Abstract
For many proteins, compact conformations are known to accumulate in advance of the rate-limiting step in folding. To understand the nature and significance of these early conformational events, we employed ultrarapid mixing methods to fully characterize the kinetics of folding of the 57-residue B1 domain of protein G. Continuous-flow fluorescence measurements exhibit a major exponential phase on the submillisecond time scale (600–700 μs), which is followed by a slower phase with a denaturant-dependent time constant (2–30 ms) observable by conventional stopped-flow measurements. The combined kinetic traces quantitatively account for the total change in Trp 43 fluorescence upon folding, including the previously unresolved 'burst phase' signal. The denaturant dependence of the two rate constants and their relative amplitudes are fully consistent with a three-state mechanism, U ⇌ I ⇌ N, where I is a productive intermediate with native-like fluorescence properties. The relatively slow rate and exponential time course of the initial folding phase indicates that a substantial free energy barrier is encountered during chain condensation, resulting in a partially organized ensemble of states distinct from the initial unfolded conformations.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Gruenwald, B., Nicola, C.U., Lustig, A., Schwarz, G. & Klump, H. Biophys. Chem. 9, 137– 147 (1979).
Williams, S. et al. Biochemistry 35, 691– 697 (1996).
Muñoz, V., Thompson, P.A., Hofrichter, J. & Eaton, W.A. Nature 390, 196–199 ( 1997).
Thompson, P.A., Eaton, W.A. & Hofrichter, J. Biochemistry 36, 9200– 9210 (1997).
Gilmanshin, R., Williams, S., Callender, R.H., Woodruff, W.H. & Dyer, R.B. Proc. Natl. Acad. Sci. USA 94, 3709–3713 (1997).
Eaton, W.A., Muñoz, V., Thompson, P.A., Henry, E.R. & Hofrichter, J. Accts. Chem. Res. 31, 745–753 (1998).
Callender, R.H., Dyer, R.B., Gilmanshin, R. & Woodruff, W.H. Annu. Rev. Phys. Chem. 49, 173–202 (1998).
Nölting, B., Golbik, R. & Fersht, A.R. Proc. Natl. Acad. Sci. USA 92, 10668–10672 (1995).
Ballew, R.M., Sabelko, J. & Gruebele, M. Proc. Natl. Acad. Sci. USA 93, 5759–5764 (1996).
Shastry, M.C.R. & Roder, H. Nature Struct. Biol. 5, 385–392 ( 1998).
Jackson, S.E. Fold. Des. 3, R81–R91 ( 1998).
Raschke, T.M. & Marqusee, S. Nature Struct. Biol. 4, 298–304 (1997).
Nath, U. & Udgaonkar, J.B. Biochemistry 36, 8602–8610 (1997).
Walkenhorst, W.F., Green, S.M. & Roder, H. Biochemistry 36, 5795– 5805 (1997).
Heidary, D.K., Gross, L.A., Roy, M. & Jennings, P.A. Nature Struct. Biol. 4, 725–731 ( 1997).
Parker, M.J., Lorch, M., Sessions, R.B. & Clarke, A.R. Biochemistry 37, 2538–2545 (1998).
Capaldi, A.P., Ferguson, S.J. & Radford, S.E. J. Mol. Biol. 286, 1621– 1632 (1999).
Roder, H. & Colón, W. Curr. Opin. Struct. Biol. 7, 15–28 (1997).
Houry, W.A., Rothwarf, D.M. & Scheraga, H.A. Nature Struct. Biol. 2, 495 –503 (1995).
Parker, M.J., Spencer, J. & Clarke, A.R. J. Mol. Biol. 253, 771– 786 (1995).
Khorasanizadeh, S., Peters, I.D. & Roder, H. Nature Struct. Biol. 3, 193– 205 (1996).
Fujita, H. Polymer solutions (Elsevier, Amsterdam; 1990).
Dill, K.A. et al. Protein Sci. 4, 561– 602 (1995).
Fersht, A.R. Proc. Natl. Acad. Sci. USA 92, 10869– 10873 (1995).
Sosnick, T.R., Mayne, L. & Englander, S.W. Proteins 24, 413– 426 (1996).
Creighton, T.E. Trends Biochem. Sci. 22, 6–11 (1997).
Sosnick, T.R., Shtilerman, M.D., Mayne, L. & Englander, S.W. Proc. Natl. Acad. Sci. USA 94, 8545– 8550 (1997).
Qi, P.X., Sosnick, T.R. & Englander, S.W. Nature Struct. Biol. 5, 882 –884 (1998).
