Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Djokpe, E. & Vogt, W. N-isopropylacrylamide and N-isopropylmethacryl-amide: cloud points of mixture and copolymers. Mcromol. Chem. Phys. 202, 750–757 (2001).
Gil, E. S. & Hudson, S. M. Stimuli responsive polymers and their conjugates. Prog. Polym. Sci. 29, 1173–1122 (2004).
Masci, G., Giacomelli, L. & Crescenzi, V. Atom transfer radical polymerization of N-Isopropylacrylamide. Macromol. Rapid. Commu. 25, 559–564 (2004).
Sugihara, S., Kanaoka, S. & Aoshima, S. Double thermosensitive diblock copolymers of vinyl ethers with pendant oxyethylene groups: unique physical gelation. Macromolecules 38, 1919–1927 (2005).
Uguzdogan, E. T., Camli, O. S., Kabasaki, S., Patir, E., Ozturk, E., Denkbas, B. & Tuncel, A. A new temperature-sensitive polymer: poly(ethoxypropylacrylamide). Eur. Polym. J. 41, 2142 (2005).
Skrabania, K., Kristen, J., Laschewsky, A., Akdemir, O., Hoth, A. & Lutz, J.- F. Design, synthesis, and aqueous aggregation behavior of nonionic single and multiple thermoresponsive polymers. Langmuir 23, 84–93 (2007).
Kikuchi, A. & Okano, T. Pulsatile drug release control using hydrogels. Adv. Drug. Deliver. Rev. 54, 53–77 (2002).
Peppas, N. A., Bures, P., Leobandung, W. & Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50, 27 (2000).
Stile, R. A. & Healy, K. E. Thermo-reversible peptide-modified hydrogels for tissue regeneration. Biomacromolecules 2, 185–194 (2001).
Haraguchi, K., Takehisa, T. & Ebato, M. Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromolecules 7, 3267–3275 (2006).
Tessmar, J. K. & Goepferich, A. M. Customized PEG-derived copolymers for tissue-engineering applications. Macromol. Biosci. 7, 23–39 (2007).
Lei, M., Gu, Y., Baldi, A., Siegel, R. A. & Ziaie, B. A high resolution technique for fabricating environmentally sensitive hydrogel structures. Langmuir 20, 8947–8951 (2004).
Ohashi, H., Hiraoka, Y., Nakao, S. & Yamaguchi, T. An autonomous phase transition-complexation/decomplexation polymer system with a molecular recognition property. Macromolecules 39, 2614–2620 (2006).
Heskins, M. & Guillet, J. E. Solution properties of Poly(N-isopropylacrylamide). J. Macromol. Sci. Chem. A2, 1441–1455 (1968).
Chen, G. H. & Hoffman, A. S. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 373, 49–52 (1995).
Meyer, S. & Richtering, W. Influence of polymerization conditions on the structure of temperature sensitive poly(N-iso-propylacrylamid) (PNiPAM) microgels. Macromolecules 38, 1517–1519 (2005).
Kim, K. S. & Vincent, B. pH and Temperature-sensitive Behaviors of Poly(4-vinyl pyridine-co-N-isopropyl acrylamide) Microgels. Polym. J. 37, 565–570 (2005).
Baney, R. H., Cao, X., Johns, R. G., Ando, W. & Chojnowski, J. (eds). In Silicon-Containing Polymers, Kluwer: Dordrecht, 2000.
Roy, D. A. & Shea, K. J. Bridged polysilsesquioxanes. Highly porous hybrid organic-inorganic materials. Chem. Rev. 95, 1409–1442 (1995).
Kondo, T., Yoshi, K., Horie, K. & Itoh, M. Photoprove Study of Siloxane Polymers. 3. Local Free Volume of polymethylsilsesquioxane Proved by Photoisomerization of Azobenzene. Macromolecules 33, 3650 (2000).
Krishnan, P. S. G. & He, C. Synthesis, characterization, and polymerization kinetics of novel ladder-like polysilsesquioxanes containing side-chain propyl methacrylate groups. Macromol. Chem. Phys. 204, 531–539 (2003).
Pyun, J. & Matyjaszewski, K. Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/‘Living’ radical polymerization. Chem. Mater. 13, 3436–3438 (2001).
