Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A mouse model of heterogeneous, c-MYC-initiated prostate cancer with loss of Pten and p53

Abstract

Human tumors are heterogeneous and evolve through a dynamic process of genetic mutation and selection. During this process, the effects of a specific mutation on the incipient cancer cell may dictate the nature of subsequent mutations that can be tolerated or selected for, affecting the rate at which subsequent mutations occur. Here we have used a new mouse model of prostate cancer that recapitulates several salient features of the human disease to examine the relative rates in which the remaining wild-type alleles of Pten and p53 tumor suppressor genes are lost. In this model, focal overexpression of c-MYC in a few prostate luminal epithelial cells provokes a mild proliferative response. In the context of compound Pten/p53 heterozygosity, c-MYC-initiated cells progress to prostatic intraepithelial neoplasia (mPIN) and adenocarcinoma lesions with marked heterogeneity within the same prostate glands. Using laser capture microdissection and gene copy number analyses, we found that the frequency of Pten loss was significantly higher than that of p53 loss in mPIN but not invasive carcinoma lesions. c-MYC overexpression, unlike Pten loss, did not activate the p53 pathway in transgenic mouse prostate cells, explaining the lack of selective pressure to lose p53 in the c-MYC-overexpressing cells. This model of heterogeneous prostate cancer based on alterations in genes relevant to the human disease may be useful for understanding pathogenesis of the disease and testing new therapeutic agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 7
Figure 5
Figure 6
Figure 8

Similar content being viewed by others

Abbreviations

PIN:

prostatic intraepithelial neoplasia

LCM:

laser-captured microdissection

BHQ:

black hole quencher

References

  • Abdulkadir SA, Carbone JM, Naughton CK, Humphrey PA, Catalona WJ, Milbrandt J . (2001a). Frequent and early loss of the EGR1 corepressor NAB2 in human prostate carcinoma. Hum Pathol 32: 935–939.

    Article  CAS  PubMed  Google Scholar 

  • Abdulkadir SA, Qu Z, Garabedian E, Song SK, Peters TJ, Svaren J et al. (2001b). Impaired prostate tumorigenesis in Egr1-deficient mice. Nat Med 7: 101–107.

    Article  CAS  PubMed  Google Scholar 

  • Andreoiu M, Cheng L . (2010). Multifocal prostate cancer: biologic, prognostic, and therapeutic implications. Hum Pathol 41: 781–793.

    Article  PubMed  Google Scholar 

  • Bookstein R, MacGrogan D, Hilsenbeck SG, Sharkey F, Allred DC . (1993). p53 is mutated in a subset of advanced-stage prostate cancers. Cancer Res 53: 3369–3373.

    CAS  PubMed  Google Scholar 

  • Brooks JD, Bova GS, Ewing CM, Piantadosi S, Carter BS, Robinson JC et al. (1996). An uncertain role for p53 gene alterations in human prostate cancers. Cancer Res 56: 3814–3822.

    CAS  PubMed  Google Scholar 

  • Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A et al. (2009). Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 41: 619–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436: 725–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng L, Song SY, Pretlow TG, Abdul-Karim FW, Kung HJ, Dawson DV et al. (1998). Evidence of independent origin of multiple tumors from patients with prostate cancer. J Natl Cancer Inst 90: 233–237.

    Article  CAS  PubMed  Google Scholar 

  • Cheung TH, Lo KW, Yim SF, Chan LK, Heung MS, Chan CS et al. (2004). Epigenetic and genetic alternation of PTEN in cervical neoplasm. Gynecol Oncol 93: 621–627.

    Article  CAS  PubMed  Google Scholar 

  • Chi SG, deVere White RW, Meyers FJ, Siders DB, Lee F, Gumerlock PH . (1994). p53 in prostate cancer: frequent expressed transition mutations. J Natl Cancer Inst 86: 926–933.

    Article  CAS  PubMed  Google Scholar 

  • Dinjens WN, van der Weiden MM, Schroeder FH, Bosman FT, Trapman J . (1994). Frequency and characterization of p53 mutations in primary and metastatic human prostate cancer. Int J Cancer 56: 630–633.

    Article  CAS  PubMed  Google Scholar 

  • Dong JT, Li CL, Sipe TW, Frierson Jr HF . (2001). Mutations of PTEN/MMAC1 in primary prostate cancers from Chinese patients. Clin Cancer Res 7: 304–308.

