Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The role of APC/CCdh1 in replication stress and origin of genomic instability

Abstract

It has been proposed that the APC/CCdh1 functions as a tumor suppressor by maintaining genomic stability. However, the exact nature of genomic instability following loss of Cdh1 is unclear. Using biochemistry and live cell imaging of single cells we found that Cdh1 knockdown (kd) leads to strong nuclear stabilization of the substrates cyclin A and B and deregulated kinetics of DNA replication. Restoration of the Cdh1-dependent G2 DNA damage checkpoint did not result in G2 arrest but blocked cells in prometaphase, suggesting that these cells enter mitosis despite incomplete replication. This results in DNA double-strand breaks, anaphase bridges, cytokinesis defects and tetraploidization. Tetraploid cells are the source of supernumerary centrosomes following Cdh1-kd, leading to multipolar mitosis or centrosome clustering, in turn resulting in merotelic attachment and lagging chromosomes. Whereas some of these events cause apoptosis during mitosis, surviving cells may accumulate chromosomal aberrations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wäsch R, Engelbert D . Anaphase-promoting complex-dependent proteolysis of cell cycle regulators and genomic instability of cancer cells. Oncogene 2005; 24: 1–10.

    Article  PubMed  Google Scholar 

  2. Zhang J, Wan L, Dai X, Sun Y, Wei W . Functional characterization of Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligases in tumorigenesis. Biochim Biophys Acta 2014; 1845: 277–293.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Peters JM . The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 2006; 7: 644–656.

    Article  CAS  PubMed  Google Scholar 

  4. Harper JW, Burton JL, Solomon MJ . The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev 2002; 16: 2179–2206.

    Article  CAS  PubMed  Google Scholar 

  5. Pines J . Cubism and the cell cycle: the many faces of the APC/C. Nat Rev Mol Cell Biol 2011; 12: 427–438.

    Article  CAS  PubMed  Google Scholar 

  6. Sullivan M, Morgan DO . Finishing mitosis, one step at a time. Nat Rev Mol Cell Biol 2007; 8: 894–903.

    Article  CAS  PubMed  Google Scholar 

  7. Morgan D . Regulation of the APC and the exit from mitosis. Nat Cell Biol 1999; 1: E47–E53.

    Article  CAS  PubMed  Google Scholar 

  8. Wäsch R, Cross FR . APC-dependent proteolysis of the mitotic cyclin Clb2 is essential for mitotic exit. Nature 2002; 418: 556–562.

    Article  PubMed  Google Scholar 

  9. Wäsch R, Robbins JA, Cross FR . The emerging role of APC/CCdh1 in controlling differentiation, genomic stability and tumor suppression. Oncogene 2010; 29: 1–10.

    Article  PubMed  Google Scholar 

  10. Qiao X, Zhang L, Gamper AM, Fujita T, Wan Y . APC/C-Cdh1: from cell cycle to cellular differentiation and genomic integrity. Cell Cycle 2010; 9: 3904–3912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sudo T, Ota Y, Kotani S, Nakao M, Takami Y, Takeda S et al. Activation of Cdh1-dependent APC is required for G1 cell cycle arrest and DNA damage-induced G2 checkpoint in vertebrate cells. EMBO J 2001; 20: 6499–6508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bassermann F, Frescas D, Guardavaccaro D, Busino L, Peschiaroli A, Pagano M . The Cdc14B-Cdh1-Plk1 axis controls the G2 DNA-damage-response checkpoint. Cell 2008; 134: 256–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Floyd S, Pines J, Lindon C . APC/C Cdh1 targets aurora kinase to control reorganization of the mitotic spindle at anaphase. Curr Biol 2008; 18: 1649–1658.

    Article  CAS  PubMed  Google Scholar 

  14. Engelbert D, Schnerch D, Baumgarten A, Wäsch R . The ubiquitin ligase APC(Cdh1) is required to maintain genome integrity in primary human cells. Oncogene 2008; 27: 907–917.

    Article  CAS  PubMed  Google Scholar 

  15. Garcia-Higuera I, Manchado E, Dubus P, Canamero M, Mendez J, Moreno S et al. Genomic stability and tumour suppression by the APC/C cofactor Cdh1. Nat Cell Biol 2008; 10: 802–811.

