Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Host–pathogen interactions in urinary tract infection

Abstract

The urinary tract is a common site of bacterial infections; nearly half of all women experience at least one urinary tract infection (UTI) during their lifetime. These infections are classified based on the condition of the host. Uncomplicated infections affect otherwise healthy individuals and are most commonly caused by uropathogenic Escherichia coli, whereas complicated infections affect patients with underlying difficulties, such as a urinary tract abnormality or catheterization, and are commonly caused by species such as Proteus mirabilis. Virulence and fitness factors produced by both pathogens include fimbriae, toxins, flagella, iron acquisition systems, and proteins that function in immune evasion. Additional factors that contribute to infection include the formation of intracellular bacterial communities by E. coli and the production of urease by P. mirabilis, which can result in urinary stone formation. Innate immune responses are induced or mediated by pattern recognition receptors, antimicrobial peptides, and neutrophils. The adaptive immune response to UTI is less well understood. Host factors TLR4 and CXCR1 are implicated in disease outcome and susceptibility, respectively. Low levels of TLR4 are associated with asymptomatic bacteriuria while low levels of CXCR1 are associated with increased incidence of acute pyelonephritis. Current research is focused on the identification of additional virulence factors and therapeutic or prophylactic targets that might be used in the generation of vaccines against both uropathogens.

Key Points

  • The urinary tract is a common site of bacterial infection

  • Uropathogenic Escherichia coli and Proteus mirabilis are representative pathogens of uncomplicated and complicated urinary tract infection (UTI), respectively

  • Virulence and fitness factors synthesized by both pathogens include fimbriae, toxins, flagella, iron acquisition systems, and proteins that function in immune evasion

  • Additional factors that contribute to infection include the formation of intracellular bacterial communities by E. coli and the production of urease by P. mirabilis, which can result in urinary stone formation

  • Innate immune responses are induced or mediated by pattern recognition receptors, antimicrobial peptides, and neutrophils; the adaptive immune response to UTI is less well understood

  • Host factors TLR4 and CXCR1 are implicated in disease outcome and susceptibility, respectively; low levels of TLR4 are associated with asymptomatic bacteriuria; low levels of CXCR1 are associated with increased incidence of acute pyelonephritis

  • Reverse vaccinology approaches are currently underway to identify potential vaccine candidates for both pathogens

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of uropathogen virulence factors.
Figure 2: Known mechanisms of immune evasion.
Figure 3: Formation of urinary stones is the result of bacterial urease.
Figure 4: Uropathogenic Escherichia coli interaction with components of the host immune system.

Similar content being viewed by others

References

  1. Foxman, B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Dis. Mon. 49, 53–70 (2003).

    Article  PubMed  Google Scholar 

  2. Guay, D. R. Contemporary management of uncomplicated urinary tract infections. Drugs 68, 1169–1205 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. O'Hanley, P. in Urinary Tract Infections: Molecular Pathogenesis and Clinical Management (eds Mobley, H. L. T. & Warren, J. W.) 405–425 (ASM Press, Washington, DC, 1996).

    Google Scholar 

  4. Zorc, J. J., Kiddoo, D. A. & Shaw, K. N. Diagnosis and management of pediatric urinary tract infections. Clin. Microbiol. Rev. 18, 417–422 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Litwin, M. S. & Saigal, C. S. (Eds) Urologic Diseases in America (Government Printing Office, Washington, D. C., 2007).

    Google Scholar 

  6. DeFrances, C. J., Lucas, C. A., Buie, V. C. & Golosinskiy, A. 2006 National Hospital Discharge Survey. National health statistics reports; no 5. (Hyattsville, MD, 2008).

    Google Scholar 

  7. Hooton, T. M. et al. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin. Infect. Dis. 50, 625–663 (2010).

    Article  PubMed  Google Scholar 

  8. Nicolle, L. E. Catheter-related urinary tract infection. Drugs Aging 22, 627–639 (2005).

    Article  PubMed  Google Scholar 

  9. Mobley, H. L., Donnenberg, M. S. & Hagan, E. C. EcoSal—Escherichia coli and Salmonella: Cellular and Molecular Biology (eds Böck, A. et al.) (ASM Press, Washington, DC, 2009).

