Abstract
Conformational free energies and geometrical parameters derived from ab initio molecular orbital (MO) calculations for monomeric and dimeric model compounds of poly((R)-3-hydroxybutyrate) (PHB) were introduced into the refined rotational isomeric state (RIS) scheme to yield the characteristic ratio, configurational entropy, configurational internal energy, bond conformations and averaged geometrical parameters of PHB. The reliability of the MO calculations was confirmed through comparison with 1H and 13C nuclear magnetic resonance experiments for the monomeric model compound. The characteristic ratio (5.60) derived from the refined RIS calculations for the unperturbed PHB chain at 25 °C is in satisfactory agreement with the experimental values (6.1–6.3). The crystalline PHB chain is known to adopt the ttg+g+ conformation in the repeating unit. A previous study revealed that a trimeric (R)-3-hydroxybutyrate substrate bound on a PHB depolymerase lies in the ttg+g+ and tg−tt conformations. In our MO calculations, the former conformation is the most stable, and the latter is metastable but further stabilized by intermolecular C=O⋯H−N and C=O⋯H−O hydrogen bonds on the enzyme.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Mandelkern, L. Crystallization of Polymer Volume 1 Equilibrium Concept Ch. 6, (Cambridge University Press, New York, 2002).
Wunderlich, B. Macromolecular Physics Volume 3 Crystal Melting Ch. 8, (Academic Press, Cambridge, UK, 1980).
Biopolymers: Volume 3b Polyesters II Properties and Chemical Synthesis Doi, Y. & Steinbüchel, A. (eds). (Wiley-VCH, Weinheim, Germany, 2002).
Flory, P. J. Statistical Mechanics of Chain Molecules (Wiley & Sons, New York, 1969).
Mattice, W. L. & Suter, U. W. Conformational Theory of Large Molecules: The Rotational Isomeric State Model in Macromolecular Systems (Wiley & Sons, New York, 1994).
Kyles, R. E. & Tonelli, A. E. Conformational characteristics of poly(D-β-hydroxybutyrate). Macromolecules 36, 1125–1131 (2003).
Sasanuma, Y. Conformational characteristics, configurational properties, and thermodynamic characteristics of poly(ethylene terephthalate) and poly(ethylene-2,6-naphthalate). Macromolecules 42, 2854–2862 (2009).
Sasanuma, Y. & Suzuki, N. Influence of weak attractive interactions on structures and properties of poly(trimethylene terephthalate). Macromolecules 42, 7203–7212 (2009).
Sasanuma, Y., Asai, S. & Kumagai, R. Conformational characteristics and configurational properties of poly(ethylene oxide-alt-ethylene sulfide). Macromolecules 40, 3488–3497 (2007).
Doi, Y., Kunioka, M., Nakamura, Y. & Soga, K. Proton and carbon-13 NMR analysis of poly(β-hydroxybutyrate) isolated from Bacillus megaterium. Macromolecules 19, 1274–1276 (1986).
Doi, Y., Kunioka, M., Nakamura, Y. & Soga, K. Nuclear magnetic resonance studies on poly(β-hydroxybutyrate) and a copolyester of β-hydroxybutyrate and β-hydroxyvalerate isolated from Alcaligenes eutrophus H16. Macromolecules 19, 2860–2864 (1986).
Kamiya, N., Inoue, Y., Yamamoto, Y., Chûjô, R. & Doi, Y. Conformational analysis of poly(3-hydroxybutyrate- co-3-hydroxyvalerate) in solution by proton NMR spectroscopy. Macromolecules 23, 1313–1317 (1990).
Li, J., Uzawa, J. & Doi, Y. Conformational behavior of methyl (3 R)-3-[(3′ R)-3′-hydroxybutanoyl]oxybutanoate in solutions: effect of intramolecular hydrogen bond. Bull. Chem. Soc. Jpn 70, 1887–1893 (1997).
Li, J., Uzawa, J. & Doi, Y. Conformational analysis of oligomers of (R)-3-hydroxybutanoic acid in solutions by 1H NMR spectroscopy. Bull. Chem. Soc. Jpn 71, 1683–1689 (1998).
Waser, P., Rueping, M., Seebach, D., Duchardt, E. & Schwalbe, H. On the solution structure of PHB: preparation and NMR analysis of isotopically labeled oligo[(R)-3-hydroxybutanoic acids] (OHBs). Helv. Chem. Acta 84, 1821–1845 (2001).
Budzelaar, P. H. M. gNMR, version 5.0 (IvorySoft & Adept Scientific plc, Letchworth, UK, 2004).
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C. & Pople, J. A. Gaussian03 Revision D.01 (Gaussian Inc., Wallingford, CT, 2004).
Cancès, E., Mennucci, B. & Tomasi, J. A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys 107, 3032–3041 (1997).
Helgaker, T., Watson, M. & Handy, N. C. Analytical calculation of nuclear magnetic resonance indirect spin-spin coupling constants at the generalized gradient approximation and hybrid levels of density-functional theory. J. Chem. Phys 113, 9402–9409 (2000).
Anteunis, J. O., Tavernier, D. & Borremans, F. A review on the conformational aspects in the 1,3-dioxane system. Heterocycles 4, 293–371 (1976).
Sasanuma, Y. Conformational analysis of poly(propylene oxide) and its model compound 1,2-dimethoxypropane. Macromolecules 28, 8629–8638 (1995).
Sasanuma, Y. Solvent effect on the conformation of 1,2-dimethoxypropane. J. Phys. Chem. 51, 13486–13488 (1994).
Bondi, A. van der Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964).
Marchessault, R. H., Okamura, K. & Su, C. J. Physical properties of poly(β-hydroxy butyrate). II. Conformational aspects in solution. Macromolecules 3, 735–740 (1970).
Cornibert, J., Marchessault, R. H., Benoit, H. & Weill, G. Physical properties of poly(β-hydroxy butyrate). III. Folding of helical segments in 2,2,2-trifluoroethanol. Macromolecules 3, 741–746 (1970).
Akita, S., Einaga, Y., Miyaki, Y. & Fujita, H. Solution properties of poly(D-β-hydroxybutyrate). 1. Biosynthesis and characterization. Macromolecules 9, 774–780 (1976).
Miyaki, Y., Einaga, Y., Hirosye, T. & Fujita, H. Solution properties of poly(D-β-hydroxybutyrate). 2. Light scattering and viscosity in trifluoroethanol and behavior of highly expanded polymer coils. Macromolecules 10, 1356–1364 (1977).
Hirosye, T., Einaga, Y. & Fujita, H. Excluded-volume effects in dilute polymer solutions. VIII. Poly(D,L-β-methyl β-propiolactone) in several solvents and reanalysis of data on poly(D-β-hydroxybutyrate). Polym. J. 11, 819–826 (1979).
Vacatello, M. & Flory, P. J. Conformational statistics of poly(methyl methacrylate). Macromolecules 19, 405–415 (1986).
Mattice, W. L., Helfer, C. A. & Sokolov, A. P. Persistence length and finite chain length effect on characteristic ratios. Macromolecules 37, 4711–4717 (2004).
Sasanuma, Y. & Kumagai, R. Conformational characteristics and configurational properties of poly(ethylene imine- alt-ethylene sulfide) and the role of the secondary amine group as a junction of attractive interactions. Macromolecules 40, 7393–7399 (2007).
Sasanuma, Y., Watanabe, A. & Tamura, K. Structure-property relationships of polyselenoethers [-(CH2)ySe-]x (y=1, 2, and 3) and related polyethers and polysulfides. J. Phys. Chem. B 112, 9613–9624 (2008).
Huglin, M. B. & Radwan, M. A. Unperturbed dimensions of poly(β-hydroxybutyrate) in single and binary solvents. Polymer 32, 1293–1298 (1991).
Flory, P. J. Principles of Polymer Chemistry, (Cornell University Press, Ithaca, NY, 1953).
Yamakawa, H. Modern Theory of Polymer Solutions, (Harper & Row, New York, 1971).
Fujita, H. Polymer Solutions, (Elsevier Science, New York, 1990).
Domb, C. & Barrett, A. J. Universality approach to the expansion factor of a polymer chain. Polymer 17, 179–184 (1976).
Cornibert, J. & Marchessault, R. H. Physical properties of poly-β-hydroxybutyrate: IV. Conformational analysis and crystalline structure. J. Mol. Biol. 71, 735–756 (1972).
Yokouchi, M., Chatani, Y., Tadokoro, H., Teranishi, K. & Tani, H. Structural studies of polyesters: 5. Molecular and crystal structures of optically active and racemic poly(β-hydroxybutyrate). Polymer 14, 267–272 (1973).
Brüchner, S., Meille, S. V., Malpezzi, L., Cesàro, A., Navarini, L. & Tombolini, R. The structure of poly(D-(-)-beta-hydroxybutyrate). A refinement based on the Rietveld method. Macromolecules 21, 967–972 (1988).
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).
Li, Y. & Wu, Y. A theoretical study on the structure of poly((R)-3-hydroxybutanoic acid). J. Phys. Chem. A 107, 5128–5137 (2003).
Hisano, T., Kasuya, K., Tezuka, Y., Ishii, N., Kobayashi, T., Shiraki, M., Oroudjev, E., Hansma, H., Iwata, T., Doi, Y., Saito, T. & Miki, K. The crystal structure of polyhydroxybutyrate depolymerase from Penicillium funiculosum provides insights into the recognition and degradation of biopolyesters. J. Mol. Biol. 356, 993–1004 (2006).
Moreland, J. L., Gramada, A., Buzko, O. V., Zhang, Q. & Bourne, P. E. The molecular biology toolkit (MBT): a modular platform for developing molecular visualization applications. BMC Bioinformatics 6, 21 (2005).
Deshmukh, M. M. & Gadre, S. R. Estimation of N-H···O=C intramolecular hydrogen bond energy in polypeptides. J. Phys. Chem. A 113, 7927–7932 (2009).
Jeffrey, G. A. An Introduction to Hydrogen Bonding Ch. 11 (Oxford University Press, New York, 1997).
Bachmann, B. M. & Seebach, D. Investigation of the enzymatic cleavage of diastereomeric oligo(3-hydroxybutanoates) containing two to eight HB units. A model for the stereoselectivity of PHB depolymerase from Alcaligenes faecalis T1 . Macromolecules 32, 1777–1784 (1999).
Acknowledgements
This study was partly supported by a Grant-in-Aid for Scientific Research (C) (22550190) from the Japan Society for the Promotion of Science.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies the paper on Polymer Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Sasanuma, Y., Katsumata, S. Elucidation of conformational characteristics and configurational properties of poly((R)-3-hydroxybutyrate) by ab initio statistical mechanics. Polym J 45, 727–737 (2013). https://doi.org/10.1038/pj.2012.203
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2012.203