    Article  PubMed  Google Scholar 

  16. Diffley JF . Regulation of early events in chromosome replication. Curr Biol 2004; 14: R778–R786.

    Article  CAS  PubMed  Google Scholar 

  17. Moore JD, Kirk JA, Hunt T . Unmasking the S-phase-promoting potential of cyclin B1. Science 2003; 300: 987–990.

    Article  CAS  PubMed  Google Scholar 

  18. Clijsters L, Ogink J, Wolthuis R . The spindle checkpoint, APC/C(Cdc20), and APC/C(Cdh1) play distinct roles in connecting mitosis to S phase. J Cell Biol 2013; 201: 1013–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nishitani H, Sugimoto N, Roukos V, Nakanishi Y, Saijo M, Obuse C et al. Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. EMBO J 2006; 25: 1126–1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johansson P, Jeffery J, Al-Ejeh F, Schulz RB, Callen DF, Kumar R et al. SCF-FBXO31 E3 ligase targets DNA replication factor Cdt1 for proteolysis in the G2 phase of cell cycle to prevent re-replication. J Biol Chem 2014; 289: 18514–18525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schnerch D, Follo M, Krohs J, Felthaus J, Engelhardt M, Wäsch R . Monitoring APC/C activity in the presence of chromosomal misalignment in unperturbed cell populations. Cell Cycle 2012; 11: 310–321.

    Article  CAS  PubMed  Google Scholar 

  22. Schnerch D, Follo M, Felthaus J, Engelhardt M, Wäsch R . The 3' untranslated region of the cyclin B mRNA is not sufficient to enhance the synthesis of cyclin B during a mitotic block in human cells. PLoS One 2013; 8: e74379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hendrickson M, Madine M, Dalton S, Gautier J . Phosphorylation of MCM4 by cdc2 protein kinase inhibits the activity of the minichromosome maintenance complex. Proc Natl Acad Sci USA 1996; 93: 12223–12228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fujita M, Yamada C, Tsurumi T, Hanaoka F, Matsuzawa K, Inagaki M . Cell cycle- and chromatin binding state-dependent phosphorylation of human MCM heterohexameric complexes. A role for cdc2 kinase. J Biol Chem 1998; 273: 17095–17101.

    Article  CAS  PubMed  Google Scholar 

  25. Ishimi Y, Komamura-Kohno Y, You Z, Omori A, Kitagawa M . Inhibition of Mcm4,6,7 helicase activity by phosphorylation with cyclin A/Cdk2. J Biol Chem 2000; 275: 16235–16241.

    Article  CAS  PubMed  Google Scholar 

  26. Masai H, Matsui E, You Z, Ishimi Y, Tamai K, Arai K . Human Cdc7-related kinase complex. In vitro phosphorylation of MCM by concerted actions of Cdks and Cdc7 and that of a criticial threonine residue of Cdc7 bY Cdks. J Biol Chem 2000; 275: 29042–29052.

    Article  CAS  PubMed  Google Scholar 

  27. Ishimi Y, Komamura-Kohno Y . Phosphorylation of Mcm4 at specific sites by cyclin-dependent kinase leads to loss of Mcm4,6,7 helicase activity. J Biol Chem 2001; 276: 34428–34433.

    Article  CAS  PubMed  Google Scholar 

  28. Komamura-Kohno Y, Karasawa-Shimizu K, Saitoh T, Sato M, Hanaoka F, Tanaka S et al. Site-specific phosphorylation of MCM4 during the cell cycle in mammalian cells. FEBS J 2006; 273: 1224–1239.

    Article  CAS  PubMed  Google Scholar 

  29. Wheeler LW, Lents NH, Baldassare JJ . Cyclin A-CDK activity during G1 phase impairs MCM chromatin loading and inhibits DNA synthesis in mammalian cells. Cell Cycle 2008; 7: 2179–2188.

    Article  CAS  PubMed  Google Scholar 

  30. Sigl R, Wandke C, Rauch V, Kirk J, Hunt T, Geley S . Loss of the mammalian APC/C activator FZR1 shortens G1 and lengthens S phase but has little effect on exit from mitosis. J Cell Sci 2009; 122: 4208–4217.

    Article  CAS  PubMed  Google Scholar 

  31. Eguren M, Porlan E, Manchado E, Garcia-Higuera I, Canamero M, Farinas I et al. The APC/C cofactor Cdh1 prevents replicative stress and p53-dependent cell death in neural progenitors. Nat Commun 2013; 4: 2880.

