Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

An important role for Myb-MuvB and its target gene KIF23 in a mouse model of lung adenocarcinoma

Abstract

The conserved Myb-MuvB (MMB) multiprotein complex has an important role in transcriptional activation of mitotic genes. MMB target genes are overexpressed in several different cancer types and their elevated expression is associated with an advanced tumor state and a poor prognosis. This suggests that MMB could contribute to tumorigenesis by mediating overexpression of mitotic genes. However, although MMB has been extensively characterized biochemically, the requirement for MMB in tumorigenesis in vivo has not been investigated. Here we demonstrate that MMB is required for tumor formation in a mouse model of lung cancer driven by oncogenic K-RAS. We also identify a requirement for the mitotic kinesin KIF23, a key target gene of MMB, in tumorigenesis. RNA interference-mediated depletion of KIF23 inhibited lung tumor formation in vivo and induced apoptosis in lung cancer cell lines. Our results suggest that inhibition of KIF23 could be a strategy for treatment of lung cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z . A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 2006; 38: 1043–1048.

    Article  CAS  PubMed  Google Scholar 

  2. Cheng W-Y, Ou Yang T-H, Anastassiou D . Biomolecular events in cancer revealed by attractor metagenes. PLoS Comput Biol 2013; 9: e1002920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chibon F, Lagarde P, Salas S, Pérot G, Brouste V, Tirode F et al. Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nat Med 2010; 16: 781–787.

    Article  CAS  PubMed  Google Scholar 

  4. Sotillo R, Hernando E, Díaz-Rodríguez E, Teruya-Feldstein J, Cordón-Cardo C, Lowe SW et al. Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 2007; 11: 9–23.

    Article  CAS  PubMed  Google Scholar 

  5. Díaz-Rodríguez E, Sotillo R, Schvartzman J-M, Benezra R . Hec1 overexpression hyperactivates the mitotic checkpoint and induces tumor formation in vivo. Proc Natl Acad Sci USA 2008; 105: 16719–16724.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hernando E, Nahlé Z, Juan G, Díaz-Rodríguez E, Alaminos M, Hemann M et al. Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 2004; 430: 797–802.

    Article  CAS  PubMed  Google Scholar 

  7. Menssen A, Epanchintsev A, Lodygin D, Rezaei N, Jung P, Verdoodt B et al. c-MYC delays prometaphase by direct transactivation of MAD2 and BubR1: identification of mechanisms underlying c-MYC-induced DNA damage and chromosomal instability. Cell Cycle 2007; 6: 339–352.

    Article  CAS  PubMed  Google Scholar 

  8. Sadasivam S, DeCaprio JA . The DREAM complex: master coordinator of cell cycle-dependent gene expression. Nat Rev Cancer 2013; 13: 585–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Litovchick L, Sadasivam S, Florens L, Zhu X, Swanson SK, Velmurugan S et al. Evolutionarily conserved multisubunit RBL2/p130 and E2F4 protein complex represses human cell cycle-dependent genes in quiescence. Mol Cell 2007; 26: 539–551.

    Article  CAS  PubMed  Google Scholar 

  10. Schmit F, Korenjak M, Mannefeld M, Schmitt K, Franke C, Eyss von B et al. LINC, a human complex that is related to pRB-containing complexes in invertebrates regulates the expression of G2/M genes. Cell Cycle 2007; 6: 1903–1913.

    Article  CAS  PubMed  Google Scholar 

  11. Sadasivam S, Duan S, DeCaprio JA . The MuvB complex sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression. Genes Dev 2012; 26: 474–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Osterloh L, Eyss von B, Schmit F, Rein L, Hübner D, Samans B et al. The human synMuv-like protein LIN-9 is required for transcription of G2/M genes and for entry into mitosis. EMBO J 2007; 26: 144–157.

    Article  CAS  PubMed  Google Scholar 

  13. Knight AS, Notaridou M, Watson RJ . A Lin-9 complex is recruited by B-Myb to activate transcription of G2/M genes in undifferentiated embryonal carcinoma cells. Oncogene 2009; 28: 1737–1747.