    Google Scholar 

  10. Sosa, V., Schlapp, G. & Zunino, P. Proteus mirabilis isolates of different origins do not show correlation with virulence attributes and can colonize the urinary tract of mice. Microbiology 152, 2149–2157 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Welch, R. A. et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 99, 17020–17024 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brzuszkiewicz, E. et al. How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc. Natl Acad. Sci. USA 103, 12879–12884 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, S. L. et al. Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach. Proc. Natl Acad. Sci. USA 103, 5977–5982 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Touchon, M. et al. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet. 5, e1000344 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pearson, M. M. et al. The complete genome sequence of uropathogenic Proteus mirabilis, a master of both adherence and motility. J. Bacteriol. 190, 4027–4037 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sabate, M., Moreno, E., Perez, T., Andreu, A. & Prats, G. Pathogenicity island markers in commensal and uropathogenic Escherichia coli isolates. Clin. Microbiol. Infect. 12, 880–886 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Oelschlaeger, T. A., Dobrindt, U. & Hacker, J. Pathogenicity islands of uropathogenic E. coli and the evolution of virulence. Int. J. Antimicrob. Agents 19, 517–521 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Ye, C. & Xu, J. Prevalence of iron transport gene on pathogenicity-associated island of uropathogenic Escherichia coli in E. coli O157:H7 containing Shiga toxin gene. J. Clin. Microbiol. 39, 2300–2305 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lloyd, A. L., Rasko, D. A. & Mobley, H. L. Defining genomic islands and uropathogen-specific genes in uropathogenic Escherichia coli. J. Bacteriol. 189, 3532–3546 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Flannery, E. L., Mody, L. & Mobley, H. L. Identification of a modular pathogenicity island that is widespread among urease-producing uropathogens and shares features with a diverse group of mobile elements. Infect. Immun. 77, 4887–4894 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Connell, I. et al. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc. Natl Acad. Sci. USA 93, 9827–9832 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu, X. R., Sun, T. T. & Medina, J. J. In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proc. Natl Acad. Sci. USA 93, 9630–9635 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lane, M. C. & Mobley, H. L. Role of P-fimbrial-mediated adherence in pyelonephritis and persistence of uropathogenic Escherichia coli (UPEC) in the mammalian kidney. Kidney Int. 72, 19–25 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Westerlund, B. et al. The O75X adhesin of uropathogenic Escherichia coli is a type IV collagen-binding protein. Mol. Microbiol. 3, 329–337 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Goluszko, P. et al. Development of experimental model of chronic pyelonephritis with Escherichia coli O75:K5:H-bearing Dr fimbriae: mutation in the dra region prevented tubulointerstitial nephritis. J. Clin. Invest. 99, 1662–1672 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Das, M. et al. Hydrophilic domain II of Escherichia coli Dr fimbriae facilitates cell invasion. Infect. Immun. 73, 6119–6126 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pere, A., Nowicki, B., Saxen, H., Siitonen, A. & Korhonen, T. K. Expression of P, type-1, and type-1C fimbriae of Escherichia coli in the urine of patients with acute urinary tract infection. J. Infect. Dis. 156, 567–574 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Buckles, E. L. et al. Identification and characterization of a novel uropathogenic Escherichia coli-associated fimbrial gene cluster. Infect. Immun. 72, 3890–3901 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Valle, J. et al. UpaG, a new member of the trimeric autotransporter family of adhesins in uropathogenic Escherichia coli. J. Bacteriol. 190, 4147–4161 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boehm, D. F., Welch, R. A. & Snyder, I. S. Calcium is required for binding of Escherichia coli hemolysin (HlyA) to erythrocyte membranes. Infect. Immun. 58, 1951–1958 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Island, M. D. et al. Cytotoxicity of hemolytic, cytotoxic necrotizing factor 1-positive and -negative Escherichia coli to human T24 bladder cells. Infect. Immun. 66, 3384–3389 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mobley, H. L. et al. Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect. Immun. 58, 1281–1289 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Trifillis, A. L. et al. Binding to and killing of human renal epithelial cells by hemolytic P-fimbriated E. coli. Kidney Int. 46, 1083–1091 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Uhlen, P. et al. Alpha-haemolysin of uropathogenic E. coli induces Ca2+ oscillations in renal epithelial cells. Nature 405, 694–697 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Smith, Y. C., Rasmussen, S. B., Grande, K. K., Conran, R. M. & O'Brien, A. D. Hemolysin of uropathogenic Escherichia coli evokes extensive shedding of the uroepithelium and hemorrhage in bladder tissue within the first 24 hours after intraurethral inoculation of mice. Infect. Immun. 76, 2978–2990 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. O'Hanley, P., Lalonde, G. & Ji, G. Alpha-hemolysin contributes to the pathogenicity of piliated digalactoside-binding Escherichia coli in the kidney: efficacy of an alpha-hemolysin vaccine in preventing renal injury in the BALB/c mouse model of pyelonephritis. Infect. Immun. 59, 1153–1161 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Boquet, P. The cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli. Toxicon 39, 1673–1680 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Lemonnier, M., Landraud, L. & Lemichez, E. Rho GTPase-activating bacterial toxins: from bacterial virulence regulation to eukaryotic cell biology. FEMS Microbiol. Rev. 31, 515–534 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Falzano, L. et al. Induction of phagocytic behaviour in human epithelial cells by Escherichia coli cytotoxic necrotizing factor type 1. Mol. Microbiol. 9, 1247–1254 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Hofman, P. et al. Escherichia coli cytotoxic necrotizing factor-1 (CNF-1) increases the adherence to epithelia and the oxidative burst of human polymorphonuclear leukocytes but decreases bacteria phagocytosis. J. Leukoc. Biol. 68, 522–528 (2000).

