Abstract
We have used Suzuki coupling to synthesize a series of maleimide–thiophene copolymers presenting pendent 2-hydroxyethyl and 6-hydroxyhexyl units. The maleimide–thiophene copolymers containing different contents of OH groups were then reacted with 3,3′-dimethoxy-4,4′-biphenylene diisocyanate (DMBPI) in solution to form the interchain-linked polymers. The interchain-linked polymers exhibited excellent solubility in organic solvents. The average molecular weight and thermal stability of the copolymers increased after interchain linking with DMBPI. The wavelengths of maximum absorption of the interchain-linked copolymers were red-shifted relative to those of the corresponding side-chain copolymers. The energy level of the lowest unoccupied molecular orbitals and highest occupied molecular orbitals decreased after the copolymers had undergone interchain linking with DMBPI. We fabricated polymer solar cells (PSCs) from blends of the interchain-linked copolymers and [6,6]-phenyl-C61-butyric acid methyl ester. The photovoltaic performances of the PSCs incorporating the interchain-linked copolymers were superior to those of the corresponding PSCs based on the OH-presenting copolymers.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Coakley, K. M. & McGehee, M. D. Conjugated polymer photovoltaic cells. Chem. Mater. 16, 4533–4542 (2004).
Cheng, Y. J., Yang, S. H. & Hsu, C. S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 109, 5868–5923 (2009).
Beaupre, S., Boudreault, P. L. T. & Leclerc, M. Solar-energy production and energy-efficient lighting: photovoltaic devices and white-light-emitting diodes using poly(2,7-fluorene), poly(2,7-carbazole), and poly(2,7-dibenzosilole) derivatives. Adv. Energy Mater. 2, E6–E27 (2010).
Krebs, F. C., Jorgensen, M., Norrman, K., Hagemann, O., Alstrup, J., Nielsen, T. D., Fyenbo, J., Larsen, K. & Kristensen, J. A complete process for production of flexible large area polymer solar cells entirely using screen printing—first public demonstration. Sol. Energy Mater. Sol. Cells 93, 422–441 (2009).
Tipnis, R., Bernkopf, J., Jia, S., Krieg, J., Li, S., Storch, M. & Laird, D. Large-area organic photovoltaic module-fabrication and performance. Sol. Energy Mater. Sol. Cells 93, 442–446 (2009).
Manceau, M., Angmo, D., Jorgensen, M. & Krebs, F. C. ITO-free flexible polymer solar cells: from small model devices to roll-to-roll processed large modules. Org. Electron 12, 566–574 (2001).
Liang, Y., Xu, Z., Xia, J., Tsai, S. T., Wu, Y., Li, G., Ray, C. & Yu, L. For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, E135–E138 (2010).
Liang, Y., Feng, D., Wu, Y., Tsai, S. T., Li, G., Ray, C. & Yu, L. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. J. Am. Chem. Soc. 131, 7792–7799 (2009).
Park, S. H., Roy, A., Beaupre, S., Cho, S., Coates, N., Moon, J. S., Moses, D., Leclerc, M., Lee, K. & Heeger, A. J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 3, 297–303 (2009).
Liang, Y. & Yu, L. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. Acc. Chem. Res. 49, 1227–1236 (2010).
Khlyabich, P. P., Burkhart, B., Ng, C. F. & Thompson, B. C. Efficient solar cells from semi-random P3HT analogues incorporating diketopyrrolopyrrole. Macromolecules 44, 5079–5084 (2011).
Hwang, Y. M., Ohshita, J., Harima, Y., Mizumo, T., Ooyama, Y., Morihara, Y., Izawa, T., Sugioka, T. & Fujita, A. Synthesis, characterization, and photovoltaic applications of dithienogermoledithienylbenzothiadiazole and -dithienylthiazolothiazole copolymers. Polymer (Guildf) 52, 3912–3916 (2011).
Zhang, Y., Zou, J., Yip, H. L., Chen, K. S., Davies, J. A., Sun, Y. & Jen, A. K. Y. Synthesis, characterization, charge transport, and photovoltaic properties of dithienobenzoquinoxaline- and dithienobenzopyridopyrazine-based conjugated polymers. Macromolecules 44, 4752–4758 (2011).
Xin, H., Guo, X., Kim, F. S., Ren, G., Watson, M. D. & Jenekhe, S. A. Efficient solar cells based on a new phthalimide-based donor–acceptor copolymer semiconductor: morphology, charge-transport, and photovoltaic properties. J. Mater. Chem. 19, 5303–5310 (2009).
Chang, Y. T., Hsu, S. L., Su, M. H. & Wei, K. H. Intramolecular donor–acceptor regioregular poly(hexylphenanthrenyl-imidazole thiophene) exhibits enhanced hole mobility for heterojunction solar cell applications. Adv. Mater. 21, 2093–2097 (2009).
Zhou, E., Yamakawa, S., Tajima, K., Yang, C. & Hashimoto, K. Synthesis and photovoltaic properties of diketopyrrolopyrrole-based donor–acceptor copolymers. Chem. Mater. 21, 4055–4061 (2009).
Wienk, M. M., Kroon, J. M., Verhees, W. J. H., Knol, J., Hummelen, J. C., Hal, P. A. V. & Janssen, R. A. J. Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew. Chem. Int. Ed. 42, 3371–3375 (2003).
Duren, J. K. J. V., Yang, X., Loos, J., Lieuwma, C. W. T. B., Sieval, A. B., Hummelen, J. C. & Janssen, R. A. J. Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance. Adv. Funct. Mater. 14, 425–434 (2004).
Xin, H., Ren, G., Kim, F. S. & Jenekhe, S. A. Bulk heterojunction solar cells from poly(3-butylthiophene)/fullerene blends: in situ self-assembly of nanowires, morphology, charge transport, and photovoltaic properties. Chem. Mater. 20, 6199–6207 (2008).
Svanstrom, C. M. B., Rysz, J., Bernasik, A., Budkowski, A., Zhang, F., Inganas, O., Andersson, M. R., Magnusson, K. O., Smith, J. J. B., Nelson, J. & Moons, E. Device performance of APFO-3/PCBM solar cells with controlled morphology. Adv. Mater. 21, 4398–4403 (2009).
Kim, C. S., Kim, J. B., Lee, S. S., Kim, Y. S. & Loo, Y. L. Sequence of annealing polymer photoactive layer influences the air stability of inverted solar cells. Org. Electron 10, 1483–1488 (2009).
Peet, J., Senatore, M. L., Heeger, A. J. & Bazan, G. C. The role of processing in the fabrication and optimization of plastic solar cells. Adv. Mater. 21, 1521–1527 (2009).
Kawano, K., Sakai, J., Yahiro, M. & Adachi, C. Effect of solvent on fabrication of active layers in organic solar cells based on poly(3-hexylthiophene) and fullerene derivatives. Sol. Energy Mater. Sol. Cells 93, 514–518 (2009).
Chen, H. Y., Hou, J. H., Zhang, S. Q., Liang, Y. Y., Yang, G., Yang, Y., Yu, L. P., Wu, Y. & Li, G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photonics 3, 649–653 (2009).
Huo, L. J., Zhang, S. Q., Guo, X., Xu, F., Li, Y. F. & Hou, J. H. Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. Angew. Chem. Int. Ed. 50, 9697–9702 (2011).
Ryu, M. S., Cha, H. J. & Jang, J. Improvement of operation lifetime for conjugated polymer:fullerene organic solar cells by introducing a UV absorbing film. Sol. Energy Mater. Sol. Cells 94, 152–156 (2010).
Manceau, M., Chambon, S., Rivaton., A., Gardette, J. L., Guillerez, S. & Lemaitre, N. Effects of long-term UV–visible light irradiation in the absence of oxygen on P3HT and P3HT:PCBM blend. Sol. Energy Mater. Sol. Cells 94, 1572–1577 (2010).
Yang, L., Xu, H., Tian, H., Yin, S. & Zhang, F. Effect of cathode buffer layer on the stability of polymer bulk heterojunction solar cells. Sol. Energy Mater. Sol. Cells 94, 1831 (2010).
Sarkar, S., Culp, J. H., Whyland, J. T., Garvan, M. & Misra, V. Encapsulation of organic solar cells with ultrathin barrier layers deposited by ozone-based atomic layer deposition. Org. Electron 11, 1896–1900 (2010).
Schumann, S., Campo, R. D., Illy, B., Cruickshank, A. C., McLachlan, M. A., Ryan, M. P., Riley, D. J., McComb, D. W. & Jones, T. S. Inverted organic photovoltaic devices with high efficiency and stability based on metal oxide charge extraction layers. J. Mater. Chem. 21, 2381–2386 (2011).
Luo, J., Xiao, L., Chen, Z., Qu, B. & Gong, Q. Insulator MnO: highly efficient and air-stable n-type doping layer for organic photovoltaic cells. Org. Electron 11, 664–669 (2010).
Qian, L., Yang, J., Zhou, R., Tang, A., Zheng, Y., Tseng, T. K., Bera, D., Xue, J. & Holloway, P. H. Hybrid polymer-CdSe solar cells with a ZnO nanoparticle buffer layer for improved efficiency and lifetime. J. Mater. Chem. 21, 3814–3817 (2011).
Lee, J. U. I., Jung, J. W., Emrick, T., Russell, T. P. & Jo, W. H. Synthesis of C60-end capped P3HT and its application for high performance of P3HT/PCBM bulk heterojunction solar cells. J. Mater. Chem. 20, 3287–3294 (2010).
Fabiano, S., Chen, Z., Vahedi, S., Facchetti, A., Pignataro, B. & Loi, M. A. Role of photoactive layer morphology in high fill factor all-polymer bulk heterojunction solar cells. J. Mater. Chem. 21, 5891–5896 (2011).
Wang, J. C., Lu, C. Y., Hsu, J. L., Lee, M. K., Hong, Y. R., Perng, T. S., Horng, S. F. & Meng, H. F. Efficient inverted organic solar cells without an electron selective layer. J. Mater. Chem. 21, 5723–5728 (2011).
Li, H., Tang, H., Li, L., Xu, W., Zhao, X. & Yang, X. Solvent-soaking treatment induced morphology evolution in P3HT/PCBM composite films. J. Mater. Chem. 21, 6563–6568 (2011).
Yang, X., Duren, J. K. J., Rispens, M. R., Hummelen, J. C., Janssen, R. A. J., Michels, M. A. J. & Loos, J. Crystalline organization of a methanofullerene as used for plastic solar cell application. Adv. Mater. 16, 802–806 (2004).
Yang, X., Duren, J. K. J., Janssen, R. A. J., Michels, M. A. J. & Loos, J. Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices. Macromolecules 37, 2151–2158 (2004).
Bertho, S., Janssen, G., Cleij, T. J., Conings, B., Moons, W., Gadisa, A., D’Haen, J., Goovaerts, E., Lutsen, L., Manca, J. & Vanderzande, D. Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer:fullerene solar cells. Sol. Energy Mater. Sol. Cells 92, 753–760 (2008).
Drees, M., Hoppe, H., Winder, C., Neugebauer, H., Sariciftci, N. S., Schwinger, W., Schaffler, F., Topf, C., Scharber, M. C., Zhu, Z. & Gaudiana, R. Stabilization of the nanomorphology of polymer–fullerene ‘bulk heterojunction’ blends using a novel polymerizable fullerene derivative. J. Mater. Chem. 15, 5158–5163 (2005).
Zhu, Z., Hadjikyriacou, S., Waller, D. & Gaudiana, R. Stabilization of film morphology in polymer–fullerene heterojunction solar cells. J. Macromol. Sci. A A41, 1467–1487 (2004).
Hsieh, C. H., Cheng, Y. J., Li, P. J., Chen, C. H., Dubosc, M., Liang, R. M. & Hsu, C. S. Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer. J. Am. Chem. Soc. 132, 4887–4893 (2010).
Cheng, Y. J., Hsieh, C., He, Y. J., Hsu, C. H. & Li, Y. F. Combination of indene-C60 bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells. J. Am. Chem. Soc. 132, 17381–17383 (2010).
Chang, C. Y., Wu, C. E., Chen, S. Y., Cui, C. H., Cheng, Y. J., Hsu, C. H., Wang, Y. L. & Li, Y. F. Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods. Angew. Chem. Int. Ed. 50, 9386–9390 (2011).
Miyanishi, S., Tajima, K. & Hashimoto, K. Morphological stabilization of polymer photovoltaic cells by using cross-linkable poly(3-(5-hexenyl)thiophene). Macromolecules 42, 1610–1618 (2009).
Farinhas, J., Ferreira, Q., Paolo, R. E. D., Alcacer, L., Morgado, J. & Charas, A. Nanostructured donor/acceptor interfaces in photovoltaic cells using columnar-grain films of a cross-linked poly(fluorene-alt-bithiophene). J. Mater. Chem. 21, 12511–12519 (2011).
Lee, U. R., Lee, T. W., Hoang, M. H., Kang, N. S., Yu, J. W., Kim, K. H., Lim, K. G., Lee, T. W., Jin, J. I. & Choi, D. H. Photoreactive low-bandgap 4H-cyclopenta[2,1−b:3,4-b’]dithiophene and 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole-based alternating copolymer for polymer solar cell. Org. Electron 12, 269–278 (2011).
Zhou, E., Tan, Z., Yang, Y., Huo, L. J., Zou, Y. P., Yang, C. H. & Li, Y. F. Synthesis, hole mobility, and photovoltaic properties of cross-linked polythiophenes with vinylene–terthiophene–vinylene as conjugated bridge. Macromolecules 40, 1831–1837 (2007).
Tu, G., Bilge, A., Adamczyk, S., Forster, M., Heiderhoff, R., Balk, L. J., Muhlbacher, D., Morana, M., Koppe, M., Scharber, M. C., Choulis, S. A., Brabec, C. J. & Scherf, U. The influence of interchain branches on solid state packing, hole mobility and photovoltaic properties of poly(3-hexylthiophene) (P3HT). Macromol. Rapid. Commun. 28, 1781–1785 (2007).
Lee, R. H. & Lee, L. Y. Photovoltaic properties of bulk heterojunction solar cells incorporating 2-hydroxylethyl- and fullerene-functionalized conjugated polymers. Colloid. Polym. Sci. 289, 1215–1231 (2011).
Liu, T. Z. & Chen, Y. Synthesis, optical and electrochemical properties of luminescent polymers containing 1,2-diphenylmaleimide and thiophene segments. Polymer (Guildf) 46, 10383–10391 (2005).
Chan, L. H., Lee, Y. D. & Chen, C. T. Synthesis and characterization of 3,4-diphenylmaleimide copolymers that exhibitorange to red photoluminescence and electroluminescence. Macromolecules 39, 3262–3269 (2006).
Hou, J. H., Tan, Z. A., He, Y. J., Yang, C. H. & Li, Y. F. Branched poly(thienylene vinylene)s with absorption spectra covering the whole visible region. Macromolecules 39, 4657–4662 (2006).
Lee, J. Y., Park, S. M. & Jung, W. T. Synthesis and nonlinear optical properties of novel polyurethanes with high thermal stability for electro-optic applications. Bull. Korean Chem. Soc. 26, 841–844 (2005).
Li, Y. W., Xue, L. L., Xia, H. J., Xu, B., Wen, S. P. & Tian, W. J. Synthesis and properties of polythiophene derivatives containing triphenylamine moiety and their photovoltaic applications. J. Polym. Sci. Polym. Chem. 46, 3970–3984 (2008).
Sariciftci, N. S., Smilowitz, L., Heeger, A. J. & Wudl, F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474–1476 (1992).
Yu, G., Zhang, C. & Heeger, A. J. Dual-function semiconducting polymer devices: light-emitting and photodetecting diodes. Appl. Phys. Lett. 64, 1540–1542 (1994).
Gao, F., Hide, F. & Wang, H. Efficient photodetectors and photovoltaic cells from composite of fullerenes and conjugated polymers: photoinduced electron transfer.. Synth. Met. 84, 979–980 (1997).
Kim, H., Kim, J. Y., Lee, K., Park, Y., Jin, Y. & Suh, H. Organic photovoltaic cells base on conjugated polymer/fullerene composites. Curr. Appl. Phys. 1, 139–143 (2001).
Vandewal, K., Gadisa, A., Oosterbaan, W. D., Bertho, S., Banishoeib, F., Severen, I. V., Lutsen, L., Cleij, T. J., Vanderzande, D. & Manca, J. V. The relation between open-circuit voltage and the onset of photocurrent generation by charge-transfer absorption in polymer: fullerene bulk heterojunction solar cells. Adv. Funct. Mater. 18, 2064–2070 (2008).
Hsieh, B. R., Ettedgui, E. & Gao, Y. The surface species of poly(p-phenylene vinylene) and their effect on metal interface formation. Synth. Met. 78, 269–275 (1996).
Li, Y. F. & Zou, Y. P. Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility. Adv. Mater. 20, 2952–2958 (2008).
Acknowledgements
We thank the National Science Council of Taiwan, ROC, for financial support.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supplementary Information accompanies the paper on Polymer Journal website
Rights and permissions
About this article
Cite this article
Lee, RH., Chen, WY. & Shiau, SY. Synthesis and photovoltaic properties of a series of bulk heterojunction solar cells based on interchain-linked conjugated polymers. Polym J 45, 744–757 (2013). https://doi.org/10.1038/pj.2012.212
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2012.212