Abstract
Prions, the causative agents of Creutzfeldt-Jacob Disease (CJD) in humans and bovine spongiform encephalopathy (BSE) and scrapie in animals, are principally composed of PrPSc, a conformational isomer of cellular prion protein (PrPC). The propensity of PrPC to adopt alternative folds suggests that there may be an unusually high proportion of alternative conformations in dynamic equilibrium with the native state. However, the rates of hydrogen/deuterium exchange demonstrate that the conformation of human PrPC is not abnormally plastic. The stable core of PrPC has extensive contributions from all three α-helices and shows protection factors equal to the equilibrium constant for the major unfolding transition. A residual, hyper-stable region is retained upon unfolding, and exchange analysis identifies this as a small nucleus of ~10 residues around the disulfide bond. These results show that the most likely route for the conversion of PrPC to PrPSc is through a highly unfolded state that retains, at most, only this small nucleus of structure, rather than through a highly organized folding intermediate.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Collinge, J. Hum. Mol. Genet. 6, 1699–1705 (1997).
Zhang, H. et al. Biochemistry 36, 3543–3553 (1997).
Kelly, J.W. Curr. Opin. Struct. Biol. 6, 11–17 (1996).
Bai, Y., Sosnick, T.R., Mayne, L. & Englander, S.W. Science 269, 192–197 (1995).
Booth, D.R. et al. Nature 385, 787–793 (1997).
Riek, R. et al. Nature 382, 180–182 (1996).
Billeter, M. et al. Proc. Natl. Acad. Sci. USA 94, 7281 –7285 (1997).
James, T.L. et al. Proc. Natl. Acad. Sci. USA 94, 10086 –10091 (1997).
Freund, S.M., Wong, K.B. & Fersht, A.R. Proc. Natl. Acad. Sci. USA 93, 10600–10603 (1996).
Neira, J.L. et al. Fold. Des. 1, 189– 208 (1996).
Hosszu, L.L.P. et al. Nature Struct. Biol. 4, 801– 804 (1997).
Wang, Y. & Shortle, D. Fold. Des. 2, 93–100 (1997).
Blake, C. & Serpell, L. Structure. 4, 989–998 (1996).
Sunde, M. et al. J. Mol. Biol. 273, 729– 739 (1997).
Fink, A.L. Fold. Des. 3, R9–23 ( 1998).
Murray, A.J., Lewis, S.J., Barclay, A.N. & Brady, R.L. Proc. Natl. Acad. Sci. USA. 92, 7337– 7341 (1995).
Hayes, M.V., Sessions, R.B., Brady, R.L. & Clarke, A.R. J. Mol. Biol. 285, 1855–1865 (1999).
Safar, J., Roller, P.P., Gajdusek, D.C. & Gibbs, C.J. Jr. Biochemistry 33, 8375–8383 (1994).
Hornemann, S. & Glockshuber, R. Proc. Natl. Acad. Sci. USA 95, 6010–6014 (1998).
Bax, A. & Ikura, M. J. Biomol. NMR 1, 99–104 (1991).
Wittekind, M. & Mueller, L. J. Magnet. Res. Series B 101, 201–205 (1993).
Muhandiram, D.R. & Kay, L.E. J. Magnet. Res. Series B 103, 203–216 ( 1994).
Kay, L.E., Xu, G.Y. & Yamazaki, T. J. Magnet. Res. Series A 109, 129–133 (1994).
Wishart, D.S. & Sykes, B.D. J. Biomol. NMR 4, 171–180 (1994).
Bai, Y., Milne, J.S., Mayne, L. & Englander, S.W. Proteins 17, 75–86 (1993).
Parker, M.J., Spencer, J. & Clarke, A.R. J. Mol. Biol. 253, 771– 786 (1995).
Wishart, D.S., Sykes, B.D. & Richards, F.M. J. Mol. Biol. 222, 311– 333 (1991).
Donne, D.G. et al. Proc. Natl. Acad. Sci. USA 94, 13452 –13457 (1997).
Billeter, M. et al. Proc. Natl. Acad. Sci. USA 94, 7281 –7285 (1997).
Ferrin, T.E., Huang, C.C., Jarvis, L.E. & Langridge, R. J. Mol. Graphics 6, 13(1988).
Ferrin, T.E., Couch, G.S., Huang, C.C., Pettersen, E.F. & Langridge, R. J. Mol. Graphics 9, 27– 32 (1991).
Acknowledgements
This work was funded by the Wellcome Trust and the Medical Research Council. A.R.C. and J.P.W. are Lister Institute Research Fellows. The Krebs Institute is a BBSRC-funded center.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hosszu, L., Baxter, N., Jackson, G. et al. Structural mobility of the human prion protein probed by backbone hydrogen exchange. Nat Struct Mol Biol 6, 740–743 (1999). https://doi.org/10.1038/11507
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/11507
This article is cited by
-
2.7 Å cryo-EM structure of ex vivo RML prion fibrils
Nature Communications (2022)
-
Structural effects of the highly protective V127 polymorphism on human prion protein
Communications Biology (2020)
-
Structural basis for the complete resistance of the human prion protein mutant G127V to prion disease
Scientific Reports (2018)
-
Interplay of buried histidine protonation and protein stability in prion misfolding
Scientific Reports (2017)
-
The native state of prion protein (PrP) directly inhibits formation of PrP-amyloid fibrils in vitro
Scientific Reports (2017)