    Article  CAS  PubMed  Google Scholar 

  14. Esterlechner J, Reichert N, Iltzsche F, Krause M, Finkernagel F, Gaubatz S . LIN9, a subunit of the DREAM complex, regulates mitotic gene expression and proliferation of embryonic stem cells. PLoS ONE 2013; 8: e62882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reichert N, Wurster S, Ulrich T, Schmitt K, Hauser S, Probst L et al. Lin9, a subunit of the mammalian DREAM complex, is essential for embryonic development, for survival of adult mice, and for tumor suppression. Mol Cell Biol 2010; 30: 2896–2908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jackson EL, Olive KP, Tuveson DA, Bronson R, Crowley D, Brown M et al. The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res 2005; 65: 10280–10288.

    Article  CAS  PubMed  Google Scholar 

  17. DuPage M, Dooley AL, Jacks T . Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc 2009; 4: 1064–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saville MK, Watson RJ . The cell-cycle regulated transcription factor B-Myb is phosphorylated by cyclin A/Cdk2 at sites that enhance its transactivation properties. Oncogene 1998; 17: 2679–2689.

    Article  CAS  PubMed  Google Scholar 

  19. García P, Berlanga O, Watson R, Frampton J . Generation of a conditional allele of the B-myb gene. Genesis 2005; 43: 189–195.

    Article  PubMed  Google Scholar 

  20. Tetreault M-P, Yang Y, Katz JP . Krüppel-like factors in cancer. Nat Rev Cancer 2013; 13: 701–713.

    Article  CAS  PubMed  Google Scholar 

  21. Kissil JL, Walmsley MJ, Hanlon L, Haigis KM, Bender Kim CF, Sweet-Cordero A et al. Requirement for Rac1 in a K-ras induced lung cancer in the mouse. Cancer Res 2007; 67: 8089–8094.

    Article  CAS  PubMed  Google Scholar 

  22. Cellurale C, Sabio G, Kennedy NJ, Das M, Barlow M, Sandy P et al. Requirement of c-Jun NH(2)-terminal kinase for Ras-initiated tumor formation. Mol Cell Biol 2011; 31: 1565–1576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bowman BM, Sebolt KA, Hoff BA, Boes JL, Daniels DL, Heist KA et al. Phosphorylation of FADD by the kinase CK1α promotes KRASG12D-induced lung cancer. Science Signal 2015; 8: ra9.

    Article  Google Scholar 

  24. Fischer M, Grundke I, Sohr S, Quaas M, Hoffmann S, Knörck A et al. p53 and cell cycle dependent transcription of kinesin family member 23 (KIF23) is controlled via a CHR promoter element bound by DREAM and MMB complexes. PLoS ONE 2013; 8: e63187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Feldser DM, Kostova KK, Winslow MM, Taylor SE, Cashman C, Whittaker CA et al. Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature 2010; 468: 572–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rath O, Kozielski F . Kinesins and cancer. Nat Rev Cancer 2012; 12: 527–539.

    Article  CAS  PubMed  Google Scholar 

  27. Huszar D, Theoclitou M-E, Skolnik J, Herbst R . Kinesin motor proteins as targets for cancer therapy. Cancer Metastasis Rev 2009; 28: 197–208.

    Article  CAS  PubMed  Google Scholar 

  28. White EA, Glotzer M . Centralspindlin: at the heart of cytokinesis. Cytoskeleton (Hoboken) 2012; 69: 882–892.

    Article  CAS  Google Scholar 

  29. Mannefeld M, Klassen E, Gaubatz S . B-MYB is required for recovery from the DNA damage-induced G2 checkpoint in p53 mutant cells. Cancer Res 2009; 69: 4073–4080.

