Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Prolonged exposure to IL-1β and IFNγ induces necrosis of L929 tumor cells via a p38MAPK/NF-κB/NO-dependent mechanism

Abstract

Interleukin-1β (IL-1β) is a cytokine that shares with tumor necrosis factor (TNF) the ability to initiate largely similar signaling pathways, leading to proinflammatory gene expression. In contrast to TNF, however, IL-1β is not believed to induce tumor cell death. Here we demonstrate that prolonged treatment with IL-1β, in combination with interferon-γ (IFNγ), is cytotoxic for L929 tumor cells. IL-1β/IFNγ-induced cytotoxicity requires only minimal amounts of IL-1β and shows morphological features of necrosis. Although TNF induces a similar response, we could exclude a contribution of endogenous TNF production in the effect of IL-1β/IFNγ. Cell death in response to IL-1β/IFNγ is independent of caspases, but requires the IL-1β/IFNγ-induced production of inducible nitric oxide synthase (iNOS) and NO. Moreover, necrosis and iNOS/NO production could be prevented by treatment of the cells with a p38 mitogen activated protein kinase (p38MAPK) or IκB kinase β inhibitor. Altogether, these findings demonstrate that prolonged exposure to IL-1β plus IFNγ induces L929 tumor cell necrosis, via a p38MAPK and nuclear factor-κB (NF-κB)-dependent signaling pathway, leading to the expression of iNOS and the production of toxic NO levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Beyaert R, Cuenda A, Vanden Berghe W, Plaisance S, Lee JC, Haegeman G et al. (1996). The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO J 15: 1914–1923.

    Article  CAS  Google Scholar 

  • Beyaert R, Heyninck K, De Valck D, Boeykens F, van Roy F, Fiers W . (1993). Enhancement of tumor necrosis factor cytotoxicity by lithium chloride is associated with increased inositol phosphate accumulation. J Immunol 151: 291–300.

    CAS  PubMed  Google Scholar 

  • Beyaert R, Van Loo G, Heyninck K, Vandenabeele P . (2002). Signaling to gene activation and cell death by tumor necrosis factor receptors and Fas. Int Rev Cytol 214: 225–272.

    Article  CAS  Google Scholar 

  • Brune B, von Knethen A, Sandau KB . (1998). Nitric oxide and its role in apoptosis. Eur J Pharmacol 351: 261–272.

    Article  CAS  Google Scholar 

  • Cnop M, Welsh N, Jonas JC, Jorns A, Lenzen S, Eizirik DL . (2005). Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54 (Suppl 2): S97–S107.

    Article  CAS  Google Scholar 

  • Cuenda A, Rouse J, Doza YN, Meier R, Cohen P, Gallagher TF et al. (1995). SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett 364: 229–233.

    Article  CAS  Google Scholar 

  • Davies SP, Reddy H, Caivano M, Cohen P . (2000). Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351: 95–105.

    Article  CAS  Google Scholar 

  • Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N et al. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1: 112–119.

    Article  CAS  Google Scholar 

  • Dunne A, O'Neill LA . (2003). The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci STKE 2003: re3.

    PubMed  Google Scholar 

  • Earnshaw WC, Martins LM, Kaufmann SH . (1999). Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68: 383–424.

    Article  CAS  Google Scholar 

  • Eizirik DL, Mandrup-Poulsen T . (2001). A choice of death—the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia 44: 2115–2133.

    Article  CAS  Google Scholar 

  • Festjens N, Vanden Berghe T, Vandenabeele P . (2006). Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757: 1371–1387.

    Article  CAS  Google Scholar 

  • Fransen L, Van der Heyden J, Ruysschaert R, Fiers W . (1986). Recombinant tumor necrosis factor: its effect and its synergism with interferon-gamma on a variety of normal and transformed human cell lines. Eur J Cancer Clin Oncol 22: 419–426.

    Article  CAS  Google Scholar 

  • Garcia-Calvo M, Peterson EP, Leiting B, Ruel R, Nicholson DW, Thornberry NA . (1998). Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273: 32608–32613.

    Article  CAS  Google Scholar 

  • Golstein P, Kroemer G . (2007). Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 32: 37–43.

    Article  CAS  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR . (1982). Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126: 131–138.

    Article  CAS  Google Scholar 

  • Heitmeier MR, Scarim AL, Corbett JA . (1997). Interferon-gamma increases the sensitivity of islets of Langerhans for inducible nitric-oxide synthase expression induced by interleukin 1. J Biol Chem 272: 13697–13704.