    CAS  PubMed  Google Scholar 

  42. Mills, M., Meysick, K. C. & O'Brien, A. D. Cytotoxic necrotizing factor type 1 of uropathogenic Escherichia coli kills cultured human uroepithelial 5637 cells by an apoptotic mechanism. Infect. Immun. 68, 5869–5880 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Johnson, D. E. et al. The role of cytotoxic necrotizing factor-1 in colonization and tissue injury in a murine model of urinary tract infection. FEMS Immunol. Med. Microbiol. 28, 37–41 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Rippere-Lampe, K. E., O'Brien, A. D., Conran, R. & Lockman, H. A. Mutation of the gene encoding cytotoxic necrotizing factor type 1 (cnf1) attenuates the virulence of uropathogenic Escherichia coli. Infect. Immun. 69, 3954–3964 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Parham, N. J. et al. PicU, a second serine protease autotransporter of uropathogenic Escherichia coli. FEMS Microbiol. Lett. 230, 73–83 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Guyer, D. M., Radulovic, S., Jones, F. E. & Mobley, H. L. Sat, the secreted autotransporter toxin of uropathogenic Escherichia coli, is a vacuolating cytotoxin for bladder and kidney epithelial cells. Infect. Immun. 70, 4539–4546 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Heimer, S. R., Rasko, D. A., Lockatell, C. V., Johnson, D. E. & Mobley, H. L. Autotransporter genes pic and tsh are associated with Escherichia coli strains that cause acute pyelonephritis and are expressed during urinary tract infection. Infect. Immun. 72, 593–597 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lane, M. C. et al. Role of motility in the colonization of uropathogenic Escherichia coli in the urinary tract. Infect. Immun. 73, 7644–7656 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wright, K. J., Seed, P. C. & Hultgren, S. J. Uropathogenic Escherichia coli flagella aid in efficient urinary tract colonization. Infect. Immun. 73, 7657–7668 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Snyder, J. A. et al. Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect. Immun. 72, 6373–6381 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lane, M. C., Alteri, C. J., Smith, S. N. & Mobley, H. L. Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc. Natl Acad. Sci. USA 104, 16669–16674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hagan, E. C. & Mobley, H. L. Haem acquisition is facilitated by a novel receptor Hma and required by uropathogenic Escherichia coli for kidney infection. Mol. Microbiol. 71, 79–91 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Torres, A. G., Redford, P., Welch, R. A. & Payne, S. M. TonB-dependent systems of uropathogenic Escherichia coli: aerobactin and heme transport and TonB are required for virulence in the mouse. Infect. Immun. 69, 6179–6185 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Johnson, J. R. et al. The IrgA homologue adhesin Iha is an Escherichia coli virulence factor in murine urinary tract infection. Infect. Immun. 73, 965–971 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Russo, T. A., Carlino, U. B. & Johnson, J. R. Identification of a new iron-regulated virulence gene, ireA, in an extraintestinal pathogenic isolate of Escherichia coli. Infect. Immun. 69, 6209–6216 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Russo, T. A. et al. Iron functions as a siderophore receptor and is a urovirulence factor in an extraintestinal pathogenic isolate of Escherichia coli. Infect. Immun. 70, 7156–7160 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sabri, M., Houle, S. & Dozois, C. M. Roles of the extraintestinal pathogenic Escherichia coli ZnuACB and ZupT zinc transporters during urinary tract infection. Infect. Immun. 77, 1155–1164 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Goetz, D. H. et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 10, 1033–1043 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Fischbach, M. A. et al. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc. Natl Acad. Sci. USA 103, 16502–16507 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Smith, K. D. Iron metabolism at the host pathogen interface: lipocalin 2 and the pathogen-associated iroA gene cluster. Int. J. Biochem. Cell. Biol. 39, 1776–1780 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cirl, C. et al. Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat. Med. 14, 399–406 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Billips, B. K., Schaeffer, A. J. & Klumpp, D. J. Molecular basis of uropathogenic Escherichia coli evasion of the innate immune response in the bladder. Infect. Immun. 76, 3891–3900 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hunstad, D. A., Justice, S. S., Hung, C. S., Lauer, S. R. & Hultgren, S. J. Suppression of bladder epithelial cytokine responses by uropathogenic Escherichia coli. Infect. Immun. 73, 3999–4006 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Johnson, J. R., Clabots, C. & Rosen, H. Effect of inactivation of the global oxidative stress regulator oxyR on the colonization ability of Escherichia coli O1:K1:H7 in a mouse model of ascending urinary tract infection. Infect. Immun. 74, 461–468 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bower, J. M. & Mulvey, M. A. Polyamine-mediated resistance of uropathogenic Escherichia coli to nitrosative stress. J. Bacteriol. 188, 928–933 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kulesus, R. R., Diaz-Perez, K., Slechta, E. S., Eto, D. S. & Mulvey, M. A. Impact of the RNA chaperone Hfq on the fitness and virulence potential of uropathogenic Escherichia coli. Infect. Immun. 76, 3019–3026 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Svensson, L., Marklund, B. I., Poljakovic, M. & Persson, K. Uropathogenic Escherichia coli and tolerance to nitric oxide: the role of flavohemoglobin. J. Urol. 175, 749–753 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Lloyd, A. L., Smith, S. N., Eaton, K. A. & Mobley, H. L. Uropathogenic Escherichia coli suppresses the host inflammatory response via pathogenicity island genes sisA and sisB. Infect. Immun. 77, 5322–5333 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li, K., Feito, M. J., Sacks, S. H. & Sheerin, N. S. CD46 (membrane cofactor protein) acts as a human epithelial cell receptor for internalization of opsonized uropathogenic Escherichia coli. J. Immunol. 177, 2543–2551 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Mysorekar, I. U. & Hultgren, S. J. Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc. Natl Acad. Sci. USA 103, 14170–14175 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Anderson, G. G. et al. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301, 105–107 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Rosen, D. A., Hooton, T. M., Stamm, W. E., Humphrey, P. A. & Hultgren, S. J. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med. 4, e329 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Anderson, G. G., Martin, S. M. & Hultgren, S. J. Host subversion by formation of intracellular bacterial communities in the urinary tract. Microbes Infect. 6, 1094–1101 (2004).