    CAS  PubMed  Google Scholar 

  • Effert PJ, McCoy RH, Walther PJ, Liu ET . (1993). p53 gene alterations in human prostate carcinoma. J Urol 150: 257–261.

    Article  CAS  PubMed  Google Scholar 

  • Ellwood-Yen K, Graeber TG, Wongvipat J, Iruela-Arispe ML, Zhang J, Matusik R et al. (2003). Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4: 223–238.

    Article  CAS  PubMed  Google Scholar 

  • Fearon ER, Vogelstein B . (1990). A genetic model for colorectal tumorigenesis. Cell 61: 759–767.

    Article  CAS  PubMed  Google Scholar 

  • Feilotter HE, Nagai MA, Boag AH, Eng C, Mulligan LM . (1998). Analysis of PTEN and the 10q23 region in primary prostate carcinomas. Oncogene 16: 1743–1748.

    Article  CAS  PubMed  Google Scholar 

  • Fenic I, Franke F, Failing K, Steger K, Woenckhaus J . (2004). Expression of PTEN in malignant and non-malignant human prostate tissues: comparison with p27 protein expression. J Pathol 203: 559–566.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Marcos PJ, Abu-Baker S, Joshi J, Galvez A, Castilla EA, Canamero M et al. (2009). Simultaneous inactivation of Par-4 and PTEN in vivo leads to synergistic NF-kappaB activation and invasive prostate carcinoma. Proc Natl Acad Sci USA 106: 12962–12967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greene DR, Wheeler TM, Egawa S, Weaver RP, Scardino PT . (1991). Relationship between clinical stage and histological zone of origin in early prostate cancer: morphometric analysis. Br J Urol 68: 499–509.

    Article  CAS  PubMed  Google Scholar 

  • Grizzle WE, Myers RB, Arnold MM, Srivastava S . (1994). Evaluation of biomarkers in breast and prostate cancer. J Cell Biochem Suppl 19: 259–266.

    CAS  PubMed  Google Scholar 

  • Groszer M, Erickson R, Scripture-Adams DD, Lesche R, Trumpp A, Zack JA et al. (2001). Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294: 2186–2189.

    Article  CAS  PubMed  Google Scholar 

  • Gurel B, Iwata T, Koh CM, Jenkins RB, Lan F, Van Dang C et al. (2008). Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod Pathol 21: 1156–1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han B, Mehra R, Lonigro RJ, Wang L, Suleman K, Menon A et al. (2009). Fluorescence in situ hybridization study shows association of PTEN deletion with ERG rearrangement during prostate cancer progression. Mod Pathol 22: 1083–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwata T, Schultz D, Hicks J, Hubbard GK, Mutton LN, Lotan TL et al. (2010). MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells. PLoS One 5: e9427.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A . (2001). Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 29: 418–425.

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Eltoum IE, Roh M, Wang J, Abdulkadir SA . (2009). Interactions between cells with distinct mutations in c-MYC and Pten in prostate cancer. PLoS Genet 5: e1000542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Konishi N, Hiasa Y, Hayashi I, Matsuda H, Tsuzuki T, Ming T et al. (1995). p53 mutations occur in clinical, but not latent, human prostate carcinoma. Jpn J Cancer Res 86: 57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCall P, Witton CJ, Grimsley S, Nielsen KV, Edwards J . (2008). Is PTEN loss associated with clinical outcome measures in human prostate cancer? Br J Cancer 99: 1296–1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMenamin ME, Soung P, Perera S, Kaplan I, Loda M, Sellers WR . (1999). Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res 59: 4291–4296.

    CAS  PubMed  Google Scholar 

  • Mellon K, Thompson S, Charlton RG, Marsh C, Robinson M, Lane DP et al. (1992). p53, c-erbB-2 and the epidermal growth factor receptor in the benign and malignant prostate. J Urol 147: 496–499.

    Article  CAS  PubMed  Google Scholar 

  • Mentor-Marcel R, Lamartiniere CA, Eltoum IE, Greenberg NM, Elgavish A . (2001). Genistein in the diet reduces the incidence of poorly differentiated prostatic adenocarcinoma in transgenic mice (TRAMP). Cancer Res 61: 6777–6782.

    CAS  PubMed  Google Scholar 

  • Mirchandani D, Zheng J, Miller GJ, Ghosh AK, Shibata DK, Cote RJ et al. (1995). Heterogeneity in intratumor distribution of p53 mutations in human prostate cancer. Am J Pathol 147: 92–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Navone NM, Troncoso P, Pisters LL, Goodrow TL, Palmer JL, Nichols WW et al. (1993). p53 protein accumulation and gene mutation in the progression of human prostate carcinoma. J Natl Cancer Inst 85: 1657–1669.

