et al. Acute kidney injury in septic shock: clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy. Intensive Care Med. 35, 871–881 (2009).

    PubMed  Google Scholar 

  120. Mehta, R. L. et al. Sepsis as a cause and consequence of acute kidney injury: program to improve care in acute renal disease. Intensive Care Med. 37, 241–248 (2011).

    PubMed  Google Scholar 

  121. Brunkhorst, F. M. et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N. Engl. J. Med. 358, 125–139 (2008).

    CAS  PubMed  Google Scholar 

  122. Myburgh, J. A. et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N. Engl. J. Med. 367, 1901–1911 (2012).

    CAS  PubMed  Google Scholar 

  123. Perner, A. et al. Hydroxyethyl starch 130/0.42 versus Ringer's acetate in severe sepsis. N. Engl. J. Med. 367, 124–134 (2012).

    CAS  PubMed  Google Scholar 

  124. Shaw, A. D. et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann. Surgery 255, 821–829 (2012).

    Google Scholar 

  125. Yunos, N. M. et al. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA 308, 1566–1572 (2012).

    CAS  Google Scholar 

  126. Yunos, N. M. et al. The biochemical effects of restricting chloride-rich fluids in intensive care. Crit. Care Med. 39, 2419–2424 (2011).

    CAS  PubMed  Google Scholar 

  127. Chowdhury, A. H., Cox, E. F., Francis, S. T. & Lobo, D. N. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and Plasma-Lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann. Surg. 256, 18–24 (2012).

    PubMed  Google Scholar 

  128. Grams, M. E. et al. Fluid balance, diuretic use, and mortality in acute kidney injury. Clin. J. Am. Soc. Nephrol. 6, 966–973 (2011).

    PubMed  PubMed Central  Google Scholar 

  129. Payen, D. et al. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit. Care 12, R74 (2008).

    PubMed  PubMed Central  Google Scholar 

  130. Bouchard, J. et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 76, 422–427 (2009).

    PubMed  Google Scholar 

  131. Vaara, S. T. et al. Fluid overload is associated with an increased risk for 90-day mortality in critically ill patients with renal replacement therapy: data from the prospective FINNAKI study. Crit. Care 16, R197 (2012).

    PubMed  PubMed Central  Google Scholar 

  132. Goldberg, A. & Hammerman, H. In hospital and 1-year mortality of patients who develop worsening renal function following acute ST-elevation myocardial infarction. Am. Heart J. 150, 330–337 (2005).

    PubMed  Google Scholar 

  133. Anzai, A. et al. Prognostic significance of acute kidney injury after reperfused ST-elevation myocardial infarction: synergistic acceleration of renal dysfunction and left ventricular remodeling. J. Card. Fail. 16, 381–389 (2010).

    PubMed  Google Scholar 

  134. Marenzi, G. et al. Acute kidney injury in ST-segment elevation acute myocardial infarction complicated by cardiogenic shock at admission. Crit. Care Med. 38, 438–444 (2010).

    PubMed  Google Scholar 

  135. Fonarow, G. C. et al. Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. JAMA 293, 572–580 (2005).

    CAS  PubMed  Google Scholar 

  136. Abelha, F. J., Botelho, M., Fernandes, V. & Barros, H. Outcome and quality of life of patients with acute kidney injury after major surgery. Nefrologia 29, 404–414 (2009).

    CAS  PubMed  Google Scholar 

  137. Bagshaw, S. M., George, C., Gibney, R. T. & Bellomo, R. A multi-center evaluation of early acute kidney injury in critically ill trauma patients. Ren. Fail. 30, 581–589 (2008).

    PubMed  Google Scholar 

  138. Lafrance, J. P. & Miller, D. R. Acute kidney injury associates with increased long-term mortality. J. Am. Soc. Nephrol. 21, 345–352 (2010).

    PubMed  PubMed Central  Google Scholar 

  139. Wald, R. et al. Risk of chronic dialysis and death following acute kidney injury. Am. J. Med. 125, 585–593 (2012).

    PubMed  Google Scholar 

  140. Wu, V. C. et al. Acute-on-chronic kidney injury at hospital discharge is associated with long-term dialysis and mortality. Kidney Int. 80, 1222–1230 (2011).

    PubMed  Google Scholar 

  141. Palevsky, P. M. et al. Intensity of renal support in critically ill patients with acute kidney injury. N. Engl. J. Med. 359, 7–20 (2008).

    CAS  PubMed  Google Scholar 

  142. The RENAL Replacement Therapy Study Investigators. Intensity of continuous renal-replacement therapy in critically ill patients. N. Engl. J. Med. 361, 1627–1638 (2009).