    Article  PubMed  Google Scholar 

  74. Justice, S. S. et al. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc. Natl Acad. Sci. USA 101, 1333–1338 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rocha, S. P., Pelayo, J. S. & Elias, W. P. Fimbriae of uropathogenic Proteus mirabilis. FEMS Immunol. Med. Microbiol. 51, 1–7 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Bahrani, F. K., Johnson, D. E., Robbins, D. & Mobley, H. L. Proteus mirabilis flagella and MR/P fimbriae: isolation, purification, N-terminal analysis, and serum antibody response following experimental urinary tract infection. Infect. Immun. 59, 3574–3580 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Jansen, A. M., Lockatell, V., Johnson, D. E. & Mobley, H. L. Mannose-resistant Proteus-like fimbriae are produced by most Proteus mirabilis strains infecting the urinary tract, dictate the in vivo localization of bacteria, and contribute to biofilm formation. Infect. Immun. 72, 7294–7305 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li, X., Johnson, D. E. & Mobley, H. L. Requirement of MrpH for mannose-resistant Proteus-like fimbria-mediated hemagglutination by Proteus mirabilis. Infect. Immun. 67, 2822–2833 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bahrani, F. K. et al. Construction of an MR/P fimbrial mutant of Proteus mirabilis: role in virulence in a mouse model of ascending urinary tract infection. Infect. Immun. 62, 3363–3371 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Li, X., Lockatell, C. V., Johnson, D. E. & Mobley, H. L. Identification of MrpI as the sole recombinase that regulates the phase variation of MR/P fimbria, a bladder colonization factor of uropathogenic Proteus mirabilis. Mol. Microbiol. 45, 865–874 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Altman, E. et al. Galectin-3-mediated adherence of Proteus mirabilis to Madin-Darby canine kidney cells. Biochem. Cell. Biol. 79, 783–788 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Lee, K. K., Harrison, B. A., Latta, R. & Altman, E. The binding of Proteus mirabilis nonagglutinating fimbriae to ganglio-series asialoglycolipids and lactosyl ceramide. Can. J. Microbiol. 46, 961–966 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Wray, S. K., Hull, S. I., Cook, R. G., Barrish, J. & Hull, R. A. Identification and characterization of a uroepithelial cell adhesin from a uropathogenic isolate of Proteus mirabilis. Infect. Immun. 54, 43–49 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Massad, G., Lockatell, C. V., Johnson, D. E. & Mobley, H. L. Proteus mirabilis fimbriae: construction of an isogenic pmfA mutant and analysis of virulence in a CBA mouse model of ascending urinary tract infection. Infect. Immun. 62, 536–542 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zunino, P. et al. Proteus mirabilis fimbriae (PMF) are important for both bladder and kidney colonization in mice. Microbiology 149, 3231–3237 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Massad, G., Bahrani, F. K. & Mobley, H. L. Proteus mirabilis fimbriae: identification, isolation, and characterization of a new ambient-temperature fimbria. Infect. Immun. 62, 1989–1994 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zunino, P., Geymonat, L., Allen, A. G., Legnani-Fajardo, C. & Maskell, D. J. Virulence of a Proteus mirabilis ATF isogenic mutant is not impaired in a mouse model of ascending urinary tract infection. FEMS Immunol. Med. Microbiol. 29, 137–143 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Bijlsma, I. G., van Dijk, L., Kusters, J. G. & Gaastra, W. Nucleotide sequences of two fimbrial major subunit genes, pmpA and ucaA, from canine-uropathogenic Proteus mirabilis strains. Microbiology 141, 1349–1357 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Uphoff, T. S. & Welch, R. A. Nucleotide sequencing of the Proteus mirabilis calcium-independent hemolysin genes (hpmA and hpmB) reveals sequence similarity with the Serratia marcescens hemolysin genes (shlA and shlB). J. Bacteriol. 172, 1206–1216 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Welch, R. A. Identification of two different hemolysin determinants in uropathogenic Proteus isolates. Infect. Immun. 55, 2183–2190 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Alamuri, P. & Mobley, H. L. A novel autotransporter of uropathogenic Proteus mirabilis is both a cytotoxin and an agglutinin. Mol. Microbiol. 68, 997–1017 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Alamuri, P., Eaton, K. A., Himpsl, S. D., Smith, S. N. & Mobley, H. L. Vaccination with proteus toxic agglutinin, a hemolysin-independent cytotoxin in vivo, protects against Proteus mirabilis urinary tract infection. Infect. Immun. 77, 632–641 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Rather, P. N. Swarmer cell differentiation in Proteus mirabilis. Environ. Microbiol. 7, 1065–1073 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Jansen, A. M., Lockatell, C. V., Johnson, D. E. & Mobley, H. L. Visualization of Proteus mirabilis morphotypes in the urinary tract: the elongated swarmer cell is rarely observed in ascending urinary tract infection. Infect. Immun. 71, 3607–3613 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jones, B. V., Young, R., Mahenthiralingam, E. & Stickler, D. J. Ultrastructure of Proteus mirabilis swarmer cell rafts and role of swarming in catheter-associated urinary tract infection. Infect. Immun. 72, 3941–3950 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mobley, H. L. et al. Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect. Immun. 64, 5332–5340 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Zunino, P., Piccini, C. & Legnani-Fajardo, C. Flagellate and non-flagellate Proteus mirabilis in the development of experimental urinary tract infection. Microb. Pathog. 16, 379–385 (1994).