    Article  CAS  PubMed  Google Scholar 

  • Nesslinger NJ, Shi XB, deVere White RW . (2003). Androgen-independent growth of LNCaP prostate cancer cells is mediated by gain-of-function mutant p53. Cancer Res 63: 2228–2233.

    CAS  PubMed  Google Scholar 

  • Preacher KJ . (2001). Calculation for the chi-square test: an interactive calculation tool for chi-square tests for goodness of fit and independence (http://quantpsy.org).

  • Qian J, Hirasawa K, Bostwick DG, Bergstralh EJ, Slezak JM, Anderl KL et al. (2002). Loss of p53 and c-myc overrepresentation in stage T(2-3)N(1-3)M(0) prostate cancer are potential markers for cancer progression. Mod Pathol 15: 35–44.

    Article  PubMed  Google Scholar 

  • Roh M, Kim J, Song C, Wills M, Abdulkadir SA . (2006). Transgenic mice for Cre-inducible overexpression of the oncogenes c-MYC and Pim-1 in multiple tissues. Genesis 44: 447–453.

    Article  CAS  PubMed  Google Scholar 

  • Sansal I, Sellers WR . (2004). The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 22: 2954–2963.

    Article  CAS  PubMed  Google Scholar 

  • Schmitz M, Grignard G, Margue C, Dippel W, Capesius C, Mossong J et al. (2007). Complete loss of PTEN expression as a possible early prognostic marker for prostate cancer metastasis. Int J Cancer 120: 1284–1292.

    Article  CAS  PubMed  Google Scholar 

  • Sircar K, Yoshimoto M, Monzon FA, Koumakpayi IH, Katz RL, Khanna A et al. (2009). PTEN genomic deletion is associated with p-Akt and AR signalling in poorer outcome, hormone refractory prostate cancer. J Pathol 218: 505–513.

    Article  CAS  PubMed  Google Scholar 

  • Slaughter DP, Southwick HW, Smejkal W . (1953). Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 6: 963–968.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Freije D, Nusskern DR, Okami K, Cairns P, Sidransky D et al. (1998). Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res 58: 204–209.

    CAS  PubMed  Google Scholar 

  • Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al. (2010). Integrative genomic profiling of human prostate cancer. Cancer Cell 18: 11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villers A, McNeal JE, Freiha FS, Stamey TA . (1992). Multiple cancers in the prostate. Morphologic features of clinically recognized versus incidental tumors. Cancer 70: 2313–2318.

    Article  CAS  PubMed  Google Scholar 

  • Voeller HJ, Sugars LY, Pretlow T, Gelmann EP . (1994). p53 oncogene mutations in human prostate cancer specimens. J Urol 151: 492–495.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang WL, Zhang Y, Guo SP, Zhang J, Li QL . (2007). Epigenetic and genetic alterations of PTEN in hepatocellular carcinoma. Hepatol Res 37: 389–396.

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J et al. (2003). Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4: 209–221.

    Article  CAS  PubMed  Google Scholar 

  • Wang SI, Parsons R, Ittmann M . (1998). Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas. Clin Cancer Res 4: 811–815.

    CAS  PubMed  Google Scholar 

  • Wu X, Wu J, Huang J, Powell WC, Zhang J, Matusik RJ et al. (2001). Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mech Dev 101: 61–69.

    Article  CAS  PubMed  Google Scholar 

  • Yeang CH, McCormick F, Levine A . (2008). Combinatorial patterns of somatic gene mutations in cancer. Faseb J 22: 2605–2622.

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto M, Cunha IW, Coudry RA, Fonseca FP, Torres CH, Soares FA et al. (2007). FISH analysis of 107 prostate cancers shows that PTEN genomic deletion is associated with poor clinical outcome. Br J Cancer 97: 678–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the members of the Abdulkadir Lab for helpful discussions. This work was supported by Grants CA094858 and CA123484 (SAA) from the National Cancer Institute of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S A Abdulkadir.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Roh, M., Doubinskaia, I. et al. A mouse model of heterogeneous, c-MYC-initiated prostate cancer with loss of Pten and p53. Oncogene 31, 322–332 (2012). https://doi.org/10.1038/onc.2011.236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/onc.2011.236

Keywords

This article is cited by

Search

Quick links