    Article  PubMed  Google Scholar 

  32. Ekholm-Reed S, Mendez J, Tedesco D, Zetterberg A, Stillman B, Reed SI . Deregulation of cyclin E in human cells interferes with prereplication complex assembly. J Cell Biol 2004; 165: 789–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Torres-Rosell J, De Piccoli G, Cordon-Preciado V, Farmer S, Jarmuz A, Machin F et al. Anaphase onset before complete DNA replication with intact checkpoint responses. Science 2007; 315: 1411–1415.

    Article  CAS  PubMed  Google Scholar 

  34. Neelsen KJ, Zanini IM, Herrador R, Lopes M . Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates. J Cell Biol 2013; 200: 699–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lengronne A, Schwob E . The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G1. Mol Cell 2002; 9: 1067–1078.

    Article  CAS  PubMed  Google Scholar 

  36. Ayuda-Duran P, Devesa F, Gomes F, Sequeira-Mendes J, Avila-Zarza C, Gomez M et al. The CDK regulators Cdh1 and Sic1 promote efficient usage of DNA replication origins to prevent chromosomal instability at a chromosome arm. Nucleic Acids Res 2014; 42: 7057–7068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M . Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature 2004; 428: 190–193.

    Article  CAS  PubMed  Google Scholar 

  38. Wei W, Ayad NG, Wan Y, Zhang GJ, Kirschner MW, Kaelin WG Jr . Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 2004; 428: 194–198.

    Article  CAS  PubMed  Google Scholar 

  39. Yuan X, Srividhya J, De Luca T, Lee JH, Pomerening JR . Uncovering the role of APC-Cdh1 in generating the dynamics of S-phase onset. Mol Biol Cell 2014; 25: 441–456.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ganem NJ, Godinho SA, Pellman D . A mechanism linking extra centrosomes to chromosomal instability. Nature 2009; 460: 278–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Drosopoulos K, Tang C, Chao WC, Linardopoulos S . APC/C is an essential regulator of centrosome clustering. Nat Commun 2014; 5: 3686.

    Article  CAS  PubMed  Google Scholar 

  42. Eguren M, Alvarez-Fernandez M, Garcia F, Lopez-Contreras AJ, Fujimitsu K, Yaguchi H et al. A synthetic lethal interaction between APC/C and topoisomerase poisons uncovered by proteomic screens. Cell Rep 2014; 6: 670–683.

    Article  CAS  PubMed  Google Scholar 

  43. Skaar JR, Pagano M . Cdh1: a master G0/G1 regulator. Nat Cell Biol 2008; 10: 755–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alver RC, Chadha GS, Blow JJ . The contribution of dormant origins to genome stability: from cell biology to human genetics. DNA Repair (Amst) 2014; 19: 182–189.

    Article  CAS  Google Scholar 

  45. Woodward AM, Gohler T, Luciani MG, Oehlmann M, Ge X, Gartner A et al. Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol 2006; 173: 673–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kawabata T, Luebben SW, Yamaguchi S, Ilves I, Matise I, Buske T et al. Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol Cell 2011; 41: 543–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sorensen CS, Lukas C, Kramer ER, Peters JM, Bartek J, Lukas J . Nonperiodic activity of the human anaphase-promoting complex-Cdh1 ubiquitin ligase results in continuous DNA synthesis uncoupled from mitosis. Mol Cell Biol 2000; 20: 7613–7623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Steigemann P, Wurzenberger C, Schmitz MH, Held M, Guizetti J, Maar S et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 2009; 136: 473–484.

    Article  PubMed  Google Scholar 

  49. Held M, Schmitz MH, Fischer B, Walter T, Neumann B, Olma MH et al. CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nat Methods 2010; 7: 747–754.

    Article  CAS  PubMed  Google Scholar 

  50. Harrigan JA, Belotserkovskaya R, Coates J, Dimitrova DS, Polo SE, Bradshaw CR et al. Replication stress induces 53BP1-containing OPT domains in G1 cells. J Cell Biol 2011; 193: 97–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by Deutsche Forschungsgemeinschaft. We thank G Ihorst for statistical advice.

Author information

Authors and Affiliations

Corresponding author

Correspondence to R Wäsch.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greil, C., Krohs, J., Schnerch, D. et al. The role of APC/CCdh1 in replication stress and origin of genomic instability. Oncogene 35, 3062–3070 (2016). https://doi.org/10.1038/onc.2015.367

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/onc.2015.367

This article is cited by

Search

Quick links