    Article  CAS  PubMed  Google Scholar 

  98. Evanylo, L. P., Kadis, S. & Maudsley, J. R. Siderophore production by Proteus mirabilis. Can. J. Microbiol. 30, 1046–1051 (1984).

    Article  CAS  PubMed  Google Scholar 

  99. Lima, A., Zunino, P., D'Alessandro, B. & Piccini, C. An iron-regulated outer-membrane protein of Proteus mirabilis is a haem receptor that plays an important role in urinary tract infection and in in vivo growth. J. Med. Microbiol. 56, 1600–1607 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Drechsel, H., Thieken, A., Reissbrodt, R., Jung, G. & Winkelmann, G. Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J. Bacteriol. 175, 2727–2733 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Massad, G., Zhao, H. & Mobley, H. L. Proteus mirabilis amino acid deaminase: cloning, nucleotide sequence, and characterization of aad. J. Bacteriol. 177, 5878–5883 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nielubowicz, G. R., Smith, S. N. & Mobley, H. L. Zinc uptake contributes to motility and provides a competitive advantage to Proteus mirabilis during experimental urinary tract infection. Infect. Immun. 78, 2823–2833 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Belas, R., Manos, J. & Suvanasuthi, R. Proteus mirabilis ZapA metalloprotease degrades a broad spectrum of substrates, including antimicrobial peptides. Infect. Immun. 72, 5159–5167 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Senior, B. W., Loomes, L. M. & Kerr, M. A. The production and activity in vivo of Proteus mirabilis IgA protease in infections of the urinary tract. J. Med. Microbiol. 35, 203–207 (1991).

    Article  CAS  PubMed  Google Scholar 

  105. Walker, K. E., Moghaddame-Jafari, S., Lockatell, C. V., Johnson, D. & Belas, R. ZapA, the IgA-degrading metalloprotease of Proteus mirabilis, is a virulence factor expressed specifically in swarmer cells. Mol. Microbiol. 32, 825–836 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Belas, R. & Flaherty, D. Sequence and genetic analysis of multiple flagellin-encoding genes from Proteus mirabilis. Gene 148, 33–41 (1994).

    Article  CAS  PubMed  Google Scholar 

  107. Belas, R. Expression of multiple flagellin-encoding genes of Proteus mirabilis. J. Bacteriol. 176, 7169–7181 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Murphy, C. A. & Belas, R. Genomic rearrangements in the flagellin genes of Proteus mirabilis. Mol. Microbiol. 31, 679–690 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Zhao, H., Li, X., Johnson, D. E., Blomfield, I. & Mobley, H. L. In vivo phase variation of MR/P fimbrial gene expression in Proteus mirabilis infecting the urinary tract. Mol. Microbiol. 23, 1009–1019 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Li, X. et al. Visualization of Proteus mirabilis within the matrix of urease-induced bladder stones during experimental urinary tract infection. Infect. Immun. 70, 389–394 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Thomas, W. E., Nilsson, L. M., Forero, M., Sokurenko, E. V. & Vogel, V. Shear-dependent 'stick-and-roll' adhesion of type 1 fimbriated Escherichia coli. Mol. Microbiol. 53, 1545–1557 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Wu, X. R., Kong, X. P., Pellicer, A., Kreibich, G. & Sun, T. T. Uroplakins in urothelial biology, function, and disease. Kidney Int. 75, 1153–1165 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhou, G. et al. Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J. Cell. Sci. 114, 4095–4103 (2001).

    CAS  PubMed  Google Scholar 

  114. Mulvey, M. A. et al. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282, 1494–1497 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Fukushi, Y., Orikasa, S. & Kagayama, M. An electron microscopic study of the interaction between vesical epitherlium and E. coli. Invest. Urol. 17, 61–68 (1979).

    CAS  PubMed  Google Scholar 

  116. Klumpp, D. J. et al. Uropathogenic Escherichia coli potentiates type 1 pilus-induced apoptosis by suppressing NF-κB. Infect. Immun. 69, 6689–6695 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sivick, K. E. & Mobley, H. L. Waging war against uropathogenic Escherichia coli: winning back the urinary tract. Infect. Immun. 78, 568–585 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Wullt, B. et al. The host response to urinary tract infection. Infect. Dis. Clin. North Am. 17, 279–301 (2003).

