Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Alternative splicing and biological heterogeneity in prostate cancer

Abstract

The biological diversity of prostate cancer confounds standardization of therapy. Advances in molecular profiling suggest that differences in the genetic composition of tumors significantly contribute to the complexity of the disease. Alternative pre-mRNA splicing is a key genetic process underlying biological diversity. During alternative splicing, coding and noncoding regions of a single gene are rearranged to generate several messenger RNA transcripts yielding distinct protein isoforms with differing biological functions. Misregulation of the splicing machinery and mutations in key regulatory elements affect splicing of cancer-relevant genes. In prostate cancer, aberrant and alternative splicing generates proteins that influence cell phenotypes and survival of patients. Splicing events may be exploited for clinical benefit, and technological advances are beginning to uncover novel biomarkers and therapeutic targets. Since splicing mediates information transfer from the genome to the proteome, it adds an important dimension to '-omics'-based molecular signatures used to individualize care of patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alternative splicing.
Figure 2: Alternative splicing events.
Figure 3: Aberrant and alternative splicing events in prostate cancer.
Figure 4: Technological advances in alternative splicing discovery.

Similar content being viewed by others

References

  1. Heidenreich, A. et al. EAU guidelines on prostate cancer. Eur. Urol. 53, 68–80 (2008).

    Article  Google Scholar 

  2. Vickers, A. J. & Lilja, H. Prostate cancer: estimating the benefits of PSA screening. Nat. Rev. Urol. 6, 301–303 (2009).

    Article  Google Scholar 

  3. Witte, J. S. Prostate cancer genomics: towards a new understanding. Nat. Rev. Genet. 10, 77–82 (2009).

    Article  CAS  Google Scholar 

  4. Pennisi, E. Why do humans have so few genes? Science 309, 80 (2005).

    Article  CAS  Google Scholar 

  5. Stamm, S. et al. Function of alternative splicing. Gene 344, 1–20 (2005).

    Article  CAS  Google Scholar 

  6. Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    Article  CAS  Google Scholar 

  7. Venables, J. P. Aberrant and alternative splicing in cancer. Cancer Res. 64, 7647–7654 (2004).

    Article  CAS  Google Scholar 

  8. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  Google Scholar 

  9. Wang, J. et al. Pleiotropic biological activities of alternatively spliced TMPRSS2/ERG fusion gene transcripts. Cancer Res. 68, 8516–8524 (2008).

    Article  CAS  Google Scholar 

  10. Tomlins, S. A. et al. ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur. Urol. doi:10.1016/j.eururo.2009.04.036 (2009).

  11. Sahadevan, K. et al. Selective overexpression of fibroblast growth factor receptors 1 and 4 in clinical prostate cancer. J. Pathol. 213, 82–90 (2007).

    Article  CAS  Google Scholar 

  12. Gnanapragasam, V. J. et al. FGF8 isoform b expression in human prostate cancer. Br. J. Cancer 88, 1432–1438 (2003).

    Article  CAS  Google Scholar 

  13. Mercatante, D. R., Mohler, J. L. & Kole, R. Cellular response to an antisense-mediated shift of Bcl-x pre-mRNA splicing and antineoplastic agents. J. Biol. Chem. 277, 49374–49382 (2002).

    Article  CAS  Google Scholar 

  14. Woolard, J. et al. VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res. 64, 7822–7835 (2004).

    Article  CAS  Google Scholar 

  15. Pajares, M. J. et al. Alternative splicing: an emerging topic in molecular and clinical oncology. Lancet Oncol. 8, 349–357 (2007).

    Article  CAS  Google Scholar 

  16. Srebrow, A. & Kornblihtt, A. R. The connection between splicing and cancer. J. Cell Sci. 119, 2635–2641 (2006).

    Article  CAS  Google Scholar 

  17. Narla, G. et al. A germline DNA polymorphism enhances alternative splicing of the KLF6 tumor suppressor gene and is associated with increased prostate cancer risk. Cancer Res. 65, 1213–1222 (2005).

    Article  CAS  Google Scholar 

  18. Narla, G. et al. KLF6-SV1 overexpression accelerates human and mouse prostate cancer progression and metastasis. J. Clin. Invest. 118, 2711–2721 (2008).

    Article  CAS  Google Scholar 

  19. Wang, G. S. & Cooper, T. A. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat. Rev. Genet. 8, 749–761 (2007).

    Article  CAS  Google Scholar 

  20. Grosso, A. R., Martins, S. & Carmo-Fonseca, M. The emerging role of splicing factors in cancer. EMBO Rep. 9, 1087–1093 (2008).

    Article  CAS  Google Scholar 

  21. Ghigna, C. et al. Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol. Cell. 20, 881–890 (2005).

    Article  CAS  Google Scholar 

  22. Karni, R. et al. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat. Struct. Mol. Biol. 14, 185–193 (2007).

    Article  CAS  Google Scholar 

  23. Rajan, P. et al. The RNA-binding and adaptor protein Sam68 modulates signal-dependent splicing and transcriptional activity of the androgen receptor. J. Pathol. 215, 67–77 (2008).

    Article  CAS  Google Scholar 

  24. Clark, E. L. et al. The RNA helicase p68 is a novel androgen receptor co-activator involved in splicing and is overexpressed in prostate cancer. Cancer Res. 68, 7938–7946 (2008).

