Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p21 does not protect cancer cells from apoptosis induced by nongenotoxic p53 activation

Abstract

p21Waf1/Cip1 is a p53 transcription target implicated in both major functions of the tumor suppressor—cell cycle arrest and apoptosis. It is a potent inhibitor of the key cyclin-dependent kinases (CDK1–4), and has been thought to be the main mediator of p53-dependent G1 and G2 arrest. However, an increasing body of information suggests that in addition to its cell-cycle inhibitory activity, p21 can affect p53-dependent apoptosis. These data have been obtained from experiments in which p53 is activated primarily by genotoxic stress. In this study, we use the selective MDM2 antagonist, nutlin-3a, as a nongenotoxic p53 activator and show that the cell-cycle arrest function of p21 is dependent on the cellular context. In most cancer cell lines, p53-dependent p21 induction is essential for cell-cycle arrest, but in some, p21 is dispensable. Depletion of p21 did not increase the apoptotic response to nutlin-3a in all seven cancer cell lines tested and p21 overexpression did not protect apoptosis-sensitive lines from death. p21 was found to mediate nutlin-induced p53-dependent downregulation of another antiapoptotic protein, survivin, without significantly affecting the apoptotic outcome. Taken together our results suggest that p21 induction does not affect the apoptotic response to nongenotoxic p53 activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abbas T, Dutta A . (2009). p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9: 400–414.

    Article  CAS  Google Scholar 

  • Altieri DC . (2003). Survivin in apoptosis control and cell cycle regulation in cancer. Prog Cell Cycle Res 5: 447–452.

    PubMed  Google Scholar 

  • Altieri DC . (2008). New wirings in the survivin networks. Oncogene 27: 6276–6284.

    Article  CAS  Google Scholar 

  • Asada M, Yamada T, Ichijo H, Delia D, Miyazono K, Fukumuro K et al. (1999). Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation. Embo J 18: 1223–1234.

    Article  CAS  Google Scholar 

  • Bissonnette N, Hunting DJ . (1998). p21-induced cycle arrest in G1 protects cells from apoptosis induced by UV-irradiation or RNA polymerase II blockage. Oncogene 16: 3461–3469.

    Article  CAS  Google Scholar 

  • Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP . (2009). Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer 9: 862–873.

    Article  CAS  Google Scholar 

  • Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L et al. (1999). Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 104: 263–269.

    Article  CAS  Google Scholar 

  • Carvalho A, Carmena M, Sambade C, Earnshaw WC, Wheatley SP . (2003). Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. J Cell Sci 116: 2987–2998.

    Article  CAS  Google Scholar 

  • Chan TA, Hwang PM, Hermeking H, Kinzler KW, Vogelstein B . (2000). Cooperative effects of genes controlling the G(2)/M checkpoint. Genes Dev 14: 1584–1588.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dohi T, Beltrami E, Wall NR, Plescia J, Altieri DC . (2004). Mitochondrial survivin inhibits apoptosis and promotes tumorigenesis. J Clin Invest 114: 1117–1127.

    Article  CAS  Google Scholar 

  • Dohi T, Xia F, Altieri DC . (2007). Compartmentalized phosphorylation of IAP by protein kinase A regulates cytoprotection. Mol Cell 27: 17–28.

    Article  CAS  Google Scholar 

  • Dulic V, Stein GH, Far DF, Reed SI . (1998). Nuclear accumulation of p21Cip1 at the onset of mitosis: a role at the G2/M-phase transition. Mol Cell Biol 18: 546–557.

    Article  CAS  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.

    Article  CAS  Google Scholar 

  • Enge M, Bao W, Hedstrom E, Jackson SP, Moumen A, Selivanova G . (2009). MDM2-dependent downregulation of p21 and hnRNP K provides a switch between apoptosis and growth arrest induced by pharmacologically activated p53. Cancer Cell 15: 171–183.

    Article  CAS  Google Scholar 

  • Ferrandiz N, Martin-Perez J, Blanco R, Donertas D, Weber A, Eilers M et al. (2009). HCT116 cells deficient in p21(Waf1) are hypersensitive to tyrosine kinase inhibitors and adriamycin through a mechanism unrelated to p21 and dependent on p53. DNA Repair (Amst) 8: 390–399.

    Article  CAS  Google Scholar 

  • Gartel AL, Tyner AL . (1999). Transcriptional regulation of the p21((WAF1/CIP1)) gene. Exp Cell Res 246: 280–289.

    Article  CAS  Google Scholar 

  • Gartel AL, Tyner AL . (2002). The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 1: 639–649.

    CAS  Google Scholar 

  • Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ . (1993). The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805–816.

    Article  CAS  Google Scholar 

  • Harris SL, Levine AJ . (2005). The p53 pathway: positive and negative feedback loops. Oncogene 24: 2899–2908.

    Article  CAS  Google Scholar 

  • Hoffman WH, Biade S, Zilfou JT, Chen J, Murphy M . (2002). Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem 277: 3247–3257.

    Article  CAS  Google Scholar 

  • Huang S, Shu L, Dilling MB, Easton J, Harwood FC, Ichijo H et al. (2003). Sustained activation of the JNK cascade and rapamycin-induced apoptosis are suppressed by p53/p21(Cip1). Mol Cell 11: 1491–1501.