    Article  PubMed  Google Scholar 

  119. Chromek, M. et al. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat. Med. 12, 636–641 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Morrison, G., Kilanowski, F., Davidson, D. & Dorin, J. Characterization of the mouse beta defensin 1, Defb1, mutant mouse model. Infect. Immun. 70, 3053–3060 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Valore, E. V. et al. Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J. Clin. Invest. 101, 1633–1642 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ganz, T. Iron in innate immunity: starve the invaders. Curr. Opin. Immunol. 21, 63–67 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Serafini-Cessi, F., Malagolini, N. & Cavallone, D. Tamm-Horsfall glycoprotein: biology and clinical relevance. Am. J. Kidney Dis. 42, 658–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Raffi, H. S., Bates, J. M., Jr, Laszik, Z. & Kumar, S. Tamm-horsfall protein protects against urinary tract infection by Proteus mirabilis. J. Urol. 181, 2332–2338 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ingersoll, M. A., Kline, K. A., Nielsen, H. V. & Hultgren, S. J. G-CSF induction early in uropathogenic Escherichia coli infection of the urinary tract modulates host immunity. Cell. Microbiol. 10, 2568–2578 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sivick, K. E., Schaller, M. A., Smith, S. N. & Mobley, H. L. The innate immune response to uropathogenic Escherichia coli involves IL-17A in a murine model of urinary tract infection. J. Immunol. 184, 2065–2075 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Hedges, S. et al. Uroepithelial cells are part of a mucosal cytokine network. Infect. Immun. 62, 2315–2321 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Schilling, J. D., Mulvey, M. A., Vincent, C. D., Lorenz, R. G. & Hultgren, S. J. Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism. J. Immunol. 166, 1148–1155 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Wullt, B. et al. P-fimbriae trigger mucosal responses to Escherichia coli in the human urinary tract. Cell. Microbiol. 3, 255–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Agace, W. W. The role of the epithelial cell in Escherichia coli induced neutrophil migration into the urinary tract. Eur. Respir. J. 9, 1713–1728 (1996).

    Article  CAS  PubMed  Google Scholar 

  131. Agace, W. W., Hedges, S. R., Ceska, M. & Svanborg, C. Interleukin-8 and the neutrophil response to mucosal gram-negative infection. J. Clin. Invest. 92, 780–785 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hang, L. et al. Macrophage inflammatory protein-2 is required for neutrophil passage across the epithelial barrier of the infected urinary tract. J. Immunol. 162, 3037–3044 (1999).

    CAS  PubMed  Google Scholar 

  133. Haraoka, M. et al. Neutrophil recruitment and resistance to urinary tract infection. J. Infect. Dis. 180, 1220–1229 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Ragnarsdottir, B. et al. TLR- and CXCR1-dependent innate immunity: insights into the genetics of urinary tract infections. Eur. J. Clin. Invest. 38 (Suppl. 2), 12–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Ashkar, A. A., Mossman, K. L., Coombes, B. K., Gyles, C. L. & Mackenzie, R. FimH adhesin of type 1 fimbriae is a potent inducer of innate antimicrobial responses which requires TLR4 and type 1 interferon signalling. PLoS Pathog. 4, e1000233 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Schilling, J. D., Martin, S. M., Hung, C. S., Lorenz, R. G. & Hultgren, S. J. Toll-like receptor 4 on stromal and hematopoietic cells mediates innate resistance to uropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 100, 4203–4208 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Patole, P. S. et al. Toll-like receptor-4: renal cells and bone marrow cells signal for neutrophil recruitment during pyelonephritis. Kidney Int. 68, 2582–2587 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Frendeus, B. et al. Escherichia coli P fimbriae utilize the Toll-like receptor 4 pathway for cell activation. Mol. Microbiol. 40, 37–51 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Hedges, S., Svensson, M. & Svanborg, C. Interleukin-6 response of epithelial cell lines to bacterial stimulation in vitro. Infect. Immun. 60, 1295–1301 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Hedlund, M. et al. P fimbriae-dependent, lipopolysaccharide-independent activation of epithelial cytokine responses. Mol. Microbiol. 33, 693–703 (1999).

    Article  CAS  PubMed  Google Scholar 

  141. Hedlund, M. et al. Type 1 fimbriae deliver an LPS- and TLR4-dependent activation signal to CD14-negative cells. Mol. Microbiol. 39, 542–552 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Mossman, K. L. et al. Cutting edge: FimH adhesin of type 1 fimbriae is a novel TLR4 ligand. J. Immunol. 181, 6702–6706 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Fischer, H., Yamamoto, M., Akira, S., Beutler, B. & Svanborg, C. Mechanism of pathogen-specific TLR4 activation in the mucosa: fimbriae, recognition receptors and adaptor protein selection. Eur. J. Immunol. 36, 267–277 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Andersen-Nissen, E. et al. Cutting edge: Tlr5−/− mice are more susceptible to Escherichia coli urinary tract infection. J. Immunol. 178, 4717–4720 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Zhang, D. et al. A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303, 1522–1526 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Thumbikat, P., Waltenbaugh, C., Schaeffer, A. J. & Klumpp, D. J. Antigen-specific responses accelerate bacterial clearance in the bladder. J. Immunol. 176, 3080–3086 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Pearsall, N. N. & Sherris, J. C. The demonstration of specific urinary anti-bodies in urinary tract infections caused by Gram-negative bacilli. J. Pathol. Bacteriol. 91, 589–595 (1966).

    Article  CAS  PubMed  Google Scholar 

  149. Eden, C. S., Hanson, L. A., Jodal, U., Lindberg, U. & Akerlund, A. S. Variable adherence to normal human urinary-tract epithelial cells of Escherichia coli strains associated with various forms of urinary-tract infection. Lancet 1, 490–492 (1976).

    Article  CAS  PubMed  Google Scholar 

  150. Svanborg-Eden, C. & Svennerholm, A. M. Secretory immunoglobulin A and G antibodies prevent adhesion of Escherichia coli to human urinary tract epithelial cells. Infect. Immun. 22, 790–797 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Trinchieri, A. et al. Secretory immunoglobulin A and inhibitory activity of bacterial adherence to epithelial cells in urine from patients with urinary tract infections. Urol. Res. 18, 305–308 (1990).

    Article  CAS  PubMed  Google Scholar 

  152. Svanborg, C. et al. Uropathogenic Escherichia coli as a model of host-parasite interaction. Curr. Opin. Microbiol. 9, 33–39 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Lomberg, H., Jodal, U., Eden, C. S., Leffler, H. & Samuelsson, B. P1 blood group and urinary tract infection. Lancet 1, 551–552 (1981).

    Article  CAS  PubMed  Google Scholar 

  154. Hagberg, L. et al. Difference in susceptibility to gram-negative urinary tract infection between C3H/HeJ and C3H/HeN mice. Infect. Immun. 46, 839–844 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Goluszko, P. et al. Vaccination with purified Dr Fimbriae reduces mortality associated with chronic urinary tract infection due to Escherichia coli bearing Dr adhesin. Infect. Immun. 73, 627–631 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ragnarsdottir, B. et al. Reduced toll-like receptor 4 expression in children with asymptomatic bacteriuria. J. Infect. Dis. 196, 475–484 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Frendeus, B. et al. Interleukin 8 receptor deficiency confers susceptibility to acute experimental pyelonephritis and may have a human counterpart. J. Exp. Med. 192, 881–890 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Godaly, G., Hang, L., Frendeus, B. & Svanborg, C. Transepithelial neutrophil migration is CXCR1 dependent in vitro and is defective in IL-8 receptor knockout mice. J. Immunol. 165, 5287–5294 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Hang, L., Frendeus, B., Godaly, G. & Svanborg, C. Interleukin-8 receptor knockout mice have subepithelial neutrophil entrapment and renal scarring following acute pyelonephritis. J. Infect. Dis. 182, 1738–1748 (2000).

    Article  CAS  PubMed  Google Scholar 

  160. Lundstedt, A. C. et al. A genetic basis of susceptibility to acute pyelonephritis. PLoS ONE 2, e825 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lundstedt, A. C. et al. Inherited susceptibility to acute pyelonephritis: a family study of urinary tract infection. J. Infect. Dis. 195, 1227–1234 (2007).

    Article  PubMed  Google Scholar 

  162. Johnson, J. R. in Urinary Tract Infections: Molecular Pathogenesis and Clinical Management (eds Mobley, H. L. T. & Warren, J. W.) 95–118 (ASM Press, Washington, DC, 1996).

    Google Scholar 

  163. Svensson, M. et al. Glycolipid depletion in antimicrobial therapy. Mol. Microbiol. 47, 453–461 (2003).

    Article  CAS  PubMed  Google Scholar 

  164. Bishop, B. L. et al. Cyclic AMP-regulated exocytosis of Escherichia coli from infected bladder epithelial cells. Nat. Med. 13, 625–630 (2007).

    Article  CAS  PubMed  Google Scholar 

  165. Bouckaert, J. et al. Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesin. Mol. Microbiol. 55, 441–455 (2005).

    Article  CAS  PubMed  Google Scholar 

  166. Thankavel, K. et al. Localization of a domain in the FimH adhesin of Escherichia coli type 1 fimbriae capable of receptor recognition and use of a domain-specific antibody to confer protection against experimental urinary tract infection. J. Clin. Invest. 100, 1123–1136 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lilly, J. D. & Parsons, C. L. Bladder surface glycosaminoglycans is a human epithelial permeability barrier. Surg. Gynecol. Obstet. 171, 493–496 (1990).

    CAS  PubMed  Google Scholar 

  168. Maki, D. G. & Tambyah, P. A. Engineering out the risk for infection with urinary catheters. Emerg. Infect. Dis. 7, 342–347 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Munasinghe, R. L., Yazdani, H., Siddique, M. & Hafeez, W. Appropriateness of use of indwelling urinary catheters in patients admitted to the medical service. Infect. Control Hosp. Epidemiol. 22, 647–649 (2001).

    Article  CAS  PubMed  Google Scholar 

  170. Stickler, D. J., Jones, G. L. & Russell, A. D. Control of encrustation and blockage of Foley catheters. Lancet 361, 1435–1437 (2003).

    Article  CAS  PubMed  Google Scholar 

  171. Hull, R. et al. Urinary tract infection prophylaxis using Escherichia coli 83972 in spinal cord injured patients. J. Urol. 163, 872–877 (2000).