  143. Selby, N. M. et al. Defining the cause of death in hospitalised patients with acute kidney injury. PLoS ONE 7, e48580 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Bell, M. et al. Continuous renal replacement therapy is associated with less chronic renal failure than intermittent haemodialysis after acute renal failure. Intensive Care Med. 33, 773–780 (2007).

    PubMed  Google Scholar 

  145. Korkeila, M., Ruokonen, E. & Takala, J. Costs of care, long-term prognosis and quality of life in patients requiring renal replacement therapy during intensive care. Intensive Care Med. 26, 1824–1831 (2000).

    CAS  PubMed  Google Scholar 

  146. Silvester, W., Bellomo, R. & Cole, L. Epidemiology, management, and outcome of severe acute renal failure of critical illness in Australia. Crit. Care Med. 29, 1910–1915 (2001).

    CAS  PubMed  Google Scholar 

  147. Schmitt, R. et al. Recovery of kidney function after acute kidney injury in the elderly: a systematic review and meta-analysis. Am. J. Kidney Dis. 52, 262–271 (2008).

    PubMed  Google Scholar 

  148. Hsu, C. Y. et al. Nonrecovery of kidney function and death after acute on chronic renal failure. Clin. J. Am. Soc. Nephrol. 4, 891–898 (2009).

    PubMed  PubMed Central  Google Scholar 

  149. Chawla, L. S., Amdur, R. L., Amodeo, S., Kimmel, P. L. & Palant, C. E. The severity of acute kidney injury predicts progression to chronic kidney disease. Kidney Int. 79, 1361–1369 (2011).

    PubMed  PubMed Central  Google Scholar 

  150. Thakar, C. V., Christianson, A., Himmelfarb, J. & Leonard, A. C. Acute kidney injury episodes and chronic kidney disease risk in diabetes mellitus. Clin. J. Am. Soc. Nephrol. 6, 2567–2572 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Srisawat, N. et al. Plasma neutrophil gelatinase-associated lipocalin predicts recovery from acute kidney injury following community-acquired pneumonia. Kidney Int. 80, 545–552 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Sutherland, S. M. et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am. J. Kidney Dis. 55, 316–325 (2009).

    PubMed  Google Scholar 

  153. Heung, M. et al. Fluid overload at initiation of renal replacement therapy is associated with lack of renal recovery in patients with acute kidney injury. Nephrol. Dial. Transplant. 27, 956–961 (2012).

    CAS  PubMed  Google Scholar 

  154. Karvellas, C. J. et al. A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury: a systematic review and meta-analysis. Crit. Care 15, R72 (2011).

    PubMed  PubMed Central  Google Scholar 

  155. Smith, O. M. et al. Standard versus accelerated initiation of renal replacement therapy in acute kidney injury (STARRT-AKI): study protocol for a randomized controlled trial. Trials 14, 320 (2013).

    PubMed  PubMed Central  Google Scholar 

  156. Cartin-Ceba, R. et al. Evaluation of “loss” and “end stage renal disease” after acute kidney injury defined by the risk, injury, failure, loss and ESRD classification in critically ill patients. Intensive Care Med. 35, 2087–2095 (2009).

    PubMed  Google Scholar 

  157. Jacka, M. J., Ivancinova, X. & Gibney, R. T. Continuous renal replacement therapy improves renal recovery from acute renal failure. Can. J. Anaesth. 52, 327–332 (2005).

    PubMed  Google Scholar 

  158. Lin, Y. F. et al. The 90-day mortality and the subsequent renal recovery in critically ill surgical patients requiring acute renal replacement therapy. Am. J. Surg. 198, 325–332 (2009).

    PubMed  Google Scholar 

  159. Mehta, R. L. et al. A randomized clinical trial of continuous versus intermittent dialysis for acute renal failure. Kidney Int. 60, 1154–1163 (2001).

    CAS  PubMed  Google Scholar 

  160. Schneider, A. G. et al. Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: a systematic review and meta-analysis. Intensive Care Med. 39, 987–997 (2013).

    CAS  PubMed  Google Scholar 

  161. Uchino, S. et al. Patient and kidney survival by dialysis modality in critically ill patients with acute kidney injury. Int. J. Artif. Organs 30, 281–292 (2007).

    CAS  PubMed  Google Scholar 

  162. Wald, R. et al. The association between renal replacement therapy modality and long-term outcomes among critically ill adults with acute kidney injury: a retrospective cohort study. Crit. Care Med. http://dx.doi.org/10.1097/CCM.0000000000000042.