    Article  CAS  Google Scholar 

  • Huang H, Rose JL, Hoyt DG . (2004). p38 Mitogen-activated protein kinase mediates synergistic induction of inducible nitric-oxide synthase by lipopolysaccharide and interferon-gamma through signal transducer and activator of transcription 1 Ser727 phosphorylation in murine aortic endothelial cells. Mol Pharmacol 66: 302–311.

    Article  CAS  Google Scholar 

  • Itoh S, Hattori T, Hayashi H, Mizutani Y, Todo M, Takii T et al. (1999). Antiproliferative effect of IL-1 is mediated by p38 mitogen-activated protein kinase in human melanoma cell A375. J Immunol 162: 7434–7440.

    CAS  PubMed  Google Scholar 

  • Janik JE, Miller LL, Longo DL, Powers GC, Urba WJ, Kopp WC et al. (1996). Phase II trial of interleukin 1 alpha and indomethacin in treatment of metastatic melanoma. J Natl Cancer Inst 88: 44–49.

    Article  CAS  Google Scholar 

  • Janssens S, Beyaert R . (2003). Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol Cell 11: 293–302.

    Article  CAS  Google Scholar 

  • Kim HJ, Hawke N, Baldwin AS . (2006a). NF-kappaB and IKK as therapeutic targets in cancer. Cell Death Differ 13: 738–747.

    Article  CAS  Google Scholar 

  • Kim YJ, Hwang SY, Oh ES, Oh S, Han IO . (2006b). IL-1beta, an immediate early protein secreted by activated microglia, induces iNOS/NO in C6 astrocytoma cells through p38 MAPK and NF-kappaB pathways. J Neurosci Res 84: 1037–1046.

    Article  CAS  Google Scholar 

  • Kim YS, Morgan MJ, Choksi S, Liu ZG . (2007). TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol Cell 26: 675–687.

    Article  CAS  Google Scholar 

  • Kishore N, Sommers C, Mathialagan S, Guzova J, Yao M, Hauser S et al. (2003). A selective IKK-2 inhibitor blocks NF-kappa B-dependent gene expression in interleukin-1 beta-stimulated synovial fibroblasts. J Biol Chem 278: 32861–32871.

    Article  CAS  Google Scholar 

  • Kleinert H, Pautz A, Linker K, Schwarz PM . (2004). Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol 500: 255–266.

    Article  CAS  Google Scholar 

  • Kleinert H, Schwarz PM, Forstermann U . (2003). Regulation of the expression of inducible nitric oxide synthase. Biol Chem 384: 1343–1364.

    Article  CAS  Google Scholar 

  • Kobayashi T, Walsh MC, Choi Y . (2004). The role of TRAF6 in signal transduction and the immune response. Microbes Infect 6: 1333–1338.

    Article  CAS  Google Scholar 

  • Larsen CM, Wadt KA, Juhl LF, Andersen HU, Karlsen AE, Su MS et al. (1998). Interleukin-1beta-induced rat pancreatic islet nitric oxide synthesis requires both the p38 and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases. J Biol Chem 273: 15294–15300.

    Article  CAS  Google Scholar 

  • Lejeune FJ, Lienard D, Matter M, Ruegg C . (2006). Efficiency of recombinant human TNF in human cancer therapy. Cancer Immun 6: 6.

    PubMed  Google Scholar 

  • Lejeune FJ, Ruegg C . (2006). Recombinant human tumor necrosis factor: an efficient agent for cancer treatment. Bull Cancer 93: E90–E100.

    CAS  PubMed  Google Scholar 

  • Liu D, Pavlovic D, Chen MC, Flodstrom M, Sandler S, Eizirik DL . (2000). Cytokines induce apoptosis in beta-cells isolated from mice lacking the inducible isoform of nitric oxide synthase (iNOS−/−). Diabetes 49: 1116–1122.

    Article  CAS  Google Scholar 

  • Madrid LV, Mayo MW, Reuther JY, Baldwin Jr AS . (2001). Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. J Biol Chem 276: 18934–18940.

    Article  CAS  Google Scholar 

  • Morinaga Y, Suzuki H, Takatsuki F, Akiyama Y, Taniyama T, Matsushima K et al. (1989). Contribution of IL-6 to the antiproliferative effect of IL-1 and tumor necrosis factor on tumor cell lines. J Immunol 143: 3538–3542.

    CAS  PubMed  Google Scholar 

  • Mosmann T . (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55–63.