    Article  CAS  Google Scholar 

  • Janicke RU, Sohn D, Essmann F, Schulze-Osthoff K . (2007). The multiple battles fought by anti-apoptotic p21. Cell Cycle 6: 407–413.

    Article  Google Scholar 

  • Kokontis JM, Wagner AJ, O'Leary M, Liao S, Hay N . (2001). A transcriptional activation function of p53 is dispensable for and inhibitory of its apoptotic function. Oncogene 20: 659–668.

    Article  CAS  Google Scholar 

  • Lens SM, Wolthuis RM, Klompmaker R, Kauw J, Agami R, Brummelkamp T et al. (2003). Survivin is required for a sustained spindle checkpoint arrest in response to lack of tension. EMBO J 22: 2934–2947.

    Article  CAS  Google Scholar 

  • Levkau B, Koyama H, Raines EW, Clurman BE, Herren B, Orth K et al. (1998). Cleavage of p21Cip1/Waf1 and p27Kip1 mediates apoptosis in endothelial cells through activation of Cdk2: role of a caspase cascade. Mol Cell 1: 553–563.

    Article  CAS  Google Scholar 

  • Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC et al. (1998). Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396: 580–584.

    Article  CAS  Google Scholar 

  • Lohr K, Moritz C, Contente A, Dobbelstein M . (2003). p21/CDKN1A mediates negative regulation of transcription by p53. J Biol Chem 278: 32507–32516.

    Article  Google Scholar 

  • Lu Y, Yamagishi N, Yagi T, Takebe H . (1998). Mutated p21(WAF1/CIP1/SDI1) lacking CDK-inhibitory activity fails to prevent apoptosis in human colorectal carcinoma cells. Oncogene 16: 705–712.

    Article  CAS  Google Scholar 

  • Perkins ND . (2002). Not just a CDK inhibitor: regulation of transcription by p21(WAF1/CIP1/SDI1). Cell Cycle 1: 39–41.

    Article  CAS  Google Scholar 

  • Qi G, Tuncel H, Aoki E, Tanaka S, Oka S, Kaneko I et al. (2009). Intracellular localization of survivin determines biological behavior in colorectal cancer. Oncol Rep 22: 557–562.

    CAS  PubMed  Google Scholar 

  • Seoane J, Le HV, Massague J . (2002). Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419: 729–734.

    Article  CAS  Google Scholar 

  • Sohn D, Essmann F, Schulze-Osthoff K, Janicke RU . (2006). p21 blocks irradiation-induced apoptosis downstream of mitochondria by inhibition of cyclin-dependent kinase-mediated caspase-9 activation. Cancer Res 66: 11254–11262.

    Article  CAS  Google Scholar 

  • Suzuki A, Tsutomi Y, Akahane K, Araki T, Miura M . (1998). Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP. Oncogene 17: 931–939.

    Article  CAS  Google Scholar 

  • Thompson T, Tovar C, Yang H, Carvajal D, Vu BT, Xu Q et al. (2004). Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J Biol Chem 279: 53015–53022.

    Article  CAS  Google Scholar 

  • Tian H, Wittmack EK, Jorgensen TJ . (2000). p21WAF1/CIP1 antisense therapy radiosensitizes human colon cancer by converting growth arrest to apoptosis. Cancer Res 60: 679–684.

    CAS  Google Scholar 

  • Tovar C, Rosinski J, Filipovic Z, Higgins B, Kolinsky K, Hilton H et al. (2006). Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA 103: 1888–1893.

    Article  CAS  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844–848.

    Article  CAS  Google Scholar 

  • Vassilev LT . (2007). MDM2 inhibitors for cancer therapy. Trends Mol Med 13: 23–31.

    Article  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  Google Scholar 

  • Vousden KH, Lu X . (2002). Live or let die: the cell′s response to p53. Nat Rev Cancer 2: 594–604.

    Article  CAS  Google Scholar 

  • Xia M, Knezevic D, Tovar C, Huang B, Heimbrook DC, Vassilev LT . (2008). Elevated MDM2 boosts the apoptotic activity of p53-MDM2 binding inhibitors by facilitating MDMX degradation. Cell Cycle 7: 1604–1612.

    Article  CAS  Google Scholar 

  • Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D . (1993). p21 is a universal inhibitor of cyclin kinases. Nature 366: 701–704.

    Article  CAS  Google Scholar 

  • Yang H, Filipovic Z, Brown D, Breit SN, Vassilev LT . (2003). Macrophage inhibitory cytokine-1: a novel biomarker for p53 pathway activation. Mol Cancer Ther 2: 1023–1029.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Fujita N, Tsuruo T . (1999). Caspase-mediated cleavage of p21Waf1/Cip1 converts cancer cells from growth arrest to undergoing apoptosis. Oncogene 18: 1131–1138.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L T Vassilev.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, M., Knezevic, D. & Vassilev, L. p21 does not protect cancer cells from apoptosis induced by nongenotoxic p53 activation. Oncogene 30, 346–355 (2011). https://doi.org/10.1038/onc.2010.413

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/onc.2010.413

Keywords

This article is cited by

Search

Quick links