  163. Coca, S. G., Singanamala, S. & Parikh, C. R. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 81, 442–448 (2012).

    PubMed  Google Scholar 

  164. Pannu, N. et al. Association between AKI, recovery of renal function, and long-term outcomes after hospital discharge. Clin. J. Am. Soc. Nephrol. 8, 194–202 (2013).

    PubMed  Google Scholar 

  165. Hamel, M. B. et al. Outcomes and cost-effectiveness of initiating dialysis and continuing aggressive care in seriously ill hospitalized adults. SUPPORT Investigators. Study to understand prognoses and preferences for outcomes and risks of treatments. Ann. Intern. Med. 127, 195–202 (1997).

    CAS  PubMed  Google Scholar 

  166. Ahlstrom, A., Tallgren, M., Peltonen, S., Rasanen, P. & Pettila, V. Survival and quality of life of patients requiring acute renal replacement therapy. Intensive Care Med. 31, 1222–1228 (2005).

    PubMed  Google Scholar 

  167. Delannoy, B. et al. Six-month outcome in acute kidney injury requiring renal replacement therapy in the ICU: a multicentre prospective study. Intensive Care Med. 35, 1907–1915 (2009).

    CAS  PubMed  Google Scholar 

  168. Hofhuis, J. G., van Stel, H. F., Schrijvers, A. J., Rommes, J. H. & Spronk, P. E. The effect of acute kidney injury on long-term health-related quality of life: a prospective follow-up study. Crit. Care 17, R17 (2013).

    PubMed  PubMed Central  Google Scholar 

  169. Johansen, K. L. et al. Predictors of health utility among 60-day survivors of acute kidney injury in the Veterans Affairs/National Institutes of Health acute renal failure trial network study. Clin. J. Am. Soc. Nephrol. 5, 1366–1372 (2010).

    PubMed  PubMed Central  Google Scholar 

  170. Joyce, V. R. et al. Health-related quality of life as a predictor of mortality among survivors of AKI. Clin. J. Am. Soc. Nephrol. 7, 1063–1070 (2012).

    PubMed  PubMed Central  Google Scholar 

  171. Morsch, C., Thome, F. S., Balbinotto, A., Guimaraes, J. F. & Barros, E. G. Health-related quality of life and dialysis dependence in critically ill patient survivors of acute kidney injury. Ren. Fail. 33, 949–956 (2011).

    PubMed  Google Scholar 

  172. Fischer, M. J., Brimhall, B. B., Lezotte, D. C., Glazner, J. E. & Parikh, C. R. Uncomplicated acute renal failure and hospital resource utilization: a retrospective multicenter analysis. Am. J. Kidney Dis. 46, 1049–1057 (2005).

    PubMed  Google Scholar 

  173. Pan, S. W. et al. Acute kidney injury on ventilator initiation day independently predicts prolonged mechanical ventilation in intensive care unit patients. J. Crit. Care 26, 586–592 (2011).

    PubMed  Google Scholar 

  174. Vieira, J. M. Jr et al. Effect of acute kidney injury on weaning from mechanical ventilation in critically ill patients. Crit. Care Med. 35, 184–191 (2007).

    PubMed  Google Scholar 

  175. Dasta, J. F., Kane-Gill, S. L., Durtschi, A. J., Pathak, D. S. & Kellum, J. A. Costs and outcomes of acute kidney injury (AKI) following cardiac surgery. Nephrol. Dial. Transplant. 23, 1970–1974 (2008).

    PubMed  Google Scholar 

  176. Elseviers, M. M. et al. Renal replacement therapy is an independent risk factor for mortality in critically ill patients with acute kidney injury. Crit. Care 14, R221 (2010).

    PubMed  PubMed Central  Google Scholar 

  177. Vaara, S. T. et al. Association of ICU size and annual case volume of renal replacement therapy patients with mortality. Acta Anaesthesiol. Scand. 56, 1175–1182 (2012).

    CAS  PubMed  Google Scholar 

  178. Farese, S., Jakob, S. M., Kalicki, R., Frey, F. J. & Uehlinger, D. E. Treatment of acute renal failure in the intensive care unit: lower costs by intermittent dialysis than continuous venovenous hemodiafiltration. Artif. Organs 33, 634–640 (2009).

    PubMed  Google Scholar 

  179. Manns, B. et al. Cost of acute renal failure requiring dialysis in the intensive care unit: clinical and resource implications of renal recovery. Crit. Care Med. 31, 449–455 (2003).