    Article  CAS  Google Scholar 

  • O'Neill LA . (2006). Targeting signal transduction as a strategy to treat inflammatory diseases. Nat Rev Drug Discov 5: 549–563.

    Article  CAS  Google Scholar 

  • Onozaki K, Matsushima K, Aggarwal BB, Oppenheim JJ . (1985). Human interleukin 1 is a cytocidal factor for several tumor cell lines. J Immunol 135: 3962–3968.

    CAS  PubMed  Google Scholar 

  • Perkins ND, Gilmore TD . (2006). Good cop, bad cop: the different faces of NF-kappaB. Cell Death Differ 13: 759–772.

    Article  CAS  Google Scholar 

  • Rabinovitch A, Suarez-Pinzon WL . (1998). Cytokines and their roles in pancreatic islet beta-cell destruction and insulin-dependent diabetes mellitus. Biochem Pharmacol 55: 1139–1149.

    Article  CAS  Google Scholar 

  • Ricci MS, Zong WX . (2006). Chemotherapeutic approaches for targeting cell death pathways. Oncologist 11: 342–357.

    Article  CAS  Google Scholar 

  • Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, Kojima Y et al. (2003). NF-κB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 22: 3898–3909.

    Article  CAS  Google Scholar 

  • Saldeen J, Welsh N . (2004). p38 MAPK inhibits JNK2 and mediates cytokine-activated iNOS induction and apoptosis independently of NF-KB translocation in insulin-producing cells. Eur Cytokine Netw 15: 47–52.

    CAS  PubMed  Google Scholar 

  • Schulze-Osthoff K, Beyaert R, Vandevoorde V, Haegeman G, Fiers W . (1993). Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO J 12: 3095–3104.

    Article  CAS  Google Scholar 

  • Smith II JW, Urba WJ, Curti BD, Elwood LJ, Steis RG, Janik JE et al. (1992). The toxic and hematologic effects of interleukin-1 alpha administered in a phase I trial to patients with advanced malignancies. J Clin Oncol 10: 1141–1152.

    Article  Google Scholar 

  • Vanhaesebroeck B, Decoster E, Van Ostade X, Van Bladel S, Lenaerts A, Van Roy F et al. (1992). Expression of an exogenous tumor necrosis factor (TNF) gene in TNF-sensitive cell lines confers resistance to TNF-mediated cell lysis. J Immunol 148: 2785–2794.

    CAS  PubMed  Google Scholar 

  • Vanhaesebroeck B, Mareel M, Van Roy F, Grooten J, Fiers W . (1991). Expression of the tumor necrosis factor gene in tumor cells correlates with reduced tumorigenicity and reduced invasiveness in vivo. Cancer Res 51: 2229–2238.

    CAS  PubMed  Google Scholar 

  • Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W et al. (1998). Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 187: 1477–1485.

    Article  CAS  Google Scholar 

  • Viatour P, Merville MP, Bours V, Chariot A . (2005). Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci 30: 43–52.

    Article  CAS  Google Scholar 

  • Yamada K, Takane N, Otabe S, Inada C, Inoue M, Nonaka K . (1993). Pancreatic beta-cell-selective production of tumor necrosis factor-alpha induced by interleukin-1. Diabetes 42: 1026–1031.

    Article  CAS  Google Scholar 

  • Yoshimura A . (2006). Signal transduction of inflammatory cytokines and tumor development. Cancer Sci 97: 439–447.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Meeus and W Burm for their technical assistance with cell culture work. This work was supported in part by grants from the ‘Interuniversitaire Attractiepolen’ (IAP6/18), the ‘Fonds voor Wetenschappelijk Onderzoek-Vlaanderen’ (FWO; grant 3G010505), and the ‘Geconcerteerde Onderzoeksacties’ of the University of Ghent (GOA; grant 01G06B6). EV and PS were respectively supported as a predoctoral research fellow and a postdoctoral research associate with the FWO. LV holds a predoctoral fellowship from the ‘Vlaams Instituut voor de Bevordering van het Wetenschappelijk-technologisch Onderzoek in de Industrie’ (IWT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Beyaert.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vercammen, E., Staal, J., Van Den Broeke, A. et al. Prolonged exposure to IL-1β and IFNγ induces necrosis of L929 tumor cells via a p38MAPK/NF-κB/NO-dependent mechanism. Oncogene 27, 3780–3788 (2008). https://doi.org/10.1038/onc.2008.4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/onc.2008.4

Keywords

Search

Quick links