Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Ishihara, K., Nomura, H., Mihara, T., Kurita, K., Iwasaki, Y. & Nakabayashi, N. Why do phospholipid polymers reduce protein adsorption? J. Biomed. Mater. Res. 39, 323–330 (1998).
Feng, W., Zhu, S., Ishihara, K. & Brash, J. L. Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization. Langmuir 21, 5980–5987 (2005).
Kitano, H., Tada, S., Mori, T., Takaha, K., Gemmei-Ide, M., Tanaka, M., Fukuda, M. & Yokoyama, Y. Correlation between the structure of water in the vicinity of carboxybetaine polymers and their blood-compatibility. Langmuir 21, 11932–11940 (2005).
Chen, S. G., Chen, S. J., Jiang, S., Mo, Y. M., Luo, J. X., Tang, J. N. & Ge, Z. C. Study of zwitterionic sulfopropylbetaine containing reactive siloxanes for application in antibacterial materials. Colloid Surf. B: Biointerfaces 85, 323–329 (2011).
Akamatsu, K., Mitsumori, K., Han, F. & Nakao, S. Fouling-free membranes obtained by facile surface modification of commercially available membranes using the dynamic forming method. Ind. Eng. Chem. Res. 50, 12281–12284 (2011).
Nagumo, R., Takaba, H. & Nakao, S. Application of free energy calculations at an ultrahigh temperature for estimation of molecular diffusivities and permeabilities in zeolite nanopores at an ambient temperature. J. Phys. Chem. B 113, 13313–13321 (2009).
Onodera, T., Morita, Y., Nagumo, R., Miura, R., Suzuki, A., Tsuboi, H., Hatakeyama, N., Endou, A., Takaba, H., Dassenoy, F., Minfray, C., Joly-Pottuz, L., Kubo, M., Martin, J. M. & Miyamoto, A. A computational chemistry study on friction of h-MoS2. Part II. Friction anisotropy. J. Phys. Chem. B 48, 15382–15838 (2010).
Chen, S. F., Zheng, J., Li, L. Y. & Jiang, S. Y. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials. J. Am. Chem. Soc. 127, 14473–14478 (2005).
He, Y., Hower, J., Chen, S. F., Bernards, M. T., Chang, Y. & Jiang, S. Y. Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. Langmuir 24, 10358 (2008).
Raffaini, G. & Ganazzoli, F. Protein adsorption on a hydrophobic surface: a molecular dynamics study of lysozyme on graphite. Langmuir 26, 5679–5689 (2010).
Raut, V. P., Agashe, M. A., Stuart, S. J. & Latour, R. A. Molecular dynamics simulations of peptide-surface interactions. Langmuir 21, 1629–1639 (2005).
Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., Debolt, S., Ferguson, D., Seibel, G. & Kollman, P . AMBER. A package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and free-energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Comm 91, 1–41 (1995).
Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B. & Woods, R. J. The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005).
Dastidar, S. G. & Mukhopadhyay, C. Structure, dynamics, and energetics of water at the surface of a small globular protein: a molecular dynamics simulation. Phys. Rev. E 68, 021921 (2003).
Sugita, Y. & Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151 (1999).
Nagumo, R., Takaba, H. & Nakao, S. I. High-accuracy estimation of 'slow' molecular diffusion rates in zeolite nanopores, based on free energy calculations at an ultrahigh temperature. J. Phys. Chem. C 112, 2805–2811 (2008).
Schüring, A., Auerbach, S. M. & Fritzsche, S. A simple method for sampling partition function ratios. Chem. Phys. Lett. 450, 164–169 (2007).
Acknowledgements
This work has been supported by the research project, ‘Application of integrated intelligent satellite system to construct regional water resources utilization system,’ sponsored by Core Research for Evolutional Science and Technology of the Japan Science and Technology Agency (JST).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nagumo, R., Ito, T., Akamatsu, K. et al. Molecular dynamics simulations for microscopic behavior of water molecules in the vicinity of zwitterionic self-assembled monolayers. Polym J 44, 1149–1153 (2012). https://doi.org/10.1038/pj.2012.72
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2012.72