    PubMed  Google Scholar 

  180. Rauf, A. A. et al. Intermittent hemodialysis versus continuous renal replacement therapy for acute renal failure in the intensive care unit: an observational outcomes analysis. J. Intensive Care Med. 23, 195–203 (2008).

    PubMed  Google Scholar 

  181. Srisawat, N. et al. Cost of acute renal replacement therapy in the intensive care unit: results from the beginning and ending supportive therapy for the kidney (BEST Kidney) study. Crit. Care 14, R46 (2010).

    PubMed  PubMed Central  Google Scholar 

  182. Berbece, A. N. & Richardson, R. M. Sustained low-efficiency dialysis in the ICU: cost, anticoagulation, and solute removal. Kidney Int. 70, 963–968 (2006).

    CAS  PubMed  Google Scholar 

  183. Fieghen, H. E. et al. The hemodynamic tolerability and feasibility of sustained low efficiency dialysis in the management of critically ill patients with acute kidney injury. BMC Nephrol. 11, 32 (2010).

    PubMed  PubMed Central  Google Scholar 

  184. Chionh, C. Y., Soni, S. S., Finkelstein, F. O., Ronco, C. & Cruz, D. N. Use of peritoneal dialysis in AKI: a systematic review. Clin. J. Am. Soc. Nephrol. 8, 1649–1660 (2013).

    PubMed  PubMed Central  Google Scholar 

  185. Phu, N. H. et al. Hemofiltration and peritoneal dialysis in infection-associated acute renal failure in Vietnam. N. Engl. J. Med. 347, 895–902 (2002).

    PubMed  Google Scholar 

  186. Bazari, H. Hemofiltration and peritoneal dialysis in infection-associated acute renal failure. N. Engl. J. Med. 348, 858–860 (2003).

    PubMed  Google Scholar 

  187. Daugirdas, J. T. Peritoneal dialysis in acute renal failure--why the bad outcome? N. Engl. J. Med. 347, 933–935 (2002).

    PubMed  Google Scholar 

  188. Gabriel, D. P. et al. High volume peritoneal dialysis for acute renal failure. Perit. Dial. Int. 27, 277–282 (2007).

    CAS  PubMed  Google Scholar 

  189. Ponce, D., Berbel, M. N., Abrao, J. M., Goes, C. R. & Balbi, A. L. A randomized clinical trial of high volume peritoneal dialysis versus extended daily hemodialysis for acute kidney injury patients. Int. Urol. Nephrol. 45, 869–878 (2013).

    CAS  PubMed  Google Scholar 

  190. Ponce, D., Berbel, M. N., Regina de Goes, C., Almeida, C. T. & Balbi, A. L. High-volume peritoneal dialysis in acute kidney injury: indications and limitations. Clin. J. Am. Soc. Nephrol. 7, 887–894 (2012).

    PubMed  Google Scholar 

  191. Callegari, J. G. et al. Peritoneal dialysis for acute kidney injury in sub-Saharan Africa: challenges faced and lessons learned at Kilimanjaro Christian Medical Centre. Kidney Int. 81, 331–333 (2012).

    PubMed  Google Scholar 

  192. Laukkanen, A., Emaus, L., Pettila, V. & Kaukonen, K. M. Five-year cost-utility analysis of acute renal replacement therapy: a societal perspective. Intensive Care Med. 39, 406–413 (2013).

    PubMed  Google Scholar 

  193. Wald, R. et al. Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA 302, 1179–1185 (2009).

    CAS  PubMed  Google Scholar 

  194. Honeycutt, A. A. et al. Medical costs of CKD in the medicare population. J. Am. Soc. Nephrol. 24, 1478–1483 (2013).

    PubMed  PubMed Central  Google Scholar 

  195. Manns, B. J., Mendelssohn, D. C. & Taub, K. J. The economics of end-stage renal disease care in Canada: incentives and impact on delivery of care. Int. J. Health Care Finance Econ. 7, 149–169 (2007).

    PubMed  Google Scholar 

  196. Baboolal, K. et al. The cost of renal dialysis in a UK setting—a multicentre study. Nephrol. Dial. Transplant. 23, 1982–1989 (2008).

    PubMed  Google Scholar 

  197. Foley, R. N. & Collins, A. J. End-stage renal disease in the United States: an update from the United States Renal Data System. J. Am. Soc. Nephrol. 18, 2644–2648 (2007).

    PubMed  Google Scholar 

  198. Blake, C., Codd, M. B., Cassidy, A. & O'Meara, Y. M. Physical function, employment and quality of life in end-stage renal disease. J. Nephrol. 13, 142–149 (2000).