Regenfuss, P., Clegg, R.M., Fulwyler, M.J., Barrantes, F.J. & Jovin, T.M. Rev. Sci. Instrum. 56 , 283–290 (1985).
Chan, C.-K. et al. Proc. Natl. Acad. Sci. USA 94, 1779 –1784 (1997).
Shastry, M.C.R., Luck, S.D. & Roder, H. Biophys. J. 74, 2714– 2721 (1998).
Gronenborn, A.M. et al. Science 253, 657–661 (1991).
Achari, A. et al. Biochemistry 31, 10449– 10457 (1992).
Kuszewski, J., Clore, G.M. & Gronenborn, A.M. Protein Sci. 3, 1945– 1952 (1994).
Park, S.-H., O'Neil, K.T. & Roder, H. Biochemistry 36, 14277– 14283 (1997).
Matouschek, A., Kellis, J.T.J., Serrano, L., Bycroft, M. & Fersht, A.R. Nature 346, 440–445 (1990).
Houry, W.A., Rothwarf, D.M. & Scheraga, H.A. Biochemistry 33, 2516– 2530 (1994).
Wolynes, P.G., Luthey-Schulten, Z. & Onuchic, J.N. Chem. Biol. 3, 425– 432 (1996).
Hagen, S.J., Hofrichter, J., Szabo, A. & Eaton, W.A. Proc. Natl. Acad. Sci. USA 93, 11615– 11617 (1996).
Jones, C.M. et al. Proc. Natl. Acad. Sci. USA 90, 11860 –11864 (1993).
Shastry, M.C.R., Sauder, J.M. & Roder, H. Accts. Chem. Res. 31, 717– 725 (1998).
Neri, D., Billeter, M., Wider, G. & Wüthrich, K. Science 257, 1559–1563 ( 1992).
Tanford, C. Adv. Prot. Chem. 23, 121–282. (1968).
Bryngelson, J.D., Onuchic, J.N., Socci, N.D. & Wolynes, P.G. Proteins 21, 167–195 ( 1995).
Plaxco, K.W., Simons, K.T. & Baker, D. J. Mol. Biol. 277, 985– 994 (1998).
Blanco, F.J., Ortiz, A.R. & Serrano, L. Fold. Des. 2, 123– 133 (1997).
Schindler, T., Herrler, M., Marahiel, M.A. & Schmid, F.X. Nature Struct. Biol. 2, 663–673 (1995).
Burton, R.E., Huang, G.S., Daugherty, M.A., Fullbright, P.W. & Oas, T.G. J. Mol. Biol. 263, 311–322 (1996).
Kiefhaber, T. Proc. Natl. Acad. Sci. USA 92, 9029– 9033 (1995).
Baldwin, R.L. Fold. Des. 1, R1–R8 ( 1996).
Matouschek, A., Serrano, L. & Fersht, A.R. J. Mol. Biol. 224, 819– 835 (1992).
Parker, M.J., Dempsey, C.E., Hosszu, L.L.P., Waltho, J.P. & Clarke, A.R. Nature Struct. Biol. 5, 194–198 (1998).
Dalby, P.A., Oliveberg, M. & Fersht, A.R. J. Mol. Biol. 276, 625– 646 (1998).
Sheinerman, F.B. & Brooks, C.L.I. J. Mol. Biol. 278, 439–456 ( 1998).
Alonso, D.O.V. & Daggett, V. Protein Sci. 7, 860–874 (1998).
Acknowledgements
We thank R.L. Dunbrack, H. Hensley and J.M. Sauder for helpful discussions and comments on the manuscript. This work was supported by a grant from the National Institutes of Health and an appropriation from the Commonwealth of Pennsylvania.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Park, SH., Shastry, M. & Roder, H. Folding dynamics of the B1 domain of protein G explored by ultrarapid mixing. Nat Struct Mol Biol 6, 943–947 (1999). https://doi.org/10.1038/13311
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/13311
This article is cited by
-
Probing the Gaseous Structure of a β-Hairpin Peptide with H/D Exchange and Electron Capture Dissociation
Journal of the American Society for Mass Spectrometry (2017)
-
Sequence analysis on the information of folding initiation segments in ferredoxin-like fold proteins
BMC Structural Biology (2014)
-
Identifying the intermediates during the folding/unfolding of protein GB1 with MD simulations
Theoretical Chemistry Accounts (2012)
-
Determination of protein folding kinetic types using sequence and predicted secondary structure and solvent accessibility
Amino Acids (2012)
-
Polyprotein of GB1 is an ideal artificial elastomeric protein
Nature Materials (2007)