    Article  CAS  PubMed  Google Scholar 

  30. Quaas M, Müller GA, Engeland K . p53 can repress transcription of cell cycle genes through a p21(WAF1/CIP1)-dependent switch from MMB to DREAM protein complex binding at CHR promoter elements. Cell Cycle 2012; 11: 4661–4672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fischer M, Quaas M, Steiner L, Engeland K . The p53-p21-DREAM-CDE/CHR pathway regulates G2/M cell cycle genes. Nucleic Acids Res 2015; 44: 164–174.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A, Dhe-Paganon S et al. Drug development. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 2015; 348: 1376–1381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tanaka Y, Patestos NP, Maekawa T, Ishii S . B-myb is required for inner cell mass formation at an early stage of development. J Biol Chem 1999; 274: 28067–28070.

    Article  CAS  PubMed  Google Scholar 

  34. Hirokawa N, Noda Y, Tanaka Y, Niwa S . Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 2009; 10: 682–696.

    Article  CAS  PubMed  Google Scholar 

  35. Glotzer M . The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nat Rev Mol Cell Biol 2009; 10: 9–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Välk K, Vooder T, Kolde R, Reintam M-A, Petzold C, Vilo J et al. Gene expression profiles of non-small cell lung cancer: survival prediction and new biomarkers. Oncology 2010; 79: 283–292.

    Article  PubMed  Google Scholar 

  37. Takahashi S, Fusaki N, Ohta S, Iwahori Y, Iizuka Y, Inagawa K et al. Downregulation of KIF23 suppresses glioma proliferation. J Neurooncol 2012; 106: 519–529.

    Article  CAS  PubMed  Google Scholar 

  38. Bakhoum SF, Compton DA . Chromosomal instability and cancer: a complex relationship with therapeutic potential. J Clin Invest 2012; 122: 1138–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 2001; 15: 3243–3248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marino S, Vooijs M, van der Gulden H, Jonkers J, Berns A . Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev 2000; 14: 994–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Murphy DJ, Junttila MR, Pouyet L, Karnezis A, Shchors K, Bui DA et al. Distinct thresholds govern Myc's biological output in vivo. Cancer Cell 2008; 14: 447–457.

    Article  CAS  PubMed  Google Scholar 

  42. Tiscornia G, Singer O, Verma IM . Production and purification of lentiviral vectors. Nat Protoc 2006; 1: 241–245.

    Article  CAS  PubMed  Google Scholar 

  43. Novak A, Guo C, Yang W, Nagy A, Lobe CG . Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 2000; 28: 147–155.

    Article  CAS  PubMed  Google Scholar 

  44. Bassères DS, Ebbs A, Levantini E, Baldwin AS . Requirement of the NF-kappaB subunit p65/RelA for K-Ras-induced lung tumorigenesis. Cancer Res 2010; 70: 3537–3546.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tavner F, Frampton J, Watson RJ . Targeting an E2F site in the mouse genome prevents promoter silencing in quiescent and post-mitotic cells. Oncogene 2007; 26: 2727–2735.

    Article  CAS  PubMed  Google Scholar 

  46. Raemaekers T, Ribbeck K, Beaudouin J, Annaert W, Van Camp M, Stockmans I et al. NuSAP, a novel microtubule-associated protein involved in mitotic spindle organization. J Cell Biol 2003; 162: 1017–1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Meerbrey KL, Hu G, Kessler JD, Roarty K, Li MZ, Fang JE et al. The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo. Proc Natl Acad Sci USA 2011; 108: 3665–3670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Győrffy B, Surowiak P, Budczies J, Lánczky A . Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS ONE 2013; 8: e82241.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Tyler Jacks, Anton Berns, Roger Watson, Geert Carmeliet, Thorsten Stiewe and Andras Nagy for reagents, and Sabine Roth and Susi Spahr for excellent technical help. We thank all members of the laboratory for their suggestions and critical reading of the manuscript. This work was supported by grants from the Deutsche Krebshilfe (110928), Sander Stiftung (2015.038.1) and DFG (GA 575/5-2) towards SG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Gaubatz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iltzsche, F., Simon, K., Stopp, S. et al. An important role for Myb-MuvB and its target gene KIF23 in a mouse model of lung adenocarcinoma. Oncogene 36, 110–121 (2017). https://doi.org/10.1038/onc.2016.181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/onc.2016.181

This article is cited by

Search

Quick links