    CAS  PubMed  Google Scholar 

  199. Blake, C. & O'Meara, Y. M. Subjective and objective physical limitations in high-functioning renal dialysis patients. Nephrol. Dial. Transplant. 19, 3124–3129 (2004).

    PubMed  Google Scholar 

  200. Mammen, C. et al. Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am. J. Kidney Dis. 59, 523–530 (2012).

    PubMed  Google Scholar 

  201. Tjaden, L., Tong, A., Henning, P., Groothoff, J. & Craig, J. C. Children's experiences of dialysis: a systematic review of qualitative studies. Arch. Dis. Child. 97, 395–402 (2012).

    PubMed  Google Scholar 

  202. Tong, A. et al. Quality of life of young adults and adolescents with chronic kidney disease. J. Pediatr. 163, 1179–1185 e5 (2013).

    PubMed  Google Scholar 

  203. Forman, D. E. et al. Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure. J. Am. Coll. Cardiol. 43, 61–67 (2004).

    PubMed  Google Scholar 

  204. Newsome, B. B. et al. Long-term risk of mortality and end-stage renal disease among the elderly after small increases in serum creatinine level during hospitalization for acute myocardial infarction. Arch. Intern. Med. 168, 609–616 (2008).

    CAS  PubMed  Google Scholar 

  205. Yegenaga, I. et al. Clinical characteristics of patients developing ARF due to sepsis/systemic inflammatory response syndrome: results of a prospective study. Am. J. Kidney Dis. 43, 817–824 (2004).

    PubMed  Google Scholar 

  206. Oppert, M. et al. Acute renal failure in patients with severe sepsis and septic shock—a significant independent risk factor for mortality: results from the German prevalence study. Nephrol. Dial. Transplant. 23, 904–909 (2007).

    PubMed  Google Scholar 

  207. Gettings, L. G., Reynolds, H. N. & Scalea, T. Outcome in post-traumatic acute renal failure when continuous renal replacement therapy is applied early vs. late. Intensive Care Med. 25, 805–813 (1999).

    CAS  PubMed  Google Scholar 

  208. Van Biesen, W. et al. Relationship between fluid status and its management on acute renal failure (ARF) in intensive care unit (ICU) patients with sepsis: a prospective analysis. J. Nephrol. 18, 54–60 (2005).

    PubMed  Google Scholar 

  209. Maitland, K. et al. Mortality after fluid bolus in African children with severe infection. N. Engl. J. Med. 364, 2483–2495 (2011).

    CAS  PubMed  Google Scholar 

  210. Gattas, D. J. et al. Fluid resuscitation with 6% hydroxyethyl starch (130/0.4) in acutely ill patients: an updated systematic review and meta-analysis. Anesth. Analg. 114, 159–169 (2012).

    PubMed  Google Scholar 

  211. Zarychanski, R. et al. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA 309, 678–688 (2013).

    CAS  PubMed  Google Scholar 

  212. O'Malley, C. M. et al. A randomized, double-blind comparison of lactated Ringer's solution and 0.9% NaCl during renal transplantation. Anesth. Analg. 100, 1518–1524 (2005).

    CAS  PubMed  Google Scholar 

  213. Radaelli, G. et al. The use of inhibitors of angiotensin-converting enzyme and its relation to events in the postoperative period of CABG. Rev. Bras. Cir. Cardiovasc. 26, 373–379 (2011).

    PubMed  Google Scholar 

  214. Centers for Disease Control and Prevention. Acute kidney injury associated with synthetic cannabinoid use—multiple states, 2012. MMWR Morb. Mortal. Wkly Rep. 62, 93–98 (2013).

  215. Martinelli, S. M. et al. Trends in cardiac surgery-associated acute renal failure in the United States: a disproportionate increase after heart transplantation. Ren. Fail. 31, 633–640 (2009).

    PubMed  Google Scholar 

Download references

Acknowledgements

S. M. Bagshaw holds a Canada Research Chair in Critical Care Nephrology and his research is supported by a Clinical Investigator Award from Alberta Innovates–Health Solutions.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article, contributed to discussions of the content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Sean M. Bagshaw.

Ethics declarations

Competing interests

S. M. Bagshaw has consulted for Alere Inc, Baxter Inc and Gambro Inc. O. Rewa declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rewa, O., Bagshaw, S. Acute kidney injury—epidemiology, outcomes and economics. Nat Rev Nephrol 10, 193–207 (2014). https://doi.org/10.1038/nrneph.2013.282

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrneph.2013.282

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing