Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TGF-β1 suppression of microRNA-450b-5p expression: a novel mechanism for blocking myogenic differentiation of rhabdomyosarcoma

Abstract

Transforming growth factor beta 1 (TGF-β1) is the most potent inhibitor of myogenic differentiation (MyoD) of rhabdomyosarcoma (RMS); however, the underlying mechanisms of this inhibition remain unclear. In this study, we identified novel TGF-β1-related microRNAs (miRNAs); among these, miR-450b-5p is significantly regulated by TGF-β1. We provide evidence that TGF-β1 exerts it function by suppressing miR-450b-5p. Both in cultured cells and tumor implants, miR-450b-5p significantly arrested the growth of RMS and promoted its MyoD. Utilizing a bioinformatics approach, we identified miR-450b-5p target mRNAs. Among these candidates, only the expression of ecto-NOX disulfide-thiol exchanger 2 (ENOX2) and paired box 9 (PAX9) was augmented by miR-450b-5p knockdown examined by western blot; the engineered inhibition antagonized TGF-β1-mediated differentiation inhibition. Furthermore, we found that the Smad3 and Smad4 pathways, but not Smad2, are the principal mediator of TGF-β1 suppression of miR-450b-5p. Taken together, these results suggest that disrupting the TGF-β1 suppression of miR-450b-5p, or knockdown of ENOX2 and PAX9, are effective approaches in inducing RMS MyoD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Sebire NJ, Malone M . Myogenin and MyoD1 expression in paediatric rhabdomyosarcomas. J Clin Pathol 2003; 56: 412–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tapscott SJ, Thayer MJ, Weintraub H . Deficiency in rhabdomyosarcomas of a factor required for MyoD activity and myogenesis. Science 1993; 259: 1450–1453.

    Article  CAS  PubMed  Google Scholar 

  3. Mishra PJ, Merlino G . MicroRNA reexpression as differentiation therapy in cancer. J Clin Invest 2009; 119: 2119–2123.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wurdinger T, Costa FF . Molecular therapy in the microRNA era. Pharmacogenomics J 2007; 7: 297–304.

    Article  CAS  PubMed  Google Scholar 

  5. Wang V, Wu W . MicroRNA-based therapeutics for cancer. BioDrugs 2009; 23: 15–23.

    Article  PubMed  Google Scholar 

  6. Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y et al. Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol 2004; 164: 1007–1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun Q, Zhang Y, Yang G, Chen X, Cao G, Wang J et al. Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res 2008; 36: 2690–2699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang SL, Yao HH, Guo LL, Dong L, Li SG, Gu YP et al. Selection of optimal sites for TGFB1 gene silencing by chitosan-TPP nanoparticle-mediated delivery of shRNA. Cancer Genet Cytogenet 2009; 190: 8–14.

    Article  CAS  PubMed  Google Scholar 

  9. Wang S, Guo L, Dong L, Li S, Zhang J, Sun M . TGF-beta1 signal pathway may contribute to rhabdomyosarcoma development by inhibiting differentiation. Cancer Sci 2010; 101: 1108–1116.

    Article  CAS  PubMed  Google Scholar 

  10. Ye L, Zhang HY, Wang H, Yang GH, Bu H, Zhang L et al. Effects of transforming growth factor beta 1 on the growth of rhabdomyosarcoma cell line RD. Chin Med J (Engl) 2005; 118: 678–686.

    CAS  Google Scholar 

  11. Davis BN, Hilyard AC, Lagna G, Hata A . SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008; 454: 56–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 2008; 28: 6773–6784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang B, Hsu SH, Majumder S, Kutay H, Huang W, Jacob ST et al. TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene 2010; 29: 1787–1797.

    Article  CAS  PubMed  Google Scholar 

  14. Shoji Y, Saegusa M, Takano Y, Ohbu M, Okayasu I . Correlation of apoptosis with tumour cell differentiation, progression, and HPV infection in cervical carcinoma. J Clin Pathol 1996; 49: 134–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu D, Black BL, Derynck R . TGF-beta inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes Dev 2001; 15: 2950–2966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Massague J . TGFbeta in cancer. Cell 2008; 134: 215–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bouche M, Canipari R, Melchionna R, Willems D, Senni MI, Molinaro M . TGF-beta autocrine loop regulates cell growth and myogenic differentiation in human rhabdomyosarcoma cells. FASEB J 2000; 14: 1147–1158.

    Article  CAS  PubMed  Google Scholar 

  18. Calin GA, Croce CM . MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857–866.

    Article  CAS  PubMed  Google Scholar 

  19. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T . Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007; 39: 673–677.

    Article  CAS  PubMed  Google Scholar 

  20. Yamagata K, Fujiyama S, Ito S, Ueda T, Murata T, Naitou M et al. Maturation of microRNA is hormonally regulated by a nuclear receptor. Mol Cell 2009; 36: 340–347.

    Article  CAS  PubMed  Google Scholar 

  21. Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K . Modulation of microRNA processing by p53. Nature 2009; 460: 529–533.

    Article  CAS  PubMed  Google Scholar 

  22. Suzuki HI, Miyazono K . Emerging complexity of microRNA generation cascades. J Biochem 2011; 149: 15–25.

    Article  CAS  PubMed  Google Scholar 

  23. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu NC, Hsieh PF, Hsieh MK, Zeng ZM, Cheng HL, Liao JW et al. Capsaicin-mediated tNOX (ENOX2) up-regulation enhances cell proliferation and migration in vitro and in vivo. J Agric Food Chem 2012; 60: 2758–2765.

    Article  CAS  PubMed  Google Scholar 

  25. Rodrigo I, Hill RE, Balling R, Munsterberg A, Imai K . Pax1 and Pax9 activate Bapx1 to induce chondrogenic differentiation in the sclerotome. Development 2003; 130: 473–482.

    Article  CAS  PubMed  Google Scholar 

  26. Zeng ZM, Chuang SM, Chang TC, Hong CW, Chou JC, Yang JJ et al. Phosphorylation of serine-504 of tNOX (ENOX2) modulates cell proliferation and migration in cancer cells. Exp Cell Res 2012; 318: 1759–1766.

    Article  CAS  PubMed  Google Scholar 

  27. Hatley ME, Tang W, Garcia MR, Finkelstein D, Millay DP, Liu N et al. A mouse model of rhabdomyosarcoma originating from the adipocyte lineage. Cancer Cell 2012; 22: 536–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu D, Kang JS, Derynck R . TGF-beta-activated Smad3 represses MEF2-dependent transcription in myogenic differentiation. EMBO J 2004; 23: 1557–1566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ge X, McFarlane C, Vajjala A, Lokireddy S, Ng ZH, Tan CK et al. Smad3 signaling is required for satellite cell function and myogenic differentiation of myoblasts. Cell Res 2011; 21: 1591–1604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Segev H, Fishman B, Ziskind A, Shulman M, Itskovitz-Eldor J . Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells 2004; 22: 265–274.

    Article  CAS  PubMed  Google Scholar 

  31. Yang Z, MacQuarrie KL, Analau E, Tyler AE, Dilworth FJ, Cao Y et al. MyoD and E-protein heterodimers switch rhabdomyosarcoma cells from an arrested myoblast phase to a differentiated state. Genes Dev 2009; 23: 694–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guo H, Zhang HY, Wang SL, Ye L, Yang GH, Bu H . Smad4 and ERK2 stimulated by transforming growth factor beta1 in rhabdomyosarcoma. Chin Med J (Engl) 2007; 120: 515–521.

    Article  CAS  Google Scholar 

  33. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005; 33: e179.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schmittgen TD, Lee EJ, Jiang J, Sarkar A, Yang L, Elton TS et al. Real-time PCR quantification of precursor and mature microRNA. Methods 2008; 44: 31–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheng AM, Byrom MW, Shelton J, Ford LP . Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 2005; 33: 1290–1297.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the West China Hospital of Sichuan University for providing us with the tumor specimens. This work was supported partially by the Chinese Nature Science Foundation (81072186, 81272738), Jiangsu Provincial Nature Science Foundation (SBK20110743), Jiangsu Provincial Higher Institution Nature Science Foundation (10KJB320018), Suzhou Applied Basic Research Programs (SYS201207), and Sponsorship of Jiangsu Overseas Research and Training Program for University Prominent Young and Middle-aged Teachers and Presidents.

Author information

Authors and Affiliations

Corresponding authors

Correspondence to J M Li or S L Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, M., Li, J., Guo, L. et al. TGF-β1 suppression of microRNA-450b-5p expression: a novel mechanism for blocking myogenic differentiation of rhabdomyosarcoma. Oncogene 33, 2075–2086 (2014). https://doi.org/10.1038/onc.2013.165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/onc.2013.165

Keywords

This article is cited by

Search

Quick links