Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeting Gli transcription activation by small molecule suppresses tumor growth

Abstract

Targeted inhibition of Hedgehog signaling at the cell membrane has been associated with anticancer activity in preclinical and early clinical studies. Hedgehog signaling involves activation of Gli transcription factors that can also be induced by alternative pathways. In this study, we identified an interaction between Gli proteins and a transcription coactivator TBP-associated factor 9 (TAF9), and validated its functional relevance in regulating Gli transactivation. We also describe a novel, synthetic small molecule, FN1-8, that efficiently interferes with Gli/TAF9 interaction and downregulate Gli/TAF9-dependent transcriptional activity. More importantly, FN1-8 suppresses cancer cell proliferation in vitro and inhibits tumor growth in vivo. Our results suggest that blocking Gli transactivation, an important control point of multiple oncogenic pathways, may be an effective anticancer strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Varjosalo M, Taipale J . Hedgehog: functions and mechanisms. Genes Dev 2008; 22: 2454–2472.

    Article  CAS  Google Scholar 

  2. Merchant AA, Matsui W . Targeting Hedgehog—a cancer stem cell pathway. Clin Cancer Res 2010; 16: 3130–3140.

    Article  CAS  Google Scholar 

  3. Kalderon D . Transducing the hedgehog signal. Cell 2000; 103: 371–374.

    Article  CAS  Google Scholar 

  4. Hooper JE, Scott MP . Communicating with Hedgehogs. Nat Rev Mol Cell Biol 2005; 6: 306–317.

    Article  CAS  Google Scholar 

  5. Huangfu D, Anderson KV . Signaling from Smo to Ci/Gli: Hedgehog pathways from Drosophila to vertebrates. Development 2006; 133: 3–14.

    Article  CAS  Google Scholar 

  6. Ruiz i Altaba A, Mas C, Stecca B . The Gli code: and information nexus regulating cell fate, stemness and cancer. Trends Cell Biol 2007; 17: 438–447.

    Article  CAS  Google Scholar 

  7. Mullor JL, Dahmane N, Sun T, Ruiz i Altaba A . Wnt signals are targets and mediators of Gli function. Curr Biol 2001; 1: 769–773.

    Article  Google Scholar 

  8. Yang L, Xie G, Fan Q, Xie J . Activation of the Hedgehog-signaling pathway in human cancer and the clinical implications. Oncogene 2010; 29: 469–481.

    Article  Google Scholar 

  9. Scales SJ, de Sauvage FJ . Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol Sci 2009; 30: 303–312.

    Article  CAS  Google Scholar 

  10. Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN et al. Medulloblastoma growth inhibition by Hedgehog pathway blockade. Science 2002; 297: 1559–1561.

    Article  CAS  Google Scholar 

  11. Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB . Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 2003; 422: 313–317.

    Article  CAS  Google Scholar 

  12. Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 2004; 431: 707–712.

    Article  CAS  Google Scholar 

  13. Feldmann G, Dhara S, Fendrich V, Bedja D, Beaty R, Mullendore M et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 2007; 67: 2187–2196.

    Article  CAS  Google Scholar 

  14. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A . HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 2007; 17: 165–172.

    Article  CAS  Google Scholar 

  15. Rudin CM, Hann CL, Laterra J, Yauch RL, Callahan CA, Fu L et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med 2009; 361: 1173–1178.

    Article  CAS  Google Scholar 

  16. LoRusso PM, Rudin CM, Reddy JC, Tibes R, Weiss GJ, Borad MJ et al. Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clin Cancer Res 2011; 17: 2502–2511.

    Article  CAS  Google Scholar 

  17. Tremblay MR, Lescarbeau A, Grogan MJ, Tan E, Lin G, Austad BC et al. Discovery of a potent and orally active Hedgehog pathway antagonist (IPI-926). J Med Chem 2009; 52: 4400–4418.

    Article  CAS  Google Scholar 

  18. Yauch RL, Dijkgraaf GJ, Alicke B, Januario T, Ahn CP, Holcomb T et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 2009; 326: 572–574.

    Article  CAS  Google Scholar 

  19. Dijkgraaf GJ, Alicke B, Weinmann L, Januario T, West K, Modrusan Z et al. Small molecule inhibition of GDC-0449 refractory smoothened mutants and downstream mechanisms of drug resistance. Cancer Res 2011; 71: 435–444.

    Article  CAS  Google Scholar 

  20. Low JA, de Sauvage FJ . Clinical experience with Hedgehog pathway inhibitors. J Clin Oncol 2010; 28: 5321–5326.

    Article  CAS  Google Scholar 

  21. Dennler S, André J, Alexaki I, Li A, Magnaldo T, ten Dijke P et al. Induction of sonic hedgehog mediators by transforming growth factor-beta: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo. Cancer Res 2007; 67: 6981–6986.

    Article  CAS  Google Scholar 

  22. Dennler S, André J, Verrecchia F, Mauviel A . Cloning of the human Gli2 promoter: transcriptional activation by Tgf-beta via Smad3/beta-catenin cooperation. J Biol Chem 2009; 284: 31523–31531.

    Article  CAS  Google Scholar 

  23. Guo X, Wang XF . Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res 2009; 19: 71–88.

    Article  CAS  Google Scholar 

  24. Ji ZY, Mei FC, Xie J, Cheng X . Oncogenic KRAS activates hedgehog signaling pathway in pancreatic cancer cells. J Biol Chem 2007; 282: 14048–14055.

    Article  CAS  Google Scholar 

  25. Riobo NA, Haines GM, Emerson CP Jr . Protein kinase C-delta and mitogen-activated protein/extracellular signal-regulated kinase-1 control GLI activation in hedgehog signaling. Cancer Res 2006; 66: 839–845.

    Article  CAS  Google Scholar 

  26. Riobo NA, Lu K, Ai X, Haines GM, Emerson CP Jr . Phosphoinositide 3-kinase and Akt are essential for sonic hedgehog signaling. Proc Natl Acad Sci USA 2006; 103: 4505–4510.

    Article  CAS  Google Scholar 

  27. Schnidar H, Eberl M, Klingler S, Mangelberger D, Kasper M, Hauser-Kronberger C et al. Epidermal growth factor receptor signaling synergizes with Hedgehog/GLI in oncogenic transformation via activation of the MEK/ERK/JUN pathway. Cancer Res 2009; 69: 1284–1292.

    Article  CAS  Google Scholar 

  28. Stecca B, Mas C, Clement V, Zbinden M, Correa R, Piguet V et al. Melanomas require HEDGEHOG-GLI signaling reaulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci USA 2007; 104: 5895–5900.

    Article  CAS  Google Scholar 

  29. Pasca di Magliano M, Sekine S, Ermilov A, Ferris J, Dlugosz AA, Hebrok M . Hedgehog/Ras interactions regulate early stages of pancreatic cancer. Genes Dev 2006; 20: 3161–3173.

    Article  CAS  Google Scholar 

  30. Lauth M, Toftgård R . Non-canonical activation of GLI transcription factors. Cell Cycle 2007; 6: 2458–2463.

    Article  CAS  Google Scholar 

  31. Lauth M, Bergstrom A, Shimokawa T, Toftgård R . Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci USA 2007; 104: 8455–8460.

    Article  CAS  Google Scholar 

  32. Yoon JW, Liu CZ, Yang JT, Swart R, Iannaccone P, Walterhouse D . GLI activates transcription through a herpes simplex viral protein 16-like activation domain. J Biol Chem 1998; 273: 3496–3501.

    Article  CAS  Google Scholar 

  33. Uesugi M, Verdine GL . The alpha-helical FXXPhiPhi motif in p53:TAF interaction and discrimination by MDM2. Proc Natl Acad Sci USA 1999; 96: 14801–14806.

    Article  CAS  Google Scholar 

  34. Choi Y, Asada S, Uesugi M . Divergent hTAFII31-binding motifs hidden in activation domains. J Biol Chem 2000; 275: 15912–15916.

    Article  CAS  Google Scholar 

  35. Rovnak J, Quackenbush SL . Walleye dermal sarcoma virus retroviral cyclin directly contacts TAF9. J Virol 2006; 80: 12041–12048.

    Article  CAS  Google Scholar 

  36. Falgout B, Ketner G . Characterization of adenovirus particles made by deletion mutants lacking the fiber gene. J Virol 1988; 62: 622–625.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. He B, Fujii N, You L, Xu Z, Jablons DM . Targeting Gli proteins in human cancer by small molecules US Patent No. 7714014 2010.

  38. Ogryzko VV, Kotani T, Zhang X, Schiltz RL, Howard T, Yang XJ et al. Histone-like TAFs within the PCAF histone acetylase complex. Cell 1998; 94: 35–44.

    Article  CAS  Google Scholar 

  39. Hoffmann A, Chiang CM, Oelgeschläger T, Xie X, Burley SK, Nakatani Y et al. A histone octamer-like structure within TFIID. Nature 1996; 380: 356–359.

    Article  CAS  Google Scholar 

  40. Shao H, Revach M, Moshonov S, Tzuman Y, Gazit K, Albeck S et al. Core promoter binding by histone-like TAF complexes. Mol Cell Biol 2005; 25: 206–219.

    Article  CAS  Google Scholar 

  41. Yauch RL, Gould SE, Scales SJ, Tang T, Tian H, Ahn CP et al. A paracrine requirement for hedgehog signaling in cancer. Nature 2008; 455: 406–410.

    Article  CAS  Google Scholar 

  42. Hosoya T, Arai MA, Koyano T, Kowithayakorn T, Ishibashi M . Naturally occurring small-molecule inhibitors of hedgehog/GLI-mediated transcription. Chembiochem 2008; 9: 1082–1092.

    Article  CAS  Google Scholar 

  43. Hyman JM, Firestone AJ, Heine VM, Zhao Y, Ocasio CA, Han K et al. Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proc Natl Acad Sci USA 2009; 106: 14132–14137.

    Article  CAS  Google Scholar 

  44. Rifai Y, Arai M, Sadhu S, Ahmed F, Ishibashi M . New Hedgehog/GLI signaling inhibitors from Excoecaria agallocha. Bioorg Med Chem Lett 2011; 21: 718–722.

    Article  CAS  Google Scholar 

  45. Arai M, Tateno C, Koyano T, Kowithayakorn T, Kawabe S, Ishibashi M . New Hedgehog/GLI-signaling inhibitors from Adenium obesum. Org Biomol Chem 2011; 9: 1133–1139.

    Article  CAS  Google Scholar 

  46. Jung D, Choi Y, Uesugi M . Small organic molecules that modulate gene transcription. Drug Discov Today 2006; 11: 452–457.

    Article  CAS  Google Scholar 

  47. Shimogawa H, Kwon Y, Mao Q, Kawazoe Y, Choi Y, Asada S et al. A wrench-shaped synthetic molecule that modulates a transcription factor–coactivator interaction. J Am Chem Soc 2004; 126: 3461–3471.

    Article  CAS  Google Scholar 

  48. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303: 844–848.

    Article  CAS  Google Scholar 

  49. Reguart N, He B, Xu Z, You L, Lee AY, Mazieres J et al. Cloning and characterization of the promoter of human Wnt inhibitory factor-1. Biochem Biophys Res Commun 2004; 323: 229–234.

    Article  CAS  Google Scholar 

  50. Okamoto J, Hirata T, Chen Z, Zhou HM, Mikami I, Li H et al. EMX2 is epigenetically silenced and suppresses growth in human lung cancer. Oncogene 2010; 29: 5969–5975.

    Article  CAS  Google Scholar 

  51. Raz D, Ray MR, Kim JY, He B, Taron M, Skrzypski M et al. A multi-gene assay is prognostic of survival in patients with early-stage lung adenocarcinoma. Clin Cancer Res 2008; 14: 5565–5570.

    Article  CAS  Google Scholar 

  52. Okamoto J, Kratz JR, Hirata T, Mikami I, Raz D, Segal M et al. Downregulation of EMX2 is associated with clinical outcomes in lung adenocarcinoma patients. Clin Lung Cancer 2011; 12: 237–244.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Joan’s Legacy: Uniting Against Lung Cancer Research Grant, NIH/NCI Grant R01CA125030, and the Eileen D Ludwig Endowed for Thoracic Oncology Research (to BH); NIH/NCI Grant R01CA132566, the Bonnie J Addario Lung Cancer Foundation, the Kazan, McClain, Abrams, Fernandez, Lyons, Greenwood, Harley and Oberman Foundation, Honeywell Foundation and the Barbara Isackson Lung Cancer Research Fund (to DMJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D M Jablons or B He.

Ethics declarations

Competing interests

BH, MM and DMJ have an ownership interest in Rescue Therapeutics. The other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosco-Clément, G., Zhang, F., Chen, Z. et al. Targeting Gli transcription activation by small molecule suppresses tumor growth. Oncogene 33, 2087–2097 (2014). https://doi.org/10.1038/onc.2013.164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/onc.2013.164

Keywords

This article is cited by

Search

Quick links