    Article  CAS  PubMed  Google Scholar 

  172. Sabbuba, N. A. et al. Genotyping demonstrates that the strains of Proteus mirabilis from bladder stones and catheter encrustations of patients undergoing long-term bladder catheterization are identical. J. Urol. 171, 1925–1928 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Bauer, H. W. et al. A long-term, multicenter, double-blind study of an Escherichia coli extract (OM-89) in female patients with recurrent urinary tract infections. Eur. Urol. 47, 542–548 (2005).

    Article  PubMed  Google Scholar 

  174. Hopkins, W. J., Elkahwaji, J., Beierle, L. M., Leverson, G. E. & Uehling, D. T. Vaginal mucosal vaccine for recurrent urinary tract infections in women: results of a phase 2 clinical trial. J. Urol. 177, 1349–1353 (2007).

    Article  PubMed  Google Scholar 

  175. Sivick, K. E. & Mobley, H. L. An “omics” approach to uropathogenic Escherichia coli vaccinology. Trends Microbiol. 17, 431–432 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Alteri, C. J., Hagan, E. C., Sivick, K. E., Smith, S. N. & Mobley, H. L. Mucosal immunization with iron receptor antigens protects against urinary tract infection. PLoS Pathog. 5, e1000586 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Johnson, D. E. et al. Serum immunoglobulin response and protection from homologous challenge by Proteus mirabilis in a mouse model of ascending urinary tract infection. Infect. Immun. 67, 6683–6687 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Li, X. & Mobley, H. L. Vaccines for Proteus mirabilis in urinary tract infection. Int. J. Antimicrob. Agents 19, 461–465 (2002).

    Article  CAS  PubMed  Google Scholar 

  179. Moayeri, N., Collins, C. M. & O'Hanley, P. Efficacy of a Proteus mirabilis outer membrane protein vaccine in preventing experimental Proteus pyelonephritis in a BALB/c mouse model. Infect. Immun. 59, 3778–3786 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Scavone, P. et al. Intranasal immunisation with recombinant Lactococcus lactis displaying either anchored or secreted forms of Proteus mirabilis MrpA fimbrial protein confers specific immune response and induces a significant reduction of kidney bacterial colonisation in mice. Microbes Infect. 9, 821–828 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Pellegrino, R., Galvalisi, U., Scavone, P., Sosa, V. & Zunino, P. Evaluation of Proteus mirabilis structural fimbrial proteins as antigens against urinary tract infections. FEMS Immunol. Med. Microbiol. 36, 103–110 (2003).

    Article  CAS  PubMed  Google Scholar 

  182. Li, X. et al. Use of translational fusion of the MrpH fimbrial adhesin-binding domain with the cholera toxin A2 domain, coexpressed with the cholera toxin B subunit, as an intranasal vaccine to prevent experimental urinary tract infection by Proteus mirabilis. Infect. Immun. 72, 7306–7310 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Nielubowicz, G. R., Smith, S. N. & Mobley, H. L. Outer membrane antigens of the uropathogen Proteus mirabilis recognized by the humoral response during experimental murine urinary tract infection. Infect. Immun. 76, 4222–4231 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Serruto, D., Serino, L., Masignani, V. & Pizza, M. Genome-based approaches to develop vaccines against bacterial pathogens. Vaccine 27, 3245–3250 (2009).

    Article  CAS  PubMed  Google Scholar 

  185. Abraham, J. M., Freitag, C. S., Clements, J. R. & Eisenstein, B. I. An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc. Natl Acad. Sci. USA 82, 5724–5727 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Klemm, P. Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J. 5, 1389–1393 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Bryan, A. et al. Regulation of type 1 fimbriae by unlinked FimB- and FimE-like recombinases in uropathogenic Escherichia coli strain CFT073. Infect. Immun. 74, 1072–1083 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Lane, M. C., Li, X., Pearson, M. M., Simms, A. N. & Mobley, H. L. Oxygen-limiting conditions enrich for fimbriate cells of uropathogenic Proteus mirabilis and Escherichia coli. J. Bacteriol. 191, 1382–1392 (2009).

    Article  CAS  PubMed  Google Scholar 

  189. Li, X., Rasko, D. A., Lockatell, C. V., Johnson, D. E. & Mobley, H. L. Repression of bacterial motility by a novel fimbrial gene product. EMBO J. 20, 4854–4862 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Pearson, M. M. & Mobley, H. L. Repression of motility during fimbrial expression: identification of 14 mrpJ gene paralogues in Proteus mirabilis. Mol. Microbiol. 69, 548–558 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Simms, A. N. & Mobley, H. L. PapX, a P fimbrial operon-encoded inhibitor of motility in uropathogenic Escherichia coli. Infect. Immun. 76, 4833–4841 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely apologize to authors whose important work could not be included in this article owing to space limitations. We would like to thank Erin Hagan, Melanie Pearson, Patrick Vigil, and Kelsey Sivick for thoughtful discussions. This work was supported in part by Public Health Service Grants AI43363 and AI059722 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry L. T. Mobley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielubowicz, G., Mobley, H. Host–pathogen interactions in urinary tract infection. Nat Rev Urol 7, 430–441 (2010). https://doi.org/10.1038/nrurol.2010.101

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrurol.2010.101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing