Abstract
DNA recovery using solid-phase extraction is a fundamental technique in molecular biology and biotechnology. Our research group developed a novel DNA recovery method using amine-modified magnetic nanoparticles (MNPs) as a solid support. The use of MNPs simplifies the DNA recovery processes and permits their use in automated systems. In this study, we prepared polyamidoamine-modified superparamagnetic particles (PAMAM–SpMNPs) with 10-nm magnetite cores and used them for DNA recovery. To improve the DNA-release efficiency, the surface amine numbers on the particles were evaluated to modify each generation of PAMAM. With this optimization, the PAMAM–SpMNPs maintained a high DNA adsorption capacity and high dispersivity in solution. As a result, the DNA release from the PAMAM–SpMNPs of every generation was highly efficient. In particular, the release of DNA from the G4 to G6 PAMAM–SpMNPs was greater than 95%. Furthermore, an alternating magnetic field (AMF) was applied to expedite the DNA release from the PAMAM–SpMNPs. Complete DNA release was achieved using AMF treatment for 10 min. The DNA recovery method using the PAMAM–SpMNPs will permit various types of testing using DNA from a low volume sample, such as in a micro total analytical system.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Boom, R., Sol, C. J., Salimans, M. M., Jansen, C. L., Wertheim-van Dillen, P. M. & van der Noordaa, J. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 28, 495–503 (1990).
McCloskey, K. E., Chalmers, J. J. & Zborowski, M. Magnetic cell separation: characterization of magnetophoretic mobility. Anal. Chem. 75, 6868–6874 (2003).
Matsunaga, T., Takahashi, M., Yoshino, T., Kuhara, M. & Takeyama, H. Magnetic separation of CD14+ cells using antibody binding with protein A expressed on bacterial magnetic particles for generating dendritic cells. Biochem. Biophys. Res. Commun. 350, 1019–1025 (2006).
Kuhara, M., Takeyama, H., Tanaka, T. & Matsunaga, T. Magnetic cell separation using antibody binding with protein a expressed on bacterial magnetic particles. Anal. Chem. 76, 6207–6213 (2004).
Alefantis, T., Grewal, P., Ashton, J., Khan, A. S., Valdes, J. J. & Del Vecchio, V. G. A rapid and sensitive magnetic bead-based immunoassay for the detection of staphylococcal enterotoxin B for high-through-put screening. Mol. Cell. Probes. 18, 379–382 (2004).
Tanaka, T., Takeda, H., Ueki, F., Obata, K., Tajima, H., Takeyama, H., Goda, Y., Fujimoto, S. & Matsunaga, T. Rapid and sensitive detection of 17 beta-estradiol in environmental water using automated immunoassay system with bacterial magnetic particles. J. Biotechnol. 108, 153–159 (2004).
Tanaka, T. & Matsunaga, T. Detection of HbA(1c) by boronate affinity immunoassay using bacterial magnetic particles. Biosens. Bioelectron. 16, 1089–1094 (2001).
Maruyama, K., Takeyama, H., Nemoto, E., Tanaka, T., Yoda, K. & Matsunaga, T. Single nucleotide polymorphism detection in aldehyde dehydrogenase 2 (ALDH2) gene using bacterial magnetic particles based on dissociation curve analysis. Biotechnol. Bioeng. 87, 687–694 (2004).
Martins, S. A., Prazeres, D. M., Fonseca, L. P. & Monteiro, G. A. Application of central composite design for DNA hybridization onto magnetic microparticles. Anal. Biochem. 391, 17–23 (2009).
Matsunaga, T., Maruyama, K., Takeyama, H. & Katoh, T. High-throughput SNP detection using nano-scale engineered biomagnetite. Biosens. Bioelectron. 22, 2315–2321 (2007).
Maruyama, K., Takeyama, H., Mori, T., Ohshima, K., Ogura, S., Mochizuki, T. & Matsunaga, T. Detection of epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) using a fully automated system with a nano-scale engineered biomagnetite. Biosens. Bioelectron. 22, 2282–2288 (2007).
Nakagawa, T., Maruyama, K., Takeyama, H. & Matsunaga, T. Determination of microsatellite repeats in the human thyroid peroxidase (TPOX) gene using an automated gene analysis system with nanoscale engineered biomagnetite. Biosens. Bioelectron. 22, 2276–2281 (2007).
Obata, K., Segawa, O., Yakabe, M., Ishida, Y., Kuroita, T., Ikeda, K., Kawakami, B., Kawamura, Y., Yohda, M., Matsunaga, T. & Tajima, H. Development of a novel method for operating magnetic particles, Magtration Technology, and its use for automating nucleic acid purification. J. Biosci. Bioeng. 91, 500–503 (2001).
Nakagawa, T., Hashimoto, R., Maruyama, K., Tanaka, T., Takeyama, H. & Matsunaga, T. Capture and release of DNA using aminosilane-modified bacterial magnetic particles for automated detection system of single nucleotide polymorphisms. Biotechnol. Bioeng. 94, 862–868 (2006).
Yoza, B., Arakaki, A., Maruyama, K., Takeyama, H. & Matsunaga, T. Fully automated DNA extraction from blood using magnetic particles modified with a hyperbranched polyamidoamine dendrimer. J. Biosci. Bioeng. 95, 21–26 (2003).
Yoza, B., Arakaki, A. & Matsunaga, T. DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer. J. Biotechnol. 101, 219–228 (2003).
Yoza, B., Matsumoto, M. & Matsunaga, T. DNA extraction using modified bacterial magnetic particles in the presence of amino silane compound. J. Biotechnol. 94, 217–224 (2002).
Ota, H., Lim, T. K., Tanaka, T., Yoshino, T., Harada, M. & Matsunaga, T. Automated DNA extraction from genetically modified maize using aminosilane-modified bacterial magnetic particles. J. Biotechnol. 125, 361–368 (2006).
Tanaka, T., Sakai, R., Kobayashi, R., Hatakeyama, K. & Matsunaga, T. Contributions of phosphate to DNA adsorption/desorption behaviors on aminosilane-modified magnetic nanoparticles. Langmuir 25, 2956–2961 (2009).
Tanaka, T., Shibata, K., Hosokawa, M., Hatakeyama, K., Gomyo, H., Arakaki, A., Mogi, T., Taguchi, T., Wake, H., Tanaami, T. & Matsunaga, T. Characterization of magnetic nanoparticles modified with thiol core, functionalized PAMAM dendron for DNA recovery. J. Colloid Interface Sci. in press (2012).
de Chatel, P. F., Nandori, I., Hakl, J., Meszaros, S. & Vad, K. Magnetic particle hyperthermia: Neel relaxation in magnetic nanoparticles under circularly polarized field. J. Phys. Condens. Matter 21, 124202 (2009).
Matsumoto, M., Yoshimura, N., Honda, Y., Hiraoka, M. & Ohura, K. Ferromagnetic hyperthermia in rabbit eyes using a new glass-ceramic thermoseed. Graefes. Arch. Clin. Exp. Ophthalmol. 232, 176–181 (1994).
Wen, J., Guillo, C., Ferrance, J. P. & Landers, J. P. DNA extraction using a tetramethyl orthosilicate-grafted photopolymerized monolithic solid phase. Anal. Chem. 78, 1673–1681 (2006).
Munier, S., Messai, I., Delair, T., Verrier, B. & Ataman-Onal, Y. Cationic PLA nanoparticles for DNA delivery: comparison of three surface polycations for DNA binding, protection and transfection properties. Colloids Surf. B Biointerfaces 43, 163–173 (2005).
Hussain, N., Singh, B., Sakthivel, T. & Florence, A. T. Formulation and stability of surface-tethered DNA-gold-dendron nanoparticles. Int. J. Pharm. 254, 27–31 (2003).
Poon, L., Zandberg, W., Hsiao, D., Erno, Z., Sen, D., Gates, B. D. & Branda, N. R. Photothermal release of single-stranded DNA from the surface of gold nanoparticles through controlled denaturating and Au-S bond breaking. ACS Nano. 4, 6395–6403 (2010).
Singh, B., Hussain, N., Sakthivel, T. & Florence, A. T. Effect of physiological media on the stability of surface-adsorbed DNA-dendron-gold nanoparticles. J. Pharm. Pharmacol. 55, 1635–1640 (2003).
Ribeiro, S., Hussain, N. & Florence, A. T. Release of DNA from dendriplexes encapsulated in PLGA nanoparticles. Int. J. Pharm. 298, 354–360 (2005).
Perrie, Y., Barralet, J. E., McNeil, S. & Vangala, A. Surfactant vesicle-mediated delivery of DNA vaccines via the subcutaneous route. Int. J. Pharm. 284, 31–41 (2004).
Acknowledgements
This work was partially supported by a Grant-in-Aid for Scientific Research (No. 22107009) on the Innovative Areas: ‘Fusion Materials’ (Area No. 2206) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and a Grant-in-Aid for challenging Exploratory Research (No. 22651046) from the Japan Society for the Promotion of Science (JSPS).
Author information
Authors and Affiliations
Corresponding author
Additional information
Supplementary Information accompanies the paper on Polymer Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Arakaki, A., Shibata, K., Mogi, T. et al. Efficient DNA release from PAMAM dendrimer-modified superparamagnetic nanoparticles for DNA recovery. Polym J 44, 672–677 (2012). https://doi.org/10.1038/pj.2012.32
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2012.32
Keywords
This article is cited by
-
A single-tube sample preparation method based on a dual-electrostatic interaction strategy for molecular diagnosis of gram-negative bacteria
Microchimica Acta (2020)
-
Enhanced solid phase extraction of DNA using hydrophilic monodisperse poly(methacrylic acid-co-ethylene dimethacrylate) microparticles
Molecular Biology Reports (2019)