    Article  CAS  Google Scholar 

  25. Ule, J., Jensen, K., Mele, A. & Darnell, R. B. CLIP: a method for identifying protein–RNA interaction sites in living cells. Methods 37, 376–386 (2005).

    Article  CAS  Google Scholar 

  26. Segal, E., Friedman, N., Kaminski, N., Regev, A. & Koller, D. From signatures to models: understanding cancer using microarrays. Nat. Genet. 37 (Suppl.), S38–S45 (2005).

    Article  CAS  Google Scholar 

  27. Li, H. R. et al. Two-dimensional transcriptome profiling: identification of messenger RNA isoform signatures in prostate cancer from archived paraffin-embedded cancer specimens. Cancer Res. 66, 4079–4088 (2006).

    Article  CAS  Google Scholar 

  28. Zhang, C. et al. Profiling alternatively spliced mRNA isoforms for prostate cancer classification. BMC Bioinformatics 7, 202 (2006).

    Article  Google Scholar 

  29. Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).

    Article  CAS  Google Scholar 

  30. Li, H. et al. Determination of tag density required for digital transcriptome analysis: application to an androgen-sensitive prostate cancer model. Proc. Natl Acad. Sci. USA 105, 20179–20184 (2008).

    Article  CAS  Google Scholar 

  31. Brinkman, B. M. Splice variants as cancer biomarkers. Clin. Biochem. 37, 584–594 (2004).

    Article  CAS  Google Scholar 

  32. Heuze-Vourc'h, N., Leblond, V. & Courty, Y. Complex alternative splicing of the hKLK3 gene coding for the tumor marker PSA (prostate-specific-antigen). Eur. J. Biochem. 270, 706–714 (2003).

    Article  CAS  Google Scholar 

  33. Ponta, H., Sherman, L. & Herrlich, P. A. CD44: from adhesion molecules to signaling regulators. Nat. Rev. Mol. Cell Biol. 4, 33–45 (2003).

    Article  CAS  Google Scholar 

  34. Muraki, M. et al. Manipulation of alternative splicing by a newly developed inhibitor of Clks. J. Biol. Chem. 279, 24246–24254 (2004).

    Article  CAS  Google Scholar 

  35. Mercatante, D. R., Bortner, C. D., Cidlowski, J. A. & Kole, R. Modification of alternative splicing of Bcl-x pre-mRNA in prostate and breast cancer cells. Analysis of apoptosis and cell death. J. Biol. Chem. 276, 16411–16417 (2001).

    Article  CAS  Google Scholar 

  36. Brambilla, C. et al. Oligomer-mediated modulation of hTERT alternative splicing induces telomerase inhibition and cell growth decline in human prostate cancer cells. Cell. Mol. Life Sci. 61, 1764–1774 (2004).

    Article  CAS  Google Scholar 

  37. Tijink, B. M. et al. A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus. Clin. Cancer Res. 12, 6064–6072 (2006).

    Article  CAS  Google Scholar 

  38. Thorsen, K. et al. Alternative splicing in colon, bladder, and prostate cancer identified by exon-array analysis. Mol. Cell. Proteomics 7, 1214–1224 (2008).

    Article  CAS  Google Scholar 

  39. Skotheim, R. I. & Nees, M. Alternative splicing in cancer: noise, functional, or systematic? Int. J. Biochem. Cell Biol. 39, 1432–1449 (2007).

    Article  CAS  Google Scholar 

  40. Eeles, R. A. et al. Multiple newly identified loci associated with prostate cancer susceptibility. Nat. Genet. 40, 316–321 (2008).

    Article  CAS  Google Scholar 

  41. Varambally, S. et al. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 8, 393–406 (2005).

    Article  CAS  Google Scholar 

  42. Sreekumar, A. et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 910–914 (2009).

    Article  CAS  Google Scholar 

  43. Carstens, R. P., Wagner, E. J. & Garcia-Blanco, M. A. An intronic splicing silencer causes skipping of the IIIb exon of fibroblast growth factor receptor 2 through involvement of polypyrimidine tract binding protein. Mol. Cell Biol. 20, 7388–7400 (2000).

    Article  CAS  Google Scholar 

  44. Black, D. L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003).

    Article  CAS  Google Scholar 

  45. Matlin, A. J., Clark, F. & Smith, C. W. Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 6, 386–398 (2005).

    Article  CAS  Google Scholar 

  46. Stamm, S. Signals and their transduction pathways regulating alternative splicing: a new dimension of the human genome. Hum. Mol. Genet. 11, 2409–2416 (2002).

    Article  CAS  Google Scholar 

  47. Matter, N., Herrlich, P. & Konig, H. Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 420, 691–695 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P. Rajan was supported during a recent PhD tenure by a Medical Research Council Clinical Research Training Fellowship and a Royal College of Surgeons of England Surgical Research Fellowship. D. J. Elliott and H. Y. Leung currently hold an Association for International Cancer Research project grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhakar Rajan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajan, P., Elliott, D., Robson, C. et al. Alternative splicing and biological heterogeneity in prostate cancer. Nat Rev Urol 6, 454–460 (2009). https://doi.org/10.1038/nrurol.2009.125

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrurol.2009.125

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing