Abstract
Graphene, a single layer of graphite, has recently attracted a large amount of attention because of its extremely high electronic and thermal properties, as many nanoscale materials are based on individual graphene. Graphene oxide (GO), which is the intermediate during the chemical processing of graphene, consists of graphene functionalized with oxygen-containing functional groups that imparts the desirable solution-processability to the neat graphene. Herein, poly(vinyl alcohol) (PVA), a hydrophilic polymer, was selected as the matrix, and PVA/GO nanocomposites were prepared by a simple and environment friendly process using water as the proceeding medium. In the PVA matrix, GO was exfoliated and nanodispersed. We found that the nanocomposites constructed by the incorporation of GO up to 1% by weight possess remarkable properties, such as significantly high mechanical and thermal properties. These excellent reinforcement effects were achieved not only by the rigid structure and high aspect ratio of the exfoliated GO but also by the strong interaction between PVA and GO. Furthermore, owing to the sheet-like structure of GO, the barrier properties of the nanocomposites were found to be dramatically increased.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Okada, A. & Usuki, A. Twenty years of polymer-clay nanocomposites. Macromol. Mater. Eng. 291, 1449–1476 (2006).
Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Karauchi, T. & Kamigaito, O. Mechanical properties of nylon-6/clay hybrid. J. Mater Res 8, 1185–1189 (1993).
Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Karauchi, T. & Kamigaito, O. Synthesis of nylon 6-clay hybrid by montmorillonite intercalated with ɛ-caprolactam. J. Polym. Sci. 31, 983–986 (1993).
Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Karauchi, T. & Kamigaito, O. One-pot synthesis of nylon 6-clay hybrid. J. Polym. Sci. 31, 1775–1778 (1993).
Morimune, S., Kotera, M. & Nishino, T. Stress transfer of poly (vinyl alcohol)/montmorillonite nanocomposite using X-ray diffraction. J. Adh. Soc. Jpn. 46, 320–325 (2010).
Morimune, S., Kotera, M., Nishino, T., Goto, K. & Hata, K. Poly(vinyl alcohol) nanocomposites with nanodiamond. Macromolecules 44, 4415–4421 (2011).
Tyler, T., Shenderova, O., Cunningham, G., Walsh, J., Drobnik, J. & McGuire, G. Thermal transport properties of diamond-based nanofluids and nanocomposites. Diam. Relat. Mater. 15, 2078–2081 (2006).
Khan, U., May, P., O’Neill, A. & Coleman, J. N. Development of stiff, strong, yet tough composites by the addition of solvent exfoliated graphene to polyurethane. Carbon 48, 4035–4041 (2010).
Paul, D. R. & Robeson, L. M. Polymer nanotechnology: nanocomposites. Polymer 49, 3187–3204 (2008).
Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).
Baughman, R. H., Zakhidov, A. A. & Heer, W. A. Carbon nanotubes-- the route toward applications. Science 297, 787–792 (2002).
Masuda, J. & Torkelson, J. M. Dispersion and major property enhancement in polymer/multiwall carbon nanotube nanocomposites via solid-state shear pulverization followed by melt mixing. Macromolecules 41, 5974–5977 (2008).
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. & Firsov, A. A. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Kotov, N. A. Materials science: carbon sheet solutions. Nature 442, 254–255 (2006).
Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H., Evmenenko, B.G., Nguyen, S. T. & Ruoff, R. S. Preparation and characterization of grapheneoxide paper. Nature 448, 457–460 (2007).
Avouris, P., Chen, Z. H. & Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2, 605–615 (2007).
Kim, H., Abdala, A. A. & Macosko, W. C Graphene/polymer nanocomposites. Macromolecules 43, 6515–6530 (2010).
Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., E Zimney, J. E., Stach, A., Piner, R. D., Nguyen, S. T. & Ruoff, R. S. Graphene-based composite materials. Nature 442, 282–286 (2006).
Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T. & Ruoff, R. S. Preparation and characterization of graphene oxide paper. Carbon 45, 1558–1565 (2007).
Navarro, C. G., Burghard, M. & Kern, K. Elastic properties of chemically derived single graphene sheets. Nano Lett. 8, 2045–2049 (2008).
Watcharotone, S., Dikin, D. A., Stankovich, S., Piner, R., Jung, I., Dommett, G. H. B., Evmenenko, G., Wu, S. E., Chen, S. F., Liu, C. P., Nguyen, S. T. & Ruoff, R. S. Graphene-silica composite thin films as transparent conductors. Nano Lett. 7, 1888–1892 (2007).