Kim, K- M., Keum, D- K. & Chujo, Y. Organicinorganic polymer hybrids using polyoxazoline initiated by functionalized silsesquioxane. Macromolecules 36, 867–875 (2003).
Suzuki, K., Oku, J., Takai, M., Okabayashi, H. & O’Connor, C. J. Synthesis and condensation of 3-(Triethoxysilyl)propyl-terminated polystyrene. Polym. J. 35, 938–944 (2003).
Cardoen, G. & Coughlin, E. B. Hemi-Telechelic polystyrene-POSS copolymers as model systems for the study of well-defined inorganic/organic hybrid materials. Macromolecules 37, 5123–5126 (2004).
Fu, B. X., Lee, A. & Haddad, T. S. Styrenebutadienestyrene triblock copolymers modified with polyhedral oligomeric silsesquioxanes. Macromolecules 37, 5211–5218 (2004).
Masuda, T., Yamamoto, S., Moriya, O., Kashio, M. & Sugizaki, T. Preparation of stimuli-responsive polysilsesquioxane grafted block copolymer of acrylamide monomers. Polym. J. 40, 126–136 (2008).
Moriya, O., Yamamoto, S., Masuda, T., Kashio, M. & Sugizaki, T. Preparation of thermoresponsive grafted polysilsesquioxane from polyacrylamides having methoxysilyl end group. Polym. J. 40, 1042–1048 (2008).
Wohlrab, S. & Kuckling, D. Ìultisensitive polymers based on 2-vinylpyridine and N-isopropylacrylamide. J. Polym. Sci., Part A: Polym. Chem. 39, 3797–3804 (2001).
Skrabania, K., Kristen, J., Laschewsky, A., Akdemir, Õ., Hoth, A. & Lutz, J.- F. Design, synthesis, and aqueous aggregation behavior of nonionic single and multiple thermoresponsive polymers. Langmuir 23, 84–93 (2007).
Park, J. S., Akiyama, Y., Winnik, F. M. & Kataoka, K. Versatile synthesis of [32] end-functionalized thermosensitive poly(2-isopropyl-2-oxazolines). Macromolecules 37, 6786–6792 (2004).
Iwasaki, Y., Wachiralarpphaithoon, C. & Akiyoshi, K. Novel thermoresponsive polymers having biodegradable phosphoester backbones. Macromolecules 40, 8136–8138 (2007).
Seno, K., Kanaoka, S. & Aoshima, S. Thermosensitive diblock copolymers with designed molecular weight distribution: synthesis by continuous living cationic polymerization and micellization behavior. J. Polym. Sci., Polym. Chem. 46, 2212–2221 (2008).
Matsuoka, T., Yamamoto, S. & Moriya, O. A new amphiphilic and thermoresponsive polysilsesquioxane having alkoxyethylamide group. Chem. Lett. 37, 772–773 (2008).
Otsu, T. Iniferter concept and living radical polymerization. J. Polym. Sci., Polym. Chem. 38, 2121–2136 (2000).
Çiçek, H. & Tuncel, A. Immobilization of α-chymotrypsin in thermally reversible isopropylacrylamide-hydroxyethylmethacrylate copolymer gel. J. Polym. Sci., Polym. Chem. 36, 543–552 (1998).
Abraham, S., Brahim, S., Ishikawa, K. & Guiseppi-Elie, A. Molecularly engineered P(HEMA)-based hydrogels for implant biochip biocompatibility. Biomaterials 26, 4767–4778 (2005).
Weaver, J. V. M., Bannister, I., Robinson, K. L., Bories-Azeau, X., Armes, S. P., Smallridge, M. & Mckenna, P. Stimulus-responsive water-soluble polymers based on 2-hydroxyethyl methacrylate. Macromolecules 37, 2395–2403 (2004).
Matsubara, Y., Konishi, W., Sugizaki, T. & Moriya, O. Synthesis of poly(phenylsilsesquioxane) having organostannyl groups. J. Polym. Sci., Part A: Polym. Chem. 39, 2125–2133 (2001).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kashio, M., Sugizaki, T., Takushima, H. et al. Thermoresponsive polysilsesquioxane grafted methacrylate polymer with a methoxyethylamide group. Polym J 42, 190–194 (2010). https://doi.org/10.1038/pj.2009.333
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2009.333