Liu, Z. F., Liu, Q., Huang, Y., Ma, Y. F., Yin, S. G., Zhang, X. Y., Sun, W. & Chen, Y. S. Organic photovoltaic devices based on a novel acceptor material: graphene. Adv. Mater. 20, 3924–3930 (2008).
Wang, X., Zhi, L. J. & Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008).
Hummers, W. S & Offeman, R. E . Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958).
Niyogi, S., Bekyarova, E., Itkis, M. E., McWilliams, J. L., Hamon, M. A. & Haddon, R. C. Solution properties of graphite and graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006).
Schniepp, H. C., Li, J. L., McAllister, M. J., Sai, H., Herrera-Alonso, M., Adamson, D. H., Prud’homme, R. K., Car, R., Saville, D. A. & Aksay, I. A. Single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B. 110, 8535–8539 (2006).
McAllister, M. J., Li, J. L., Adamson, D. H., Schniepp, H. C., Abdala, A. A., Liu, J., Alonso, M. H., Milius, D. L., Car, R., Prud’homme, R. K. & Aksay, I. A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396–4404 (2007).
Li, D., Muller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G Processable aqueous dispersions of graphenenanosheets. Nat. Nanotechnol. 3, 101–105 (2008).
Si, Y. C. & Samulski, E. T. Synthesis of water soluble graphene. Nano. Lett. 8, 1679–1682 (2008).
Zhang, W. D., Shen, L., Phang, I. Y. & Liu, T. X. Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding. Macromolecules 37, 256–259 (2004).
Coleman, J. N., Cadek, M., Blake, R., Nicolosi, V., Ryan, K. P., Belton, C., Fonseca, A., Nagy, J. B., Gun’ko, Y. K. & Blau, W. J. High performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv. Funct. Mater. 14, 791–798 (2004).
Liu, L. Q., Barber, A. H., Nuriel, S. & Wagner, H. D. Mechanical properties of functionalized single-walled carbon-nanotube/poly (vinyl alcohol) nanocomposites. Adv. Funct. Mater. 15, 975–980 (2005).
Begam, T., Nagpal, A. & Singhal, R. A Comparative study of swelling properties of hydrogels based on poly(acrylamide-co-methyl methacrylate) containing physical and chemical crosslinks. J. Appl. Polym. Sci. 89, 779–786 (2003).
Barati, A., Norouzi, H., Sharafoddinzadeh, S. & Davarnejad, R. Swelling kinetics modeling of cationicmethacrylamide-based hydrogels. World Appl. Sci. J. 11, 1336–1341 (2010).
Zhang, Q., Naito, K., Tanaka, Y. & Kagawa, Y. Grafting polyimides from nanodiamonds. Macromolecules 41, 536–538 (2008).
Singh, V. K., Patra, M. K., Manoth, M., Gowd, G. S., Vadera, S. R. & Kumar, N. In situ synthesis of graphene oxide and its composites with iron oxide. New Carbon Mater. 24, 147–152 (2009).
Yang, N., Zhai, J., Wan, M., Wang, D. & Jiang, L. Layered nanostructures of polyaniline with graphene oxide as the dopant and template. Synthetic Metals 160, 1617–1622 (2010).
Kuznetsov, V. L. Study of ultradispersed diamond powders obtained using explosion energy. Carbon 29, 665–668 (1991).
Ozawa, M., Inaguma, M., Takahashi, M., Kataoka, F., Krüger, A. & Osawa, E. Preparation and behavior of brownish clear nanodiamond colloids. Adv. Mater. 19, 1201–1206 (2007).
Lee, K., Bozoklu, G., Cai, W., Nguyen, S. T. & Ruoff, R. S. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS. Nano 2, 572–578 (2008).
Wang, H., Hao, Q., Yang, X., Lu, L. & Wang, X. Effects of graphene oxide on the properties of its composite with polyaniline. ACS. Appl. Mater. Interfaces 2, 821–828 (2010).
Park, S., An, J., Piner, R. D., Jung, I., Yang, D., Valmakanni, A., Nguyen, S. T. & Ruoff, R. S. Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 20, 6592–6594 (2008).
Dubin, S., Gilije, S., Wang, K., Tung, V. C., Cha, K., Hall, A. S., Farrar, J., Varshneya, R., Yang, Y. & Kaner, R. B. A. One-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS. Nano 4, 3845–3852 (2010).
Xu, Y., Hong, W., Bai, H., Li, C. & Shi, G. Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47, 3538–3543 (2009).
Liang, J., Houng, Y., Zhang, L., Wang, Y., Ma, Y., Guo, T. & Chen, Y. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Funct. Mater. 19, 2297–2302 (2009).
Zhao, X., Zhang, Q., Chen, D. & Lu, P. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43, 2357–2363 (2010).
Guth, E. Theory of filler reinforcement. J. Appl. Phys. 16, 20–25 (1985).
Halpin, J. C. & Kardos, J. L. The Halpin–Tsai equations: a review. Polym. Eng. Sci. 16, 344–352 (1976).
Halpin, J. C Stiffness and expansion estimates for oriented short fiber composites. J. Comp. Mater. 3, 732–734 (1969).
Nielsen, L. E. Generalized equation for the elastic moduli of composite materials. J. Appl. Phys. 41, 4626–4627 (1970).
Lewis, T. B. & Nielsen, L. E. Dynamic mechanical properties of particulated filler composites. J. Appl. Polym. Sci. 14, 1449–1471 (1970).
Wu, Y. P., Jia, Q. X., Yu, D. S. & Qun, L. Modeling Young’s modulus of rubber-clay nano-composites using composite theories. Polym. Test. 23, 903–909 (2004).
Zhang, X., Liu, T., Sreekumar, T. V., Hu, X. & Smith, K Gel spinning of pva/swnt composite fiber. Polymer 45, 8801–8807 (2004).
Vickery, J. L., Patil, A. J. & Mann, S. Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater. 21, 2180–2184 (2009).
Sakurada, I. Polyvinyl Alcohol Fibers, Marcel Dekker, New York, (1985).
Wan, C., Zhang, Y. & Zhang, Y. Effect of alkyl quaternary ammonium on processing discoloration of melt-intercalated pvc-montmorillonite composites. Polym. Test. 23, 299–306 (2004).
Zhou, T. H., Ruan, W. H., Rong, M. Z., Zhang, M. Q. & Mai, Y. L. Keys to toughening of non-layered nanoparticles/polymer composites. Adv. Mater. 19, 2667–2671 (2007).
Lee, C., Leigh, D. A., Pritchard, R. G., Schultz, D., Teat, S. J., Timco, G. A. & Winpenny, R. E. P. Hybrid organic-inorganic rotaxanes and molecular shuttles. Nature 458, 314–318 (2009).
Jiang, L., Shen, X. P., Wu, J. L. & Shen, K. C. Preparation and characterization of graphene/poly(vinyl alcohol) nanocomposites. J. Appl. Polym. Sci. 118, 275–279 (2010).
Nishino, T., Meguro, M. & Nakamae, K. Poly(vinyl alcohol) with low surface free energy by fluorination. Int. J. Adhes. Adhes. 19, 399–403 (1999).
Abdrashitov, E., Bokun, V., Kritskaya, D. & Ponomarev, A. Investigation of poly(vinylidene chloride) distribution in perfluorinated cation-exchange membranes mf-4sk upon uv- and γ-initiated graft polymerization. High Energy Chem. 42, 419–425 (2008).
Podsiadlo, P., Kaushik, A. K., Arruda, E. M., Waas, A. M., Shim, B. S., Xu, J., Nandivada, H., Pumplin, B. G., Lahann, J., Ramamoorthy, A. & Kotov, N. A. Ultrastrong and stiff layered polymer nanocomposites. Science 318, 80–83 (2007).
Author information
Authors and Affiliations
Corresponding author
Additional information
Supplementary Information accompanies the paper on Polymer Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Morimune, S., Nishino, T. & Goto, T. Poly(vinyl alcohol)/graphene oxide nanocomposites prepared by a simple eco-process. Polym J 44, 1056–1063 (2012). https://doi.org/10.1038/pj.2012.58
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2012.58
Keywords
This article is cited by
-
Gamma irradiation protection via flexible polypyrrole coated bismuth oxide nanocomposites
Polymer Bulletin (2023)
-
Investigation of conductivity and shielding efficiency of the free-standing PVA–GO–Ag composite thin films in terahertz regime using time-domain terahertz spectroscopy
Applied Physics A (2023)
-
Polymer/nanocarbon nanocomposites with enhanced properties
Polymer Journal (2022)
-
The structural, optical, thermal, and electrical properties of synthesized PEO/GO thin films
Applied Physics A (2022)
-
Adsorptive removal of Drimarene Brilliant Blue by thermo stable and eco-friendly graphene oxide reinforced polyvinyl alcohol hydrogels with high reusability potential
Journal